# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ The file_reader converts raw corpus to input. """ import os import __future__ import io import paddle import paddle.fluid as fluid def load_kv_dict(dict_path, reverse=False, delimiter="\t", key_func=None, value_func=None): """ Load key-value dict from file """ result_dict = {} for line in io.open(dict_path, "r", encoding='utf8'): terms = line.strip("\n").split(delimiter) if len(terms) != 2: continue if reverse: value, key = terms else: key, value = terms if key in result_dict: raise KeyError("key duplicated with [%s]" % (key)) if key_func: key = key_func(key) if value_func: value = value_func(value) result_dict[key] = value return result_dict class Dataset(object): """data reader""" def __init__(self): # read dict basepath = os.path.abspath(__file__) folder = os.path.dirname(basepath) word_dict_path = os.path.join(folder, "word.dic") label_dict_path = os.path.join(folder, "tag.dic") self.word2id_dict = load_kv_dict( word_dict_path, reverse=True, value_func=int) self.id2word_dict = load_kv_dict(word_dict_path) self.label2id_dict = load_kv_dict( label_dict_path, reverse=True, value_func=int) self.id2label_dict = load_kv_dict(label_dict_path) @property def vocab_size(self): """vocabulary size""" return max(self.word2id_dict.values()) + 1 @property def num_labels(self): """num_labels""" return max(self.label2id_dict.values()) + 1 def word_to_ids(self, words): """convert word to word index""" word_ids = [] for word in words: if word not in self.word2id_dict: word = "OOV" word_id = self.word2id_dict[word] word_ids.append(word_id) return word_ids def label_to_ids(self, labels): """convert label to label index""" label_ids = [] for label in labels: if label not in self.label2id_dict: label = "O" label_id = self.label2id_dict[label] label_ids.append(label_id) return label_ids def get_vars(self,str1): words = str1.strip() word_ids = self.word_to_ids(words) return word_ids