""" Data structure for 1-dimensional cross-sectional and time series data """ from __future__ import division from textwrap import dedent import warnings import numpy as np from pandas._libs import iNaT, index as libindex, lib, tslibs import pandas.compat as compat from pandas.compat import PY36, OrderedDict, StringIO, u, zip from pandas.compat.numpy import function as nv from pandas.util._decorators import Appender, Substitution, deprecate from pandas.util._validators import validate_bool_kwarg from pandas.core.dtypes.common import ( _is_unorderable_exception, ensure_platform_int, is_bool, is_categorical_dtype, is_datetime64_dtype, is_datetimelike, is_dict_like, is_extension_array_dtype, is_extension_type, is_hashable, is_integer, is_iterator, is_list_like, is_scalar, is_string_like, is_timedelta64_dtype) from pandas.core.dtypes.generic import ( ABCDataFrame, ABCDatetimeArray, ABCDatetimeIndex, ABCSeries, ABCSparseArray, ABCSparseSeries) from pandas.core.dtypes.missing import ( isna, na_value_for_dtype, notna, remove_na_arraylike) from pandas.core import algorithms, base, generic, nanops, ops from pandas.core.accessor import CachedAccessor from pandas.core.arrays import ExtensionArray, SparseArray from pandas.core.arrays.categorical import Categorical, CategoricalAccessor from pandas.core.arrays.sparse import SparseAccessor import pandas.core.common as com from pandas.core.config import get_option from pandas.core.index import ( Float64Index, Index, InvalidIndexError, MultiIndex, ensure_index) from pandas.core.indexes.accessors import CombinedDatetimelikeProperties import pandas.core.indexes.base as ibase from pandas.core.indexes.datetimes import DatetimeIndex from pandas.core.indexes.period import PeriodIndex from pandas.core.indexes.timedeltas import TimedeltaIndex from pandas.core.indexing import check_bool_indexer, maybe_convert_indices from pandas.core.internals import SingleBlockManager from pandas.core.internals.construction import sanitize_array from pandas.core.strings import StringMethods from pandas.core.tools.datetimes import to_datetime import pandas.io.formats.format as fmt from pandas.io.formats.terminal import get_terminal_size import pandas.plotting._core as gfx # pylint: disable=E1101,E1103 # pylint: disable=W0703,W0622,W0613,W0201 __all__ = ['Series'] _shared_doc_kwargs = dict( axes='index', klass='Series', axes_single_arg="{0 or 'index'}", axis="""axis : {0 or 'index'} Parameter needed for compatibility with DataFrame.""", inplace="""inplace : boolean, default False If True, performs operation inplace and returns None.""", unique='np.ndarray', duplicated='Series', optional_by='', optional_mapper='', optional_labels='', optional_axis='', versionadded_to_excel='\n .. versionadded:: 0.20.0\n') # see gh-16971 def remove_na(arr): """ Remove null values from array like structure. .. deprecated:: 0.21.0 Use s[s.notnull()] instead. """ warnings.warn("remove_na is deprecated and is a private " "function. Do not use.", FutureWarning, stacklevel=2) return remove_na_arraylike(arr) def _coerce_method(converter): """ Install the scalar coercion methods. """ def wrapper(self): if len(self) == 1: return converter(self.iloc[0]) raise TypeError("cannot convert the series to " "{0}".format(str(converter))) wrapper.__name__ = "__{name}__".format(name=converter.__name__) return wrapper # ---------------------------------------------------------------------- # Series class class Series(base.IndexOpsMixin, generic.NDFrame): """ One-dimensional ndarray with axis labels (including time series). Labels need not be unique but must be a hashable type. The object supports both integer- and label-based indexing and provides a host of methods for performing operations involving the index. Statistical methods from ndarray have been overridden to automatically exclude missing data (currently represented as NaN). Operations between Series (+, -, /, *, **) align values based on their associated index values-- they need not be the same length. The result index will be the sorted union of the two indexes. Parameters ---------- data : array-like, Iterable, dict, or scalar value Contains data stored in Series. .. versionchanged :: 0.23.0 If data is a dict, argument order is maintained for Python 3.6 and later. index : array-like or Index (1d) Values must be hashable and have the same length as `data`. Non-unique index values are allowed. Will default to RangeIndex (0, 1, 2, ..., n) if not provided. If both a dict and index sequence are used, the index will override the keys found in the dict. dtype : str, numpy.dtype, or ExtensionDtype, optional dtype for the output Series. If not specified, this will be inferred from `data`. See the :ref:`user guide ` for more usages. copy : bool, default False Copy input data. """ _metadata = ['name'] _accessors = {'dt', 'cat', 'str', 'sparse'} # tolist is not actually deprecated, just suppressed in the __dir__ _deprecations = generic.NDFrame._deprecations | frozenset( ['asobject', 'reshape', 'get_value', 'set_value', 'from_csv', 'valid', 'tolist']) # Override cache_readonly bc Series is mutable hasnans = property(base.IndexOpsMixin.hasnans.func, doc=base.IndexOpsMixin.hasnans.__doc__) # ---------------------------------------------------------------------- # Constructors def __init__(self, data=None, index=None, dtype=None, name=None, copy=False, fastpath=False): # we are called internally, so short-circuit if fastpath: # data is an ndarray, index is defined if not isinstance(data, SingleBlockManager): data = SingleBlockManager(data, index, fastpath=True) if copy: data = data.copy() if index is None: index = data.index else: if index is not None: index = ensure_index(index) if data is None: data = {} if dtype is not None: dtype = self._validate_dtype(dtype) if isinstance(data, MultiIndex): raise NotImplementedError("initializing a Series from a " "MultiIndex is not supported") elif isinstance(data, Index): if name is None: name = data.name if dtype is not None: # astype copies data = data.astype(dtype) else: # need to copy to avoid aliasing issues data = data._values.copy() if (isinstance(data, ABCDatetimeIndex) and data.tz is not None): # GH#24096 need copy to be deep for datetime64tz case # TODO: See if we can avoid these copies data = data._values.copy(deep=True) copy = False elif isinstance(data, np.ndarray): pass elif isinstance(data, (ABCSeries, ABCSparseSeries)): if name is None: name = data.name if index is None: index = data.index else: data = data.reindex(index, copy=copy) data = data._data elif isinstance(data, dict): data, index = self._init_dict(data, index, dtype) dtype = None copy = False elif isinstance(data, SingleBlockManager): if index is None: index = data.index elif not data.index.equals(index) or copy: # GH#19275 SingleBlockManager input should only be called # internally raise AssertionError('Cannot pass both SingleBlockManager ' '`data` argument and a different ' '`index` argument. `copy` must ' 'be False.') elif is_extension_array_dtype(data): pass elif isinstance(data, (set, frozenset)): raise TypeError("{0!r} type is unordered" "".format(data.__class__.__name__)) # If data is Iterable but not list-like, consume into list. elif (isinstance(data, compat.Iterable) and not isinstance(data, compat.Sized)): data = list(data) else: # handle sparse passed here (and force conversion) if isinstance(data, ABCSparseArray): data = data.to_dense() if index is None: if not is_list_like(data): data = [data] index = ibase.default_index(len(data)) elif is_list_like(data): # a scalar numpy array is list-like but doesn't # have a proper length try: if len(index) != len(data): raise ValueError( 'Length of passed values is {val}, ' 'index implies {ind}' .format(val=len(data), ind=len(index))) except TypeError: pass # create/copy the manager if isinstance(data, SingleBlockManager): if dtype is not None: data = data.astype(dtype=dtype, errors='ignore', copy=copy) elif copy: data = data.copy() else: data = sanitize_array(data, index, dtype, copy, raise_cast_failure=True) data = SingleBlockManager(data, index, fastpath=True) generic.NDFrame.__init__(self, data, fastpath=True) self.name = name self._set_axis(0, index, fastpath=True) def _init_dict(self, data, index=None, dtype=None): """ Derive the "_data" and "index" attributes of a new Series from a dictionary input. Parameters ---------- data : dict or dict-like Data used to populate the new Series index : Index or index-like, default None index for the new Series: if None, use dict keys dtype : dtype, default None dtype for the new Series: if None, infer from data Returns ------- _data : BlockManager for the new Series index : index for the new Series """ # Looking for NaN in dict doesn't work ({np.nan : 1}[float('nan')] # raises KeyError), so we iterate the entire dict, and align if data: keys, values = zip(*compat.iteritems(data)) values = list(values) elif index is not None: # fastpath for Series(data=None). Just use broadcasting a scalar # instead of reindexing. values = na_value_for_dtype(dtype) keys = index else: keys, values = [], [] # Input is now list-like, so rely on "standard" construction: s = Series(values, index=keys, dtype=dtype) # Now we just make sure the order is respected, if any if data and index is not None: s = s.reindex(index, copy=False) elif not PY36 and not isinstance(data, OrderedDict) and data: # Need the `and data` to avoid sorting Series(None, index=[...]) # since that isn't really dict-like try: s = s.sort_index() except TypeError: pass return s._data, s.index @classmethod def from_array(cls, arr, index=None, name=None, dtype=None, copy=False, fastpath=False): """ Construct Series from array. .. deprecated :: 0.23.0 Use pd.Series(..) constructor instead. """ warnings.warn("'from_array' is deprecated and will be removed in a " "future version. Please use the pd.Series(..) " "constructor instead.", FutureWarning, stacklevel=2) if isinstance(arr, ABCSparseArray): from pandas.core.sparse.series import SparseSeries cls = SparseSeries return cls(arr, index=index, name=name, dtype=dtype, copy=copy, fastpath=fastpath) # ---------------------------------------------------------------------- @property def _constructor(self): return Series @property def _constructor_expanddim(self): from pandas.core.frame import DataFrame return DataFrame # types @property def _can_hold_na(self): return self._data._can_hold_na _index = None def _set_axis(self, axis, labels, fastpath=False): """ Override generic, we want to set the _typ here. """ if not fastpath: labels = ensure_index(labels) is_all_dates = labels.is_all_dates if is_all_dates: if not isinstance(labels, (DatetimeIndex, PeriodIndex, TimedeltaIndex)): try: labels = DatetimeIndex(labels) # need to set here because we changed the index if fastpath: self._data.set_axis(axis, labels) except (tslibs.OutOfBoundsDatetime, ValueError): # labels may exceeds datetime bounds, # or not be a DatetimeIndex pass self._set_subtyp(is_all_dates) object.__setattr__(self, '_index', labels) if not fastpath: self._data.set_axis(axis, labels) def _set_subtyp(self, is_all_dates): if is_all_dates: object.__setattr__(self, '_subtyp', 'time_series') else: object.__setattr__(self, '_subtyp', 'series') def _update_inplace(self, result, **kwargs): # we want to call the generic version and not the IndexOpsMixin return generic.NDFrame._update_inplace(self, result, **kwargs) @property def name(self): """ Return name of the Series. """ return self._name @name.setter def name(self, value): if value is not None and not is_hashable(value): raise TypeError('Series.name must be a hashable type') object.__setattr__(self, '_name', value) # ndarray compatibility @property def dtype(self): """ Return the dtype object of the underlying data. """ return self._data.dtype @property def dtypes(self): """ Return the dtype object of the underlying data. """ return self._data.dtype @property def ftype(self): """ Return if the data is sparse|dense. """ return self._data.ftype @property def ftypes(self): """ Return if the data is sparse|dense. """ return self._data.ftype @property def values(self): """ Return Series as ndarray or ndarray-like depending on the dtype. .. warning:: We recommend using :attr:`Series.array` or :meth:`Series.to_numpy`, depending on whether you need a reference to the underlying data or a NumPy array. Returns ------- arr : numpy.ndarray or ndarray-like See Also -------- Series.array : Reference to the underlying data. Series.to_numpy : A NumPy array representing the underlying data. Examples -------- >>> pd.Series([1, 2, 3]).values array([1, 2, 3]) >>> pd.Series(list('aabc')).values array(['a', 'a', 'b', 'c'], dtype=object) >>> pd.Series(list('aabc')).astype('category').values [a, a, b, c] Categories (3, object): [a, b, c] Timezone aware datetime data is converted to UTC: >>> pd.Series(pd.date_range('20130101', periods=3, ... tz='US/Eastern')).values array(['2013-01-01T05:00:00.000000000', '2013-01-02T05:00:00.000000000', '2013-01-03T05:00:00.000000000'], dtype='datetime64[ns]') """ return self._data.external_values() @property def _values(self): """ Return the internal repr of this data. """ return self._data.internal_values() def _formatting_values(self): """ Return the values that can be formatted (used by SeriesFormatter and DataFrameFormatter). """ return self._data.formatting_values() def get_values(self): """ Same as values (but handles sparseness conversions); is a view. """ return self._data.get_values() @property def asobject(self): """ Return object Series which contains boxed values. .. deprecated :: 0.23.0 Use ``astype(object)`` instead. *this is an internal non-public method* """ warnings.warn("'asobject' is deprecated. Use 'astype(object)'" " instead", FutureWarning, stacklevel=2) return self.astype(object).values # ops def ravel(self, order='C'): """ Return the flattened underlying data as an ndarray. See Also -------- numpy.ndarray.ravel """ return self._values.ravel(order=order) def compress(self, condition, *args, **kwargs): """ Return selected slices of an array along given axis as a Series. .. deprecated:: 0.24.0 See Also -------- numpy.ndarray.compress """ msg = ("Series.compress(condition) is deprecated. " "Use 'Series[condition]' or " "'np.asarray(series).compress(condition)' instead.") warnings.warn(msg, FutureWarning, stacklevel=2) nv.validate_compress(args, kwargs) return self[condition] def nonzero(self): """ Return the *integer* indices of the elements that are non-zero. .. deprecated:: 0.24.0 Please use .to_numpy().nonzero() as a replacement. This method is equivalent to calling `numpy.nonzero` on the series data. For compatibility with NumPy, the return value is the same (a tuple with an array of indices for each dimension), but it will always be a one-item tuple because series only have one dimension. See Also -------- numpy.nonzero Examples -------- >>> s = pd.Series([0, 3, 0, 4]) >>> s.nonzero() (array([1, 3]),) >>> s.iloc[s.nonzero()[0]] 1 3 3 4 dtype: int64 >>> s = pd.Series([0, 3, 0, 4], index=['a', 'b', 'c', 'd']) # same return although index of s is different >>> s.nonzero() (array([1, 3]),) >>> s.iloc[s.nonzero()[0]] b 3 d 4 dtype: int64 """ msg = ("Series.nonzero() is deprecated " "and will be removed in a future version." "Use Series.to_numpy().nonzero() instead") warnings.warn(msg, FutureWarning, stacklevel=2) return self._values.nonzero() def put(self, *args, **kwargs): """ Applies the `put` method to its `values` attribute if it has one. See Also -------- numpy.ndarray.put """ self._values.put(*args, **kwargs) def __len__(self): """ Return the length of the Series. """ return len(self._data) def view(self, dtype=None): """ Create a new view of the Series. This function will return a new Series with a view of the same underlying values in memory, optionally reinterpreted with a new data type. The new data type must preserve the same size in bytes as to not cause index misalignment. Parameters ---------- dtype : data type Data type object or one of their string representations. Returns ------- Series A new Series object as a view of the same data in memory. See Also -------- numpy.ndarray.view : Equivalent numpy function to create a new view of the same data in memory. Notes ----- Series are instantiated with ``dtype=float64`` by default. While ``numpy.ndarray.view()`` will return a view with the same data type as the original array, ``Series.view()`` (without specified dtype) will try using ``float64`` and may fail if the original data type size in bytes is not the same. Examples -------- >>> s = pd.Series([-2, -1, 0, 1, 2], dtype='int8') >>> s 0 -2 1 -1 2 0 3 1 4 2 dtype: int8 The 8 bit signed integer representation of `-1` is `0b11111111`, but the same bytes represent 255 if read as an 8 bit unsigned integer: >>> us = s.view('uint8') >>> us 0 254 1 255 2 0 3 1 4 2 dtype: uint8 The views share the same underlying values: >>> us[0] = 128 >>> s 0 -128 1 -1 2 0 3 1 4 2 dtype: int8 """ return self._constructor(self._values.view(dtype), index=self.index).__finalize__(self) # ---------------------------------------------------------------------- # NDArray Compat def __array__(self, dtype=None): """ Return the values as a NumPy array. Users should not call this directly. Rather, it is invoked by :func:`numpy.array` and :func:`numpy.asarray`. Parameters ---------- dtype : str or numpy.dtype, optional The dtype to use for the resulting NumPy array. By default, the dtype is inferred from the data. Returns ------- numpy.ndarray The values in the series converted to a :class:`numpy.ndarary` with the specified `dtype`. See Also -------- pandas.array : Create a new array from data. Series.array : Zero-copy view to the array backing the Series. Series.to_numpy : Series method for similar behavior. Examples -------- >>> ser = pd.Series([1, 2, 3]) >>> np.asarray(ser) array([1, 2, 3]) For timezone-aware data, the timezones may be retained with ``dtype='object'`` >>> tzser = pd.Series(pd.date_range('2000', periods=2, tz="CET")) >>> np.asarray(tzser, dtype="object") array([Timestamp('2000-01-01 00:00:00+0100', tz='CET', freq='D'), Timestamp('2000-01-02 00:00:00+0100', tz='CET', freq='D')], dtype=object) Or the values may be localized to UTC and the tzinfo discared with ``dtype='datetime64[ns]'`` >>> np.asarray(tzser, dtype="datetime64[ns]") # doctest: +ELLIPSIS array(['1999-12-31T23:00:00.000000000', ...], dtype='datetime64[ns]') """ if (dtype is None and isinstance(self.array, ABCDatetimeArray) and getattr(self.dtype, 'tz', None)): msg = ( "Converting timezone-aware DatetimeArray to timezone-naive " "ndarray with 'datetime64[ns]' dtype. In the future, this " "will return an ndarray with 'object' dtype where each " "element is a 'pandas.Timestamp' with the correct 'tz'.\n\t" "To accept the future behavior, pass 'dtype=object'.\n\t" "To keep the old behavior, pass 'dtype=\"datetime64[ns]\"'." ) warnings.warn(msg, FutureWarning, stacklevel=3) dtype = 'M8[ns]' return np.asarray(self.array, dtype) def __array_wrap__(self, result, context=None): """ Gets called after a ufunc. """ return self._constructor(result, index=self.index, copy=False).__finalize__(self) def __array_prepare__(self, result, context=None): """ Gets called prior to a ufunc. """ # nice error message for non-ufunc types if (context is not None and (not isinstance(self._values, (np.ndarray, ExtensionArray)) or isinstance(self._values, Categorical))): obj = context[1][0] raise TypeError("{obj} with dtype {dtype} cannot perform " "the numpy op {op}".format( obj=type(obj).__name__, dtype=getattr(obj, 'dtype', None), op=context[0].__name__)) return result # ---------------------------------------------------------------------- # Unary Methods @property def real(self): """ Return the real value of vector. """ return self.values.real @real.setter def real(self, v): self.values.real = v @property def imag(self): """ Return imag value of vector. """ return self.values.imag @imag.setter def imag(self, v): self.values.imag = v # coercion __float__ = _coerce_method(float) __long__ = _coerce_method(int) __int__ = _coerce_method(int) # ---------------------------------------------------------------------- def _unpickle_series_compat(self, state): if isinstance(state, dict): self._data = state['_data'] self.name = state['name'] self.index = self._data.index elif isinstance(state, tuple): # < 0.12 series pickle nd_state, own_state = state # recreate the ndarray data = np.empty(nd_state[1], dtype=nd_state[2]) np.ndarray.__setstate__(data, nd_state) # backwards compat index, name = own_state[0], None if len(own_state) > 1: name = own_state[1] # recreate self._data = SingleBlockManager(data, index, fastpath=True) self._index = index self.name = name else: raise Exception("cannot unpickle legacy formats -> [%s]" % state) # indexers @property def axes(self): """ Return a list of the row axis labels. """ return [self.index] def _ixs(self, i, axis=0): """ Return the i-th value or values in the Series by location. Parameters ---------- i : int, slice, or sequence of integers Returns ------- value : scalar (int) or Series (slice, sequence) """ try: # dispatch to the values if we need values = self._values if isinstance(values, np.ndarray): return libindex.get_value_at(values, i) else: return values[i] except IndexError: raise except Exception: if isinstance(i, slice): indexer = self.index._convert_slice_indexer(i, kind='iloc') return self._get_values(indexer) else: label = self.index[i] if isinstance(label, Index): return self.take(i, axis=axis, convert=True) else: return libindex.get_value_at(self, i) @property def _is_mixed_type(self): return False def _slice(self, slobj, axis=0, kind=None): slobj = self.index._convert_slice_indexer(slobj, kind=kind or 'getitem') return self._get_values(slobj) def __getitem__(self, key): key = com.apply_if_callable(key, self) try: result = self.index.get_value(self, key) if not is_scalar(result): if is_list_like(result) and not isinstance(result, Series): # we need to box if loc of the key isn't scalar here # otherwise have inline ndarray/lists try: if not is_scalar(self.index.get_loc(key)): result = self._constructor( result, index=[key] * len(result), dtype=self.dtype).__finalize__(self) except KeyError: pass return result except InvalidIndexError: pass except (KeyError, ValueError): if isinstance(key, tuple) and isinstance(self.index, MultiIndex): # kludge pass elif key is Ellipsis: return self elif com.is_bool_indexer(key): pass else: # we can try to coerce the indexer (or this will raise) new_key = self.index._convert_scalar_indexer(key, kind='getitem') if type(new_key) != type(key): return self.__getitem__(new_key) raise except Exception: raise if is_iterator(key): key = list(key) if com.is_bool_indexer(key): key = check_bool_indexer(self.index, key) return self._get_with(key) def _get_with(self, key): # other: fancy integer or otherwise if isinstance(key, slice): indexer = self.index._convert_slice_indexer(key, kind='getitem') return self._get_values(indexer) elif isinstance(key, ABCDataFrame): raise TypeError('Indexing a Series with DataFrame is not ' 'supported, use the appropriate DataFrame column') elif isinstance(key, tuple): try: return self._get_values_tuple(key) except Exception: if len(key) == 1: key = key[0] if isinstance(key, slice): return self._get_values(key) raise # pragma: no cover if not isinstance(key, (list, np.ndarray, Series, Index)): key = list(key) if isinstance(key, Index): key_type = key.inferred_type else: key_type = lib.infer_dtype(key, skipna=False) if key_type == 'integer': if self.index.is_integer() or self.index.is_floating(): return self.loc[key] else: return self._get_values(key) elif key_type == 'boolean': return self._get_values(key) try: # handle the dup indexing case (GH 4246) if isinstance(key, (list, tuple)): return self.loc[key] return self.reindex(key) except Exception: # [slice(0, 5, None)] will break if you convert to ndarray, # e.g. as requested by np.median # hack if isinstance(key[0], slice): return self._get_values(key) raise def _get_values_tuple(self, key): # mpl hackaround if com._any_none(*key): return self._get_values(key) if not isinstance(self.index, MultiIndex): raise ValueError('Can only tuple-index with a MultiIndex') # If key is contained, would have returned by now indexer, new_index = self.index.get_loc_level(key) return self._constructor(self._values[indexer], index=new_index).__finalize__(self) def _get_values(self, indexer): try: return self._constructor(self._data.get_slice(indexer), fastpath=True).__finalize__(self) except Exception: return self._values[indexer] def __setitem__(self, key, value): key = com.apply_if_callable(key, self) def setitem(key, value): try: self._set_with_engine(key, value) return except com.SettingWithCopyError: raise except (KeyError, ValueError): values = self._values if (is_integer(key) and not self.index.inferred_type == 'integer'): values[key] = value return elif key is Ellipsis: self[:] = value return elif com.is_bool_indexer(key): pass elif is_timedelta64_dtype(self.dtype): # reassign a null value to iNaT if isna(value): value = iNaT try: self.index._engine.set_value(self._values, key, value) return except TypeError: pass self.loc[key] = value return except TypeError as e: if (isinstance(key, tuple) and not isinstance(self.index, MultiIndex)): raise ValueError("Can only tuple-index with a MultiIndex") # python 3 type errors should be raised if _is_unorderable_exception(e): raise IndexError(key) if com.is_bool_indexer(key): key = check_bool_indexer(self.index, key) try: self._where(~key, value, inplace=True) return except InvalidIndexError: pass self._set_with(key, value) # do the setitem cacher_needs_updating = self._check_is_chained_assignment_possible() setitem(key, value) if cacher_needs_updating: self._maybe_update_cacher() def _set_with_engine(self, key, value): values = self._values try: self.index._engine.set_value(values, key, value) return except KeyError: values[self.index.get_loc(key)] = value return def _set_with(self, key, value): # other: fancy integer or otherwise if isinstance(key, slice): indexer = self.index._convert_slice_indexer(key, kind='getitem') return self._set_values(indexer, value) else: if isinstance(key, tuple): try: self._set_values(key, value) except Exception: pass if is_scalar(key): key = [key] elif not isinstance(key, (list, Series, np.ndarray)): try: key = list(key) except Exception: key = [key] if isinstance(key, Index): key_type = key.inferred_type else: key_type = lib.infer_dtype(key, skipna=False) if key_type == 'integer': if self.index.inferred_type == 'integer': self._set_labels(key, value) else: return self._set_values(key, value) elif key_type == 'boolean': self._set_values(key.astype(np.bool_), value) else: self._set_labels(key, value) def _set_labels(self, key, value): if isinstance(key, Index): key = key.values else: key = com.asarray_tuplesafe(key) indexer = self.index.get_indexer(key) mask = indexer == -1 if mask.any(): raise ValueError('%s not contained in the index' % str(key[mask])) self._set_values(indexer, value) def _set_values(self, key, value): if isinstance(key, Series): key = key._values self._data = self._data.setitem(indexer=key, value=value) self._maybe_update_cacher() def repeat(self, repeats, axis=None): """ Repeat elements of a Series. Returns a new Series where each element of the current Series is repeated consecutively a given number of times. Parameters ---------- repeats : int or array of ints The number of repetitions for each element. This should be a non-negative integer. Repeating 0 times will return an empty Series. axis : None Must be ``None``. Has no effect but is accepted for compatibility with numpy. Returns ------- repeated_series : Series Newly created Series with repeated elements. See Also -------- Index.repeat : Equivalent function for Index. numpy.repeat : Similar method for :class:`numpy.ndarray`. Examples -------- >>> s = pd.Series(['a', 'b', 'c']) >>> s 0 a 1 b 2 c dtype: object >>> s.repeat(2) 0 a 0 a 1 b 1 b 2 c 2 c dtype: object >>> s.repeat([1, 2, 3]) 0 a 1 b 1 b 2 c 2 c 2 c dtype: object """ nv.validate_repeat(tuple(), dict(axis=axis)) new_index = self.index.repeat(repeats) new_values = self._values.repeat(repeats) return self._constructor(new_values, index=new_index).__finalize__(self) def get_value(self, label, takeable=False): """ Quickly retrieve single value at passed index label. .. deprecated:: 0.21.0 Please use .at[] or .iat[] accessors. Parameters ---------- label : object takeable : interpret the index as indexers, default False Returns ------- value : scalar value """ warnings.warn("get_value is deprecated and will be removed " "in a future release. Please use " ".at[] or .iat[] accessors instead", FutureWarning, stacklevel=2) return self._get_value(label, takeable=takeable) def _get_value(self, label, takeable=False): if takeable is True: return com.maybe_box_datetimelike(self._values[label]) return self.index.get_value(self._values, label) _get_value.__doc__ = get_value.__doc__ def set_value(self, label, value, takeable=False): """ Quickly set single value at passed label. .. deprecated:: 0.21.0 Please use .at[] or .iat[] accessors. If label is not contained, a new object is created with the label placed at the end of the result index. Parameters ---------- label : object Partial indexing with MultiIndex not allowed value : object Scalar value takeable : interpret the index as indexers, default False Returns ------- series : Series If label is contained, will be reference to calling Series, otherwise a new object """ warnings.warn("set_value is deprecated and will be removed " "in a future release. Please use " ".at[] or .iat[] accessors instead", FutureWarning, stacklevel=2) return self._set_value(label, value, takeable=takeable) def _set_value(self, label, value, takeable=False): try: if takeable: self._values[label] = value else: self.index._engine.set_value(self._values, label, value) except KeyError: # set using a non-recursive method self.loc[label] = value return self _set_value.__doc__ = set_value.__doc__ def reset_index(self, level=None, drop=False, name=None, inplace=False): """ Generate a new DataFrame or Series with the index reset. This is useful when the index needs to be treated as a column, or when the index is meaningless and needs to be reset to the default before another operation. Parameters ---------- level : int, str, tuple, or list, default optional For a Series with a MultiIndex, only remove the specified levels from the index. Removes all levels by default. drop : bool, default False Just reset the index, without inserting it as a column in the new DataFrame. name : object, optional The name to use for the column containing the original Series values. Uses ``self.name`` by default. This argument is ignored when `drop` is True. inplace : bool, default False Modify the Series in place (do not create a new object). Returns ------- Series or DataFrame When `drop` is False (the default), a DataFrame is returned. The newly created columns will come first in the DataFrame, followed by the original Series values. When `drop` is True, a `Series` is returned. In either case, if ``inplace=True``, no value is returned. See Also -------- DataFrame.reset_index: Analogous function for DataFrame. Examples -------- >>> s = pd.Series([1, 2, 3, 4], name='foo', ... index=pd.Index(['a', 'b', 'c', 'd'], name='idx')) Generate a DataFrame with default index. >>> s.reset_index() idx foo 0 a 1 1 b 2 2 c 3 3 d 4 To specify the name of the new column use `name`. >>> s.reset_index(name='values') idx values 0 a 1 1 b 2 2 c 3 3 d 4 To generate a new Series with the default set `drop` to True. >>> s.reset_index(drop=True) 0 1 1 2 2 3 3 4 Name: foo, dtype: int64 To update the Series in place, without generating a new one set `inplace` to True. Note that it also requires ``drop=True``. >>> s.reset_index(inplace=True, drop=True) >>> s 0 1 1 2 2 3 3 4 Name: foo, dtype: int64 The `level` parameter is interesting for Series with a multi-level index. >>> arrays = [np.array(['bar', 'bar', 'baz', 'baz']), ... np.array(['one', 'two', 'one', 'two'])] >>> s2 = pd.Series( ... range(4), name='foo', ... index=pd.MultiIndex.from_arrays(arrays, ... names=['a', 'b'])) To remove a specific level from the Index, use `level`. >>> s2.reset_index(level='a') a foo b one bar 0 two bar 1 one baz 2 two baz 3 If `level` is not set, all levels are removed from the Index. >>> s2.reset_index() a b foo 0 bar one 0 1 bar two 1 2 baz one 2 3 baz two 3 """ inplace = validate_bool_kwarg(inplace, 'inplace') if drop: new_index = ibase.default_index(len(self)) if level is not None: if not isinstance(level, (tuple, list)): level = [level] level = [self.index._get_level_number(lev) for lev in level] if len(level) < self.index.nlevels: new_index = self.index.droplevel(level) if inplace: self.index = new_index # set name if it was passed, otherwise, keep the previous name self.name = name or self.name else: return self._constructor(self._values.copy(), index=new_index).__finalize__(self) elif inplace: raise TypeError('Cannot reset_index inplace on a Series ' 'to create a DataFrame') else: df = self.to_frame(name) return df.reset_index(level=level, drop=drop) # ---------------------------------------------------------------------- # Rendering Methods def __unicode__(self): """ Return a string representation for a particular DataFrame. Invoked by unicode(df) in py2 only. Yields a Unicode String in both py2/py3. """ buf = StringIO(u("")) width, height = get_terminal_size() max_rows = (height if get_option("display.max_rows") == 0 else get_option("display.max_rows")) show_dimensions = get_option("display.show_dimensions") self.to_string(buf=buf, name=self.name, dtype=self.dtype, max_rows=max_rows, length=show_dimensions) result = buf.getvalue() return result def to_string(self, buf=None, na_rep='NaN', float_format=None, header=True, index=True, length=False, dtype=False, name=False, max_rows=None): """ Render a string representation of the Series. Parameters ---------- buf : StringIO-like, optional buffer to write to na_rep : string, optional string representation of NAN to use, default 'NaN' float_format : one-parameter function, optional formatter function to apply to columns' elements if they are floats default None header : boolean, default True Add the Series header (index name) index : bool, optional Add index (row) labels, default True length : boolean, default False Add the Series length dtype : boolean, default False Add the Series dtype name : boolean, default False Add the Series name if not None max_rows : int, optional Maximum number of rows to show before truncating. If None, show all. Returns ------- formatted : string (if not buffer passed) """ formatter = fmt.SeriesFormatter(self, name=name, length=length, header=header, index=index, dtype=dtype, na_rep=na_rep, float_format=float_format, max_rows=max_rows) result = formatter.to_string() # catch contract violations if not isinstance(result, compat.text_type): raise AssertionError("result must be of type unicode, type" " of result is {0!r}" "".format(result.__class__.__name__)) if buf is None: return result else: try: buf.write(result) except AttributeError: with open(buf, 'w') as f: f.write(result) # ---------------------------------------------------------------------- def iteritems(self): """ Lazily iterate over (index, value) tuples. """ return zip(iter(self.index), iter(self)) items = iteritems # ---------------------------------------------------------------------- # Misc public methods def keys(self): """ Alias for index. """ return self.index def to_dict(self, into=dict): """ Convert Series to {label -> value} dict or dict-like object. Parameters ---------- into : class, default dict The collections.Mapping subclass to use as the return object. Can be the actual class or an empty instance of the mapping type you want. If you want a collections.defaultdict, you must pass it initialized. .. versionadded:: 0.21.0 Returns ------- value_dict : collections.Mapping Examples -------- >>> s = pd.Series([1, 2, 3, 4]) >>> s.to_dict() {0: 1, 1: 2, 2: 3, 3: 4} >>> from collections import OrderedDict, defaultdict >>> s.to_dict(OrderedDict) OrderedDict([(0, 1), (1, 2), (2, 3), (3, 4)]) >>> dd = defaultdict(list) >>> s.to_dict(dd) defaultdict(, {0: 1, 1: 2, 2: 3, 3: 4}) """ # GH16122 into_c = com.standardize_mapping(into) return into_c(compat.iteritems(self)) def to_frame(self, name=None): """ Convert Series to DataFrame. Parameters ---------- name : object, default None The passed name should substitute for the series name (if it has one). Returns ------- data_frame : DataFrame """ if name is None: df = self._constructor_expanddim(self) else: df = self._constructor_expanddim({name: self}) return df def to_sparse(self, kind='block', fill_value=None): """ Convert Series to SparseSeries. Parameters ---------- kind : {'block', 'integer'} fill_value : float, defaults to NaN (missing) Returns ------- sp : SparseSeries """ # TODO: deprecate from pandas.core.sparse.series import SparseSeries values = SparseArray(self, kind=kind, fill_value=fill_value) return SparseSeries( values, index=self.index, name=self.name ).__finalize__(self) def _set_name(self, name, inplace=False): """ Set the Series name. Parameters ---------- name : str inplace : bool whether to modify `self` directly or return a copy """ inplace = validate_bool_kwarg(inplace, 'inplace') ser = self if inplace else self.copy() ser.name = name return ser # ---------------------------------------------------------------------- # Statistics, overridden ndarray methods # TODO: integrate bottleneck def count(self, level=None): """ Return number of non-NA/null observations in the Series. Parameters ---------- level : int or level name, default None If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a smaller Series Returns ------- nobs : int or Series (if level specified) """ if level is None: return notna(com.values_from_object(self)).sum() if isinstance(level, compat.string_types): level = self.index._get_level_number(level) lev = self.index.levels[level] level_codes = np.array(self.index.codes[level], subok=False, copy=True) mask = level_codes == -1 if mask.any(): level_codes[mask] = cnt = len(lev) lev = lev.insert(cnt, lev._na_value) obs = level_codes[notna(self.values)] out = np.bincount(obs, minlength=len(lev) or None) return self._constructor(out, index=lev, dtype='int64').__finalize__(self) def mode(self, dropna=True): """ Return the mode(s) of the dataset. Always returns Series even if only one value is returned. Parameters ---------- dropna : boolean, default True Don't consider counts of NaN/NaT. .. versionadded:: 0.24.0 Returns ------- modes : Series (sorted) """ # TODO: Add option for bins like value_counts() return algorithms.mode(self, dropna=dropna) def unique(self): """ Return unique values of Series object. Uniques are returned in order of appearance. Hash table-based unique, therefore does NOT sort. Returns ------- ndarray or ExtensionArray The unique values returned as a NumPy array. In case of an extension-array backed Series, a new :class:`~api.extensions.ExtensionArray` of that type with just the unique values is returned. This includes * Categorical * Period * Datetime with Timezone * Interval * Sparse * IntegerNA See Also -------- unique : Top-level unique method for any 1-d array-like object. Index.unique : Return Index with unique values from an Index object. Examples -------- >>> pd.Series([2, 1, 3, 3], name='A').unique() array([2, 1, 3]) >>> pd.Series([pd.Timestamp('2016-01-01') for _ in range(3)]).unique() array(['2016-01-01T00:00:00.000000000'], dtype='datetime64[ns]') >>> pd.Series([pd.Timestamp('2016-01-01', tz='US/Eastern') ... for _ in range(3)]).unique() ['2016-01-01 00:00:00-05:00'] Length: 1, dtype: datetime64[ns, US/Eastern] An unordered Categorical will return categories in the order of appearance. >>> pd.Series(pd.Categorical(list('baabc'))).unique() [b, a, c] Categories (3, object): [b, a, c] An ordered Categorical preserves the category ordering. >>> pd.Series(pd.Categorical(list('baabc'), categories=list('abc'), ... ordered=True)).unique() [b, a, c] Categories (3, object): [a < b < c] """ result = super(Series, self).unique() return result def drop_duplicates(self, keep='first', inplace=False): """ Return Series with duplicate values removed. Parameters ---------- keep : {'first', 'last', ``False``}, default 'first' - 'first' : Drop duplicates except for the first occurrence. - 'last' : Drop duplicates except for the last occurrence. - ``False`` : Drop all duplicates. inplace : boolean, default ``False`` If ``True``, performs operation inplace and returns None. Returns ------- deduplicated : Series See Also -------- Index.drop_duplicates : Equivalent method on Index. DataFrame.drop_duplicates : Equivalent method on DataFrame. Series.duplicated : Related method on Series, indicating duplicate Series values. Examples -------- Generate an Series with duplicated entries. >>> s = pd.Series(['lama', 'cow', 'lama', 'beetle', 'lama', 'hippo'], ... name='animal') >>> s 0 lama 1 cow 2 lama 3 beetle 4 lama 5 hippo Name: animal, dtype: object With the 'keep' parameter, the selection behaviour of duplicated values can be changed. The value 'first' keeps the first occurrence for each set of duplicated entries. The default value of keep is 'first'. >>> s.drop_duplicates() 0 lama 1 cow 3 beetle 5 hippo Name: animal, dtype: object The value 'last' for parameter 'keep' keeps the last occurrence for each set of duplicated entries. >>> s.drop_duplicates(keep='last') 1 cow 3 beetle 4 lama 5 hippo Name: animal, dtype: object The value ``False`` for parameter 'keep' discards all sets of duplicated entries. Setting the value of 'inplace' to ``True`` performs the operation inplace and returns ``None``. >>> s.drop_duplicates(keep=False, inplace=True) >>> s 1 cow 3 beetle 5 hippo Name: animal, dtype: object """ return super(Series, self).drop_duplicates(keep=keep, inplace=inplace) def duplicated(self, keep='first'): """ Indicate duplicate Series values. Duplicated values are indicated as ``True`` values in the resulting Series. Either all duplicates, all except the first or all except the last occurrence of duplicates can be indicated. Parameters ---------- keep : {'first', 'last', False}, default 'first' - 'first' : Mark duplicates as ``True`` except for the first occurrence. - 'last' : Mark duplicates as ``True`` except for the last occurrence. - ``False`` : Mark all duplicates as ``True``. Returns ------- pandas.core.series.Series See Also -------- Index.duplicated : Equivalent method on pandas.Index. DataFrame.duplicated : Equivalent method on pandas.DataFrame. Series.drop_duplicates : Remove duplicate values from Series. Examples -------- By default, for each set of duplicated values, the first occurrence is set on False and all others on True: >>> animals = pd.Series(['lama', 'cow', 'lama', 'beetle', 'lama']) >>> animals.duplicated() 0 False 1 False 2 True 3 False 4 True dtype: bool which is equivalent to >>> animals.duplicated(keep='first') 0 False 1 False 2 True 3 False 4 True dtype: bool By using 'last', the last occurrence of each set of duplicated values is set on False and all others on True: >>> animals.duplicated(keep='last') 0 True 1 False 2 True 3 False 4 False dtype: bool By setting keep on ``False``, all duplicates are True: >>> animals.duplicated(keep=False) 0 True 1 False 2 True 3 False 4 True dtype: bool """ return super(Series, self).duplicated(keep=keep) def idxmin(self, axis=0, skipna=True, *args, **kwargs): """ Return the row label of the minimum value. If multiple values equal the minimum, the first row label with that value is returned. Parameters ---------- skipna : boolean, default True Exclude NA/null values. If the entire Series is NA, the result will be NA. axis : int, default 0 For compatibility with DataFrame.idxmin. Redundant for application on Series. *args, **kwargs Additional keywords have no effect but might be accepted for compatibility with NumPy. Returns ------- idxmin : Index of minimum of values. Raises ------ ValueError If the Series is empty. See Also -------- numpy.argmin : Return indices of the minimum values along the given axis. DataFrame.idxmin : Return index of first occurrence of minimum over requested axis. Series.idxmax : Return index *label* of the first occurrence of maximum of values. Notes ----- This method is the Series version of ``ndarray.argmin``. This method returns the label of the minimum, while ``ndarray.argmin`` returns the position. To get the position, use ``series.values.argmin()``. Examples -------- >>> s = pd.Series(data=[1, None, 4, 1], ... index=['A' ,'B' ,'C' ,'D']) >>> s A 1.0 B NaN C 4.0 D 1.0 dtype: float64 >>> s.idxmin() 'A' If `skipna` is False and there is an NA value in the data, the function returns ``nan``. >>> s.idxmin(skipna=False) nan """ skipna = nv.validate_argmin_with_skipna(skipna, args, kwargs) i = nanops.nanargmin(com.values_from_object(self), skipna=skipna) if i == -1: return np.nan return self.index[i] def idxmax(self, axis=0, skipna=True, *args, **kwargs): """ Return the row label of the maximum value. If multiple values equal the maximum, the first row label with that value is returned. Parameters ---------- skipna : boolean, default True Exclude NA/null values. If the entire Series is NA, the result will be NA. axis : int, default 0 For compatibility with DataFrame.idxmax. Redundant for application on Series. *args, **kwargs Additional keywords have no effect but might be accepted for compatibility with NumPy. Returns ------- idxmax : Index of maximum of values. Raises ------ ValueError If the Series is empty. See Also -------- numpy.argmax : Return indices of the maximum values along the given axis. DataFrame.idxmax : Return index of first occurrence of maximum over requested axis. Series.idxmin : Return index *label* of the first occurrence of minimum of values. Notes ----- This method is the Series version of ``ndarray.argmax``. This method returns the label of the maximum, while ``ndarray.argmax`` returns the position. To get the position, use ``series.values.argmax()``. Examples -------- >>> s = pd.Series(data=[1, None, 4, 3, 4], ... index=['A', 'B', 'C', 'D', 'E']) >>> s A 1.0 B NaN C 4.0 D 3.0 E 4.0 dtype: float64 >>> s.idxmax() 'C' If `skipna` is False and there is an NA value in the data, the function returns ``nan``. >>> s.idxmax(skipna=False) nan """ skipna = nv.validate_argmax_with_skipna(skipna, args, kwargs) i = nanops.nanargmax(com.values_from_object(self), skipna=skipna) if i == -1: return np.nan return self.index[i] # ndarray compat argmin = deprecate( 'argmin', idxmin, '0.21.0', msg=dedent(""" The current behaviour of 'Series.argmin' is deprecated, use 'idxmin' instead. The behavior of 'argmin' will be corrected to return the positional minimum in the future. For now, use 'series.values.argmin' or 'np.argmin(np.array(values))' to get the position of the minimum row.""") ) argmax = deprecate( 'argmax', idxmax, '0.21.0', msg=dedent(""" The current behaviour of 'Series.argmax' is deprecated, use 'idxmax' instead. The behavior of 'argmax' will be corrected to return the positional maximum in the future. For now, use 'series.values.argmax' or 'np.argmax(np.array(values))' to get the position of the maximum row.""") ) def round(self, decimals=0, *args, **kwargs): """ Round each value in a Series to the given number of decimals. Parameters ---------- decimals : int Number of decimal places to round to (default: 0). If decimals is negative, it specifies the number of positions to the left of the decimal point. Returns ------- Series object See Also -------- numpy.around DataFrame.round """ nv.validate_round(args, kwargs) result = com.values_from_object(self).round(decimals) result = self._constructor(result, index=self.index).__finalize__(self) return result def quantile(self, q=0.5, interpolation='linear'): """ Return value at the given quantile. Parameters ---------- q : float or array-like, default 0.5 (50% quantile) 0 <= q <= 1, the quantile(s) to compute interpolation : {'linear', 'lower', 'higher', 'midpoint', 'nearest'} .. versionadded:: 0.18.0 This optional parameter specifies the interpolation method to use, when the desired quantile lies between two data points `i` and `j`: * linear: `i + (j - i) * fraction`, where `fraction` is the fractional part of the index surrounded by `i` and `j`. * lower: `i`. * higher: `j`. * nearest: `i` or `j` whichever is nearest. * midpoint: (`i` + `j`) / 2. Returns ------- quantile : float or Series if ``q`` is an array, a Series will be returned where the index is ``q`` and the values are the quantiles. See Also -------- core.window.Rolling.quantile numpy.percentile Examples -------- >>> s = pd.Series([1, 2, 3, 4]) >>> s.quantile(.5) 2.5 >>> s.quantile([.25, .5, .75]) 0.25 1.75 0.50 2.50 0.75 3.25 dtype: float64 """ self._check_percentile(q) # We dispatch to DataFrame so that core.internals only has to worry # about 2D cases. df = self.to_frame() result = df.quantile(q=q, interpolation=interpolation, numeric_only=False) if result.ndim == 2: result = result.iloc[:, 0] if is_list_like(q): result.name = self.name return self._constructor(result, index=Float64Index(q), name=self.name) else: # scalar return result.iloc[0] def corr(self, other, method='pearson', min_periods=None): """ Compute correlation with `other` Series, excluding missing values. Parameters ---------- other : Series method : {'pearson', 'kendall', 'spearman'} or callable * pearson : standard correlation coefficient * kendall : Kendall Tau correlation coefficient * spearman : Spearman rank correlation * callable: callable with input two 1d ndarray and returning a float .. versionadded:: 0.24.0 min_periods : int, optional Minimum number of observations needed to have a valid result Returns ------- correlation : float Examples -------- >>> histogram_intersection = lambda a, b: np.minimum(a, b ... ).sum().round(decimals=1) >>> s1 = pd.Series([.2, .0, .6, .2]) >>> s2 = pd.Series([.3, .6, .0, .1]) >>> s1.corr(s2, method=histogram_intersection) 0.3 """ this, other = self.align(other, join='inner', copy=False) if len(this) == 0: return np.nan if method in ['pearson', 'spearman', 'kendall'] or callable(method): return nanops.nancorr(this.values, other.values, method=method, min_periods=min_periods) raise ValueError("method must be either 'pearson', " "'spearman', or 'kendall', '{method}' " "was supplied".format(method=method)) def cov(self, other, min_periods=None): """ Compute covariance with Series, excluding missing values. Parameters ---------- other : Series min_periods : int, optional Minimum number of observations needed to have a valid result Returns ------- covariance : float Normalized by N-1 (unbiased estimator). """ this, other = self.align(other, join='inner', copy=False) if len(this) == 0: return np.nan return nanops.nancov(this.values, other.values, min_periods=min_periods) def diff(self, periods=1): """ First discrete difference of element. Calculates the difference of a Series element compared with another element in the Series (default is element in previous row). Parameters ---------- periods : int, default 1 Periods to shift for calculating difference, accepts negative values. Returns ------- diffed : Series See Also -------- Series.pct_change: Percent change over given number of periods. Series.shift: Shift index by desired number of periods with an optional time freq. DataFrame.diff: First discrete difference of object. Examples -------- Difference with previous row >>> s = pd.Series([1, 1, 2, 3, 5, 8]) >>> s.diff() 0 NaN 1 0.0 2 1.0 3 1.0 4 2.0 5 3.0 dtype: float64 Difference with 3rd previous row >>> s.diff(periods=3) 0 NaN 1 NaN 2 NaN 3 2.0 4 4.0 5 6.0 dtype: float64 Difference with following row >>> s.diff(periods=-1) 0 0.0 1 -1.0 2 -1.0 3 -2.0 4 -3.0 5 NaN dtype: float64 """ result = algorithms.diff(com.values_from_object(self), periods) return self._constructor(result, index=self.index).__finalize__(self) def autocorr(self, lag=1): """ Compute the lag-N autocorrelation. This method computes the Pearson correlation between the Series and its shifted self. Parameters ---------- lag : int, default 1 Number of lags to apply before performing autocorrelation. Returns ------- float The Pearson correlation between self and self.shift(lag). See Also -------- Series.corr : Compute the correlation between two Series. Series.shift : Shift index by desired number of periods. DataFrame.corr : Compute pairwise correlation of columns. DataFrame.corrwith : Compute pairwise correlation between rows or columns of two DataFrame objects. Notes ----- If the Pearson correlation is not well defined return 'NaN'. Examples -------- >>> s = pd.Series([0.25, 0.5, 0.2, -0.05]) >>> s.autocorr() # doctest: +ELLIPSIS 0.10355... >>> s.autocorr(lag=2) # doctest: +ELLIPSIS -0.99999... If the Pearson correlation is not well defined, then 'NaN' is returned. >>> s = pd.Series([1, 0, 0, 0]) >>> s.autocorr() nan """ return self.corr(self.shift(lag)) def dot(self, other): """ Compute the dot product between the Series and the columns of other. This method computes the dot product between the Series and another one, or the Series and each columns of a DataFrame, or the Series and each columns of an array. It can also be called using `self @ other` in Python >= 3.5. Parameters ---------- other : Series, DataFrame or array-like The other object to compute the dot product with its columns. Returns ------- scalar, Series or numpy.ndarray Return the dot product of the Series and other if other is a Series, the Series of the dot product of Series and each rows of other if other is a DataFrame or a numpy.ndarray between the Series and each columns of the numpy array. See Also -------- DataFrame.dot: Compute the matrix product with the DataFrame. Series.mul: Multiplication of series and other, element-wise. Notes ----- The Series and other has to share the same index if other is a Series or a DataFrame. Examples -------- >>> s = pd.Series([0, 1, 2, 3]) >>> other = pd.Series([-1, 2, -3, 4]) >>> s.dot(other) 8 >>> s @ other 8 >>> df = pd.DataFrame([[0 ,1], [-2, 3], [4, -5], [6, 7]]) >>> s.dot(df) 0 24 1 14 dtype: int64 >>> arr = np.array([[0, 1], [-2, 3], [4, -5], [6, 7]]) >>> s.dot(arr) array([24, 14]) """ from pandas.core.frame import DataFrame if isinstance(other, (Series, DataFrame)): common = self.index.union(other.index) if (len(common) > len(self.index) or len(common) > len(other.index)): raise ValueError('matrices are not aligned') left = self.reindex(index=common, copy=False) right = other.reindex(index=common, copy=False) lvals = left.values rvals = right.values else: lvals = self.values rvals = np.asarray(other) if lvals.shape[0] != rvals.shape[0]: raise Exception('Dot product shape mismatch, %s vs %s' % (lvals.shape, rvals.shape)) if isinstance(other, DataFrame): return self._constructor(np.dot(lvals, rvals), index=other.columns).__finalize__(self) elif isinstance(other, Series): return np.dot(lvals, rvals) elif isinstance(rvals, np.ndarray): return np.dot(lvals, rvals) else: # pragma: no cover raise TypeError('unsupported type: %s' % type(other)) def __matmul__(self, other): """ Matrix multiplication using binary `@` operator in Python>=3.5. """ return self.dot(other) def __rmatmul__(self, other): """ Matrix multiplication using binary `@` operator in Python>=3.5. """ return self.dot(np.transpose(other)) @Substitution(klass='Series') @Appender(base._shared_docs['searchsorted']) def searchsorted(self, value, side='left', sorter=None): if sorter is not None: sorter = ensure_platform_int(sorter) result = self._values.searchsorted(Series(value)._values, side=side, sorter=sorter) return result[0] if is_scalar(value) else result # ------------------------------------------------------------------- # Combination def append(self, to_append, ignore_index=False, verify_integrity=False): """ Concatenate two or more Series. Parameters ---------- to_append : Series or list/tuple of Series ignore_index : boolean, default False If True, do not use the index labels. .. versionadded:: 0.19.0 verify_integrity : boolean, default False If True, raise Exception on creating index with duplicates Returns ------- appended : Series See Also -------- concat : General function to concatenate DataFrame, Series or Panel objects. Notes ----- Iteratively appending to a Series can be more computationally intensive than a single concatenate. A better solution is to append values to a list and then concatenate the list with the original Series all at once. Examples -------- >>> s1 = pd.Series([1, 2, 3]) >>> s2 = pd.Series([4, 5, 6]) >>> s3 = pd.Series([4, 5, 6], index=[3,4,5]) >>> s1.append(s2) 0 1 1 2 2 3 0 4 1 5 2 6 dtype: int64 >>> s1.append(s3) 0 1 1 2 2 3 3 4 4 5 5 6 dtype: int64 With `ignore_index` set to True: >>> s1.append(s2, ignore_index=True) 0 1 1 2 2 3 3 4 4 5 5 6 dtype: int64 With `verify_integrity` set to True: >>> s1.append(s2, verify_integrity=True) Traceback (most recent call last): ... ValueError: Indexes have overlapping values: [0, 1, 2] """ from pandas.core.reshape.concat import concat if isinstance(to_append, (list, tuple)): to_concat = [self] + to_append else: to_concat = [self, to_append] return concat(to_concat, ignore_index=ignore_index, verify_integrity=verify_integrity) def _binop(self, other, func, level=None, fill_value=None): """ Perform generic binary operation with optional fill value. Parameters ---------- other : Series func : binary operator fill_value : float or object Value to substitute for NA/null values. If both Series are NA in a location, the result will be NA regardless of the passed fill value level : int or level name, default None Broadcast across a level, matching Index values on the passed MultiIndex level Returns ------- combined : Series """ if not isinstance(other, Series): raise AssertionError('Other operand must be Series') new_index = self.index this = self if not self.index.equals(other.index): this, other = self.align(other, level=level, join='outer', copy=False) new_index = this.index this_vals, other_vals = ops.fill_binop(this.values, other.values, fill_value) with np.errstate(all='ignore'): result = func(this_vals, other_vals) name = ops.get_op_result_name(self, other) result = self._constructor(result, index=new_index, name=name) result = result.__finalize__(self) if name is None: # When name is None, __finalize__ overwrites current name result.name = None return result def combine(self, other, func, fill_value=None): """ Combine the Series with a Series or scalar according to `func`. Combine the Series and `other` using `func` to perform elementwise selection for combined Series. `fill_value` is assumed when value is missing at some index from one of the two objects being combined. Parameters ---------- other : Series or scalar The value(s) to be combined with the `Series`. func : function Function that takes two scalars as inputs and returns an element. fill_value : scalar, optional The value to assume when an index is missing from one Series or the other. The default specifies to use the appropriate NaN value for the underlying dtype of the Series. Returns ------- Series The result of combining the Series with the other object. See Also -------- Series.combine_first : Combine Series values, choosing the calling Series' values first. Examples -------- Consider 2 Datasets ``s1`` and ``s2`` containing highest clocked speeds of different birds. >>> s1 = pd.Series({'falcon': 330.0, 'eagle': 160.0}) >>> s1 falcon 330.0 eagle 160.0 dtype: float64 >>> s2 = pd.Series({'falcon': 345.0, 'eagle': 200.0, 'duck': 30.0}) >>> s2 falcon 345.0 eagle 200.0 duck 30.0 dtype: float64 Now, to combine the two datasets and view the highest speeds of the birds across the two datasets >>> s1.combine(s2, max) duck NaN eagle 200.0 falcon 345.0 dtype: float64 In the previous example, the resulting value for duck is missing, because the maximum of a NaN and a float is a NaN. So, in the example, we set ``fill_value=0``, so the maximum value returned will be the value from some dataset. >>> s1.combine(s2, max, fill_value=0) duck 30.0 eagle 200.0 falcon 345.0 dtype: float64 """ if fill_value is None: fill_value = na_value_for_dtype(self.dtype, compat=False) if isinstance(other, Series): # If other is a Series, result is based on union of Series, # so do this element by element new_index = self.index.union(other.index) new_name = ops.get_op_result_name(self, other) new_values = [] for idx in new_index: lv = self.get(idx, fill_value) rv = other.get(idx, fill_value) with np.errstate(all='ignore'): new_values.append(func(lv, rv)) else: # Assume that other is a scalar, so apply the function for # each element in the Series new_index = self.index with np.errstate(all='ignore'): new_values = [func(lv, other) for lv in self._values] new_name = self.name if is_categorical_dtype(self.values): pass elif is_extension_array_dtype(self.values): # The function can return something of any type, so check # if the type is compatible with the calling EA. try: new_values = self._values._from_sequence(new_values) except Exception: # https://github.com/pandas-dev/pandas/issues/22850 # pandas has no control over what 3rd-party ExtensionArrays # do in _values_from_sequence. We still want ops to work # though, so we catch any regular Exception. pass return self._constructor(new_values, index=new_index, name=new_name) def combine_first(self, other): """ Combine Series values, choosing the calling Series's values first. Parameters ---------- other : Series The value(s) to be combined with the `Series`. Returns ------- Series The result of combining the Series with the other object. See Also -------- Series.combine : Perform elementwise operation on two Series using a given function. Notes ----- Result index will be the union of the two indexes. Examples -------- >>> s1 = pd.Series([1, np.nan]) >>> s2 = pd.Series([3, 4]) >>> s1.combine_first(s2) 0 1.0 1 4.0 dtype: float64 """ new_index = self.index.union(other.index) this = self.reindex(new_index, copy=False) other = other.reindex(new_index, copy=False) if is_datetimelike(this) and not is_datetimelike(other): other = to_datetime(other) return this.where(notna(this), other) def update(self, other): """ Modify Series in place using non-NA values from passed Series. Aligns on index. Parameters ---------- other : Series Examples -------- >>> s = pd.Series([1, 2, 3]) >>> s.update(pd.Series([4, 5, 6])) >>> s 0 4 1 5 2 6 dtype: int64 >>> s = pd.Series(['a', 'b', 'c']) >>> s.update(pd.Series(['d', 'e'], index=[0, 2])) >>> s 0 d 1 b 2 e dtype: object >>> s = pd.Series([1, 2, 3]) >>> s.update(pd.Series([4, 5, 6, 7, 8])) >>> s 0 4 1 5 2 6 dtype: int64 If ``other`` contains NaNs the corresponding values are not updated in the original Series. >>> s = pd.Series([1, 2, 3]) >>> s.update(pd.Series([4, np.nan, 6])) >>> s 0 4 1 2 2 6 dtype: int64 """ other = other.reindex_like(self) mask = notna(other) self._data = self._data.putmask(mask=mask, new=other, inplace=True) self._maybe_update_cacher() # ---------------------------------------------------------------------- # Reindexing, sorting def sort_values(self, axis=0, ascending=True, inplace=False, kind='quicksort', na_position='last'): """ Sort by the values. Sort a Series in ascending or descending order by some criterion. Parameters ---------- axis : {0 or 'index'}, default 0 Axis to direct sorting. The value 'index' is accepted for compatibility with DataFrame.sort_values. ascending : bool, default True If True, sort values in ascending order, otherwise descending. inplace : bool, default False If True, perform operation in-place. kind : {'quicksort', 'mergesort' or 'heapsort'}, default 'quicksort' Choice of sorting algorithm. See also :func:`numpy.sort` for more information. 'mergesort' is the only stable algorithm. na_position : {'first' or 'last'}, default 'last' Argument 'first' puts NaNs at the beginning, 'last' puts NaNs at the end. Returns ------- Series Series ordered by values. See Also -------- Series.sort_index : Sort by the Series indices. DataFrame.sort_values : Sort DataFrame by the values along either axis. DataFrame.sort_index : Sort DataFrame by indices. Examples -------- >>> s = pd.Series([np.nan, 1, 3, 10, 5]) >>> s 0 NaN 1 1.0 2 3.0 3 10.0 4 5.0 dtype: float64 Sort values ascending order (default behaviour) >>> s.sort_values(ascending=True) 1 1.0 2 3.0 4 5.0 3 10.0 0 NaN dtype: float64 Sort values descending order >>> s.sort_values(ascending=False) 3 10.0 4 5.0 2 3.0 1 1.0 0 NaN dtype: float64 Sort values inplace >>> s.sort_values(ascending=False, inplace=True) >>> s 3 10.0 4 5.0 2 3.0 1 1.0 0 NaN dtype: float64 Sort values putting NAs first >>> s.sort_values(na_position='first') 0 NaN 1 1.0 2 3.0 4 5.0 3 10.0 dtype: float64 Sort a series of strings >>> s = pd.Series(['z', 'b', 'd', 'a', 'c']) >>> s 0 z 1 b 2 d 3 a 4 c dtype: object >>> s.sort_values() 3 a 1 b 4 c 2 d 0 z dtype: object """ inplace = validate_bool_kwarg(inplace, 'inplace') # Validate the axis parameter self._get_axis_number(axis) # GH 5856/5853 if inplace and self._is_cached: raise ValueError("This Series is a view of some other array, to " "sort in-place you must create a copy") def _try_kind_sort(arr): # easier to ask forgiveness than permission try: # if kind==mergesort, it can fail for object dtype return arr.argsort(kind=kind) except TypeError: # stable sort not available for object dtype # uses the argsort default quicksort return arr.argsort(kind='quicksort') arr = self._values sortedIdx = np.empty(len(self), dtype=np.int32) bad = isna(arr) good = ~bad idx = ibase.default_index(len(self)) argsorted = _try_kind_sort(arr[good]) if is_list_like(ascending): if len(ascending) != 1: raise ValueError('Length of ascending (%d) must be 1 ' 'for Series' % (len(ascending))) ascending = ascending[0] if not is_bool(ascending): raise ValueError('ascending must be boolean') if not ascending: argsorted = argsorted[::-1] if na_position == 'last': n = good.sum() sortedIdx[:n] = idx[good][argsorted] sortedIdx[n:] = idx[bad] elif na_position == 'first': n = bad.sum() sortedIdx[n:] = idx[good][argsorted] sortedIdx[:n] = idx[bad] else: raise ValueError('invalid na_position: {!r}'.format(na_position)) result = self._constructor(arr[sortedIdx], index=self.index[sortedIdx]) if inplace: self._update_inplace(result) else: return result.__finalize__(self) def sort_index(self, axis=0, level=None, ascending=True, inplace=False, kind='quicksort', na_position='last', sort_remaining=True): """ Sort Series by index labels. Returns a new Series sorted by label if `inplace` argument is ``False``, otherwise updates the original series and returns None. Parameters ---------- axis : int, default 0 Axis to direct sorting. This can only be 0 for Series. level : int, optional If not None, sort on values in specified index level(s). ascending : bool, default true Sort ascending vs. descending. inplace : bool, default False If True, perform operation in-place. kind : {'quicksort', 'mergesort', 'heapsort'}, default 'quicksort' Choice of sorting algorithm. See also :func:`numpy.sort` for more information. 'mergesort' is the only stable algorithm. For DataFrames, this option is only applied when sorting on a single column or label. na_position : {'first', 'last'}, default 'last' If 'first' puts NaNs at the beginning, 'last' puts NaNs at the end. Not implemented for MultiIndex. sort_remaining : bool, default True If true and sorting by level and index is multilevel, sort by other levels too (in order) after sorting by specified level. Returns ------- pandas.Series The original Series sorted by the labels See Also -------- DataFrame.sort_index: Sort DataFrame by the index. DataFrame.sort_values: Sort DataFrame by the value. Series.sort_values : Sort Series by the value. Examples -------- >>> s = pd.Series(['a', 'b', 'c', 'd'], index=[3, 2, 1, 4]) >>> s.sort_index() 1 c 2 b 3 a 4 d dtype: object Sort Descending >>> s.sort_index(ascending=False) 4 d 3 a 2 b 1 c dtype: object Sort Inplace >>> s.sort_index(inplace=True) >>> s 1 c 2 b 3 a 4 d dtype: object By default NaNs are put at the end, but use `na_position` to place them at the beginning >>> s = pd.Series(['a', 'b', 'c', 'd'], index=[3, 2, 1, np.nan]) >>> s.sort_index(na_position='first') NaN d 1.0 c 2.0 b 3.0 a dtype: object Specify index level to sort >>> arrays = [np.array(['qux', 'qux', 'foo', 'foo', ... 'baz', 'baz', 'bar', 'bar']), ... np.array(['two', 'one', 'two', 'one', ... 'two', 'one', 'two', 'one'])] >>> s = pd.Series([1, 2, 3, 4, 5, 6, 7, 8], index=arrays) >>> s.sort_index(level=1) bar one 8 baz one 6 foo one 4 qux one 2 bar two 7 baz two 5 foo two 3 qux two 1 dtype: int64 Does not sort by remaining levels when sorting by levels >>> s.sort_index(level=1, sort_remaining=False) qux one 2 foo one 4 baz one 6 bar one 8 qux two 1 foo two 3 baz two 5 bar two 7 dtype: int64 """ # TODO: this can be combined with DataFrame.sort_index impl as # almost identical inplace = validate_bool_kwarg(inplace, 'inplace') # Validate the axis parameter self._get_axis_number(axis) index = self.index if level is not None: new_index, indexer = index.sortlevel(level, ascending=ascending, sort_remaining=sort_remaining) elif isinstance(index, MultiIndex): from pandas.core.sorting import lexsort_indexer labels = index._sort_levels_monotonic() indexer = lexsort_indexer(labels._get_codes_for_sorting(), orders=ascending, na_position=na_position) else: from pandas.core.sorting import nargsort # Check monotonic-ness before sort an index # GH11080 if ((ascending and index.is_monotonic_increasing) or (not ascending and index.is_monotonic_decreasing)): if inplace: return else: return self.copy() indexer = nargsort(index, kind=kind, ascending=ascending, na_position=na_position) indexer = ensure_platform_int(indexer) new_index = index.take(indexer) new_index = new_index._sort_levels_monotonic() new_values = self._values.take(indexer) result = self._constructor(new_values, index=new_index) if inplace: self._update_inplace(result) else: return result.__finalize__(self) def argsort(self, axis=0, kind='quicksort', order=None): """ Overrides ndarray.argsort. Argsorts the value, omitting NA/null values, and places the result in the same locations as the non-NA values. Parameters ---------- axis : int Has no effect but is accepted for compatibility with numpy. kind : {'mergesort', 'quicksort', 'heapsort'}, default 'quicksort' Choice of sorting algorithm. See np.sort for more information. 'mergesort' is the only stable algorithm order : None Has no effect but is accepted for compatibility with numpy. Returns ------- argsorted : Series, with -1 indicated where nan values are present See Also -------- numpy.ndarray.argsort """ values = self._values mask = isna(values) if mask.any(): result = Series(-1, index=self.index, name=self.name, dtype='int64') notmask = ~mask result[notmask] = np.argsort(values[notmask], kind=kind) return self._constructor(result, index=self.index).__finalize__(self) else: return self._constructor( np.argsort(values, kind=kind), index=self.index, dtype='int64').__finalize__(self) def nlargest(self, n=5, keep='first'): """ Return the largest `n` elements. Parameters ---------- n : int, default 5 Return this many descending sorted values. keep : {'first', 'last', 'all'}, default 'first' When there are duplicate values that cannot all fit in a Series of `n` elements: - ``first`` : take the first occurrences based on the index order - ``last`` : take the last occurrences based on the index order - ``all`` : keep all occurrences. This can result in a Series of size larger than `n`. Returns ------- Series The `n` largest values in the Series, sorted in decreasing order. See Also -------- Series.nsmallest: Get the `n` smallest elements. Series.sort_values: Sort Series by values. Series.head: Return the first `n` rows. Notes ----- Faster than ``.sort_values(ascending=False).head(n)`` for small `n` relative to the size of the ``Series`` object. Examples -------- >>> countries_population = {"Italy": 59000000, "France": 65000000, ... "Malta": 434000, "Maldives": 434000, ... "Brunei": 434000, "Iceland": 337000, ... "Nauru": 11300, "Tuvalu": 11300, ... "Anguilla": 11300, "Monserat": 5200} >>> s = pd.Series(countries_population) >>> s Italy 59000000 France 65000000 Malta 434000 Maldives 434000 Brunei 434000 Iceland 337000 Nauru 11300 Tuvalu 11300 Anguilla 11300 Monserat 5200 dtype: int64 The `n` largest elements where ``n=5`` by default. >>> s.nlargest() France 65000000 Italy 59000000 Malta 434000 Maldives 434000 Brunei 434000 dtype: int64 The `n` largest elements where ``n=3``. Default `keep` value is 'first' so Malta will be kept. >>> s.nlargest(3) France 65000000 Italy 59000000 Malta 434000 dtype: int64 The `n` largest elements where ``n=3`` and keeping the last duplicates. Brunei will be kept since it is the last with value 434000 based on the index order. >>> s.nlargest(3, keep='last') France 65000000 Italy 59000000 Brunei 434000 dtype: int64 The `n` largest elements where ``n=3`` with all duplicates kept. Note that the returned Series has five elements due to the three duplicates. >>> s.nlargest(3, keep='all') France 65000000 Italy 59000000 Malta 434000 Maldives 434000 Brunei 434000 dtype: int64 """ return algorithms.SelectNSeries(self, n=n, keep=keep).nlargest() def nsmallest(self, n=5, keep='first'): """ Return the smallest `n` elements. Parameters ---------- n : int, default 5 Return this many ascending sorted values. keep : {'first', 'last', 'all'}, default 'first' When there are duplicate values that cannot all fit in a Series of `n` elements: - ``first`` : take the first occurrences based on the index order - ``last`` : take the last occurrences based on the index order - ``all`` : keep all occurrences. This can result in a Series of size larger than `n`. Returns ------- Series The `n` smallest values in the Series, sorted in increasing order. See Also -------- Series.nlargest: Get the `n` largest elements. Series.sort_values: Sort Series by values. Series.head: Return the first `n` rows. Notes ----- Faster than ``.sort_values().head(n)`` for small `n` relative to the size of the ``Series`` object. Examples -------- >>> countries_population = {"Italy": 59000000, "France": 65000000, ... "Brunei": 434000, "Malta": 434000, ... "Maldives": 434000, "Iceland": 337000, ... "Nauru": 11300, "Tuvalu": 11300, ... "Anguilla": 11300, "Monserat": 5200} >>> s = pd.Series(countries_population) >>> s Italy 59000000 France 65000000 Brunei 434000 Malta 434000 Maldives 434000 Iceland 337000 Nauru 11300 Tuvalu 11300 Anguilla 11300 Monserat 5200 dtype: int64 The `n` largest elements where ``n=5`` by default. >>> s.nsmallest() Monserat 5200 Nauru 11300 Tuvalu 11300 Anguilla 11300 Iceland 337000 dtype: int64 The `n` smallest elements where ``n=3``. Default `keep` value is 'first' so Nauru and Tuvalu will be kept. >>> s.nsmallest(3) Monserat 5200 Nauru 11300 Tuvalu 11300 dtype: int64 The `n` smallest elements where ``n=3`` and keeping the last duplicates. Anguilla and Tuvalu will be kept since they are the last with value 11300 based on the index order. >>> s.nsmallest(3, keep='last') Monserat 5200 Anguilla 11300 Tuvalu 11300 dtype: int64 The `n` smallest elements where ``n=3`` with all duplicates kept. Note that the returned Series has four elements due to the three duplicates. >>> s.nsmallest(3, keep='all') Monserat 5200 Nauru 11300 Tuvalu 11300 Anguilla 11300 dtype: int64 """ return algorithms.SelectNSeries(self, n=n, keep=keep).nsmallest() def swaplevel(self, i=-2, j=-1, copy=True): """ Swap levels i and j in a MultiIndex. Parameters ---------- i, j : int, string (can be mixed) Level of index to be swapped. Can pass level name as string. Returns ------- swapped : Series .. versionchanged:: 0.18.1 The indexes ``i`` and ``j`` are now optional, and default to the two innermost levels of the index. """ new_index = self.index.swaplevel(i, j) return self._constructor(self._values, index=new_index, copy=copy).__finalize__(self) def reorder_levels(self, order): """ Rearrange index levels using input order. May not drop or duplicate levels. Parameters ---------- order : list of int representing new level order (reference level by number or key) Returns ------- type of caller (new object) """ if not isinstance(self.index, MultiIndex): # pragma: no cover raise Exception('Can only reorder levels on a hierarchical axis.') result = self.copy() result.index = result.index.reorder_levels(order) return result def unstack(self, level=-1, fill_value=None): """ Unstack, a.k.a. pivot, Series with MultiIndex to produce DataFrame. The level involved will automatically get sorted. Parameters ---------- level : int, string, or list of these, default last level Level(s) to unstack, can pass level name fill_value : replace NaN with this value if the unstack produces missing values .. versionadded:: 0.18.0 Returns ------- unstacked : DataFrame Examples -------- >>> s = pd.Series([1, 2, 3, 4], ... index=pd.MultiIndex.from_product([['one', 'two'], ['a', 'b']])) >>> s one a 1 b 2 two a 3 b 4 dtype: int64 >>> s.unstack(level=-1) a b one 1 2 two 3 4 >>> s.unstack(level=0) one two a 1 3 b 2 4 """ from pandas.core.reshape.reshape import unstack return unstack(self, level, fill_value) # ---------------------------------------------------------------------- # function application def map(self, arg, na_action=None): """ Map values of Series according to input correspondence. Used for substituting each value in a Series with another value, that may be derived from a function, a ``dict`` or a :class:`Series`. Parameters ---------- arg : function, dict, or Series Mapping correspondence. na_action : {None, 'ignore'}, default None If 'ignore', propagate NaN values, without passing them to the mapping correspondence. Returns ------- Series Same index as caller. See Also -------- Series.apply : For applying more complex functions on a Series. DataFrame.apply : Apply a function row-/column-wise. DataFrame.applymap : Apply a function elementwise on a whole DataFrame. Notes ----- When ``arg`` is a dictionary, values in Series that are not in the dictionary (as keys) are converted to ``NaN``. However, if the dictionary is a ``dict`` subclass that defines ``__missing__`` (i.e. provides a method for default values), then this default is used rather than ``NaN``. Examples -------- >>> s = pd.Series(['cat', 'dog', np.nan, 'rabbit']) >>> s 0 cat 1 dog 2 NaN 3 rabbit dtype: object ``map`` accepts a ``dict`` or a ``Series``. Values that are not found in the ``dict`` are converted to ``NaN``, unless the dict has a default value (e.g. ``defaultdict``): >>> s.map({'cat': 'kitten', 'dog': 'puppy'}) 0 kitten 1 puppy 2 NaN 3 NaN dtype: object It also accepts a function: >>> s.map('I am a {}'.format) 0 I am a cat 1 I am a dog 2 I am a nan 3 I am a rabbit dtype: object To avoid applying the function to missing values (and keep them as ``NaN``) ``na_action='ignore'`` can be used: >>> s.map('I am a {}'.format, na_action='ignore') 0 I am a cat 1 I am a dog 2 NaN 3 I am a rabbit dtype: object """ new_values = super(Series, self)._map_values( arg, na_action=na_action) return self._constructor(new_values, index=self.index).__finalize__(self) def _gotitem(self, key, ndim, subset=None): """ Sub-classes to define. Return a sliced object. Parameters ---------- key : string / list of selections ndim : 1,2 requested ndim of result subset : object, default None subset to act on """ return self _agg_see_also_doc = dedent(""" See Also -------- Series.apply : Invoke function on a Series. Series.transform : Transform function producing a Series with like indexes. """) _agg_examples_doc = dedent(""" Examples -------- >>> s = pd.Series([1, 2, 3, 4]) >>> s 0 1 1 2 2 3 3 4 dtype: int64 >>> s.agg('min') 1 >>> s.agg(['min', 'max']) min 1 max 4 dtype: int64 """) @Substitution(see_also=_agg_see_also_doc, examples=_agg_examples_doc, versionadded='.. versionadded:: 0.20.0', **_shared_doc_kwargs) @Appender(generic._shared_docs['aggregate']) def aggregate(self, func, axis=0, *args, **kwargs): # Validate the axis parameter self._get_axis_number(axis) result, how = self._aggregate(func, *args, **kwargs) if result is None: # we can be called from an inner function which # passes this meta-data kwargs.pop('_axis', None) kwargs.pop('_level', None) # try a regular apply, this evaluates lambdas # row-by-row; however if the lambda is expected a Series # expression, e.g.: lambda x: x-x.quantile(0.25) # this will fail, so we can try a vectorized evaluation # we cannot FIRST try the vectorized evaluation, because # then .agg and .apply would have different semantics if the # operation is actually defined on the Series, e.g. str try: result = self.apply(func, *args, **kwargs) except (ValueError, AttributeError, TypeError): result = func(self, *args, **kwargs) return result agg = aggregate @Appender(generic._shared_docs['transform'] % _shared_doc_kwargs) def transform(self, func, axis=0, *args, **kwargs): # Validate the axis parameter self._get_axis_number(axis) return super(Series, self).transform(func, *args, **kwargs) def apply(self, func, convert_dtype=True, args=(), **kwds): """ Invoke function on values of Series. Can be ufunc (a NumPy function that applies to the entire Series) or a Python function that only works on single values. Parameters ---------- func : function Python function or NumPy ufunc to apply. convert_dtype : bool, default True Try to find better dtype for elementwise function results. If False, leave as dtype=object. args : tuple Positional arguments passed to func after the series value. **kwds Additional keyword arguments passed to func. Returns ------- Series or DataFrame If func returns a Series object the result will be a DataFrame. See Also -------- Series.map: For element-wise operations. Series.agg: Only perform aggregating type operations. Series.transform: Only perform transforming type operations. Examples -------- Create a series with typical summer temperatures for each city. >>> s = pd.Series([20, 21, 12], ... index=['London', 'New York', 'Helsinki']) >>> s London 20 New York 21 Helsinki 12 dtype: int64 Square the values by defining a function and passing it as an argument to ``apply()``. >>> def square(x): ... return x ** 2 >>> s.apply(square) London 400 New York 441 Helsinki 144 dtype: int64 Square the values by passing an anonymous function as an argument to ``apply()``. >>> s.apply(lambda x: x ** 2) London 400 New York 441 Helsinki 144 dtype: int64 Define a custom function that needs additional positional arguments and pass these additional arguments using the ``args`` keyword. >>> def subtract_custom_value(x, custom_value): ... return x - custom_value >>> s.apply(subtract_custom_value, args=(5,)) London 15 New York 16 Helsinki 7 dtype: int64 Define a custom function that takes keyword arguments and pass these arguments to ``apply``. >>> def add_custom_values(x, **kwargs): ... for month in kwargs: ... x += kwargs[month] ... return x >>> s.apply(add_custom_values, june=30, july=20, august=25) London 95 New York 96 Helsinki 87 dtype: int64 Use a function from the Numpy library. >>> s.apply(np.log) London 2.995732 New York 3.044522 Helsinki 2.484907 dtype: float64 """ if len(self) == 0: return self._constructor(dtype=self.dtype, index=self.index).__finalize__(self) # dispatch to agg if isinstance(func, (list, dict)): return self.aggregate(func, *args, **kwds) # if we are a string, try to dispatch if isinstance(func, compat.string_types): return self._try_aggregate_string_function(func, *args, **kwds) # handle ufuncs and lambdas if kwds or args and not isinstance(func, np.ufunc): def f(x): return func(x, *args, **kwds) else: f = func with np.errstate(all='ignore'): if isinstance(f, np.ufunc): return f(self) # row-wise access if is_extension_type(self.dtype): mapped = self._values.map(f) else: values = self.astype(object).values mapped = lib.map_infer(values, f, convert=convert_dtype) if len(mapped) and isinstance(mapped[0], Series): from pandas.core.frame import DataFrame return DataFrame(mapped.tolist(), index=self.index) else: return self._constructor(mapped, index=self.index).__finalize__(self) def _reduce(self, op, name, axis=0, skipna=True, numeric_only=None, filter_type=None, **kwds): """ Perform a reduction operation. If we have an ndarray as a value, then simply perform the operation, otherwise delegate to the object. """ delegate = self._values if axis is not None: self._get_axis_number(axis) if isinstance(delegate, Categorical): # TODO deprecate numeric_only argument for Categorical and use # skipna as well, see GH25303 return delegate._reduce(name, numeric_only=numeric_only, **kwds) elif isinstance(delegate, ExtensionArray): # dispatch to ExtensionArray interface return delegate._reduce(name, skipna=skipna, **kwds) elif is_datetime64_dtype(delegate): # use DatetimeIndex implementation to handle skipna correctly delegate = DatetimeIndex(delegate) # dispatch to numpy arrays elif isinstance(delegate, np.ndarray): if numeric_only: raise NotImplementedError('Series.{0} does not implement ' 'numeric_only.'.format(name)) with np.errstate(all='ignore'): return op(delegate, skipna=skipna, **kwds) # TODO(EA) dispatch to Index # remove once all internals extension types are # moved to ExtensionArrays return delegate._reduce(op=op, name=name, axis=axis, skipna=skipna, numeric_only=numeric_only, filter_type=filter_type, **kwds) def _reindex_indexer(self, new_index, indexer, copy): if indexer is None: if copy: return self.copy() return self new_values = algorithms.take_1d(self._values, indexer, allow_fill=True, fill_value=None) return self._constructor(new_values, index=new_index) def _needs_reindex_multi(self, axes, method, level): """ Check if we do need a multi reindex; this is for compat with higher dims. """ return False @Appender(generic._shared_docs['align'] % _shared_doc_kwargs) def align(self, other, join='outer', axis=None, level=None, copy=True, fill_value=None, method=None, limit=None, fill_axis=0, broadcast_axis=None): return super(Series, self).align(other, join=join, axis=axis, level=level, copy=copy, fill_value=fill_value, method=method, limit=limit, fill_axis=fill_axis, broadcast_axis=broadcast_axis) def rename(self, index=None, **kwargs): """ Alter Series index labels or name. Function / dict values must be unique (1-to-1). Labels not contained in a dict / Series will be left as-is. Extra labels listed don't throw an error. Alternatively, change ``Series.name`` with a scalar value. See the :ref:`user guide ` for more. Parameters ---------- index : scalar, hashable sequence, dict-like or function, optional dict-like or functions are transformations to apply to the index. Scalar or hashable sequence-like will alter the ``Series.name`` attribute. copy : bool, default True Also copy underlying data inplace : bool, default False Whether to return a new Series. If True then value of copy is ignored. level : int or level name, default None In case of a MultiIndex, only rename labels in the specified level. Returns ------- renamed : Series (new object) See Also -------- Series.rename_axis Examples -------- >>> s = pd.Series([1, 2, 3]) >>> s 0 1 1 2 2 3 dtype: int64 >>> s.rename("my_name") # scalar, changes Series.name 0 1 1 2 2 3 Name: my_name, dtype: int64 >>> s.rename(lambda x: x ** 2) # function, changes labels 0 1 1 2 4 3 dtype: int64 >>> s.rename({1: 3, 2: 5}) # mapping, changes labels 0 1 3 2 5 3 dtype: int64 """ kwargs['inplace'] = validate_bool_kwarg(kwargs.get('inplace', False), 'inplace') non_mapping = is_scalar(index) or (is_list_like(index) and not is_dict_like(index)) if non_mapping: return self._set_name(index, inplace=kwargs.get('inplace')) return super(Series, self).rename(index=index, **kwargs) @Substitution(**_shared_doc_kwargs) @Appender(generic.NDFrame.reindex.__doc__) def reindex(self, index=None, **kwargs): return super(Series, self).reindex(index=index, **kwargs) def drop(self, labels=None, axis=0, index=None, columns=None, level=None, inplace=False, errors='raise'): """ Return Series with specified index labels removed. Remove elements of a Series based on specifying the index labels. When using a multi-index, labels on different levels can be removed by specifying the level. Parameters ---------- labels : single label or list-like Index labels to drop. axis : 0, default 0 Redundant for application on Series. index, columns : None Redundant for application on Series, but index can be used instead of labels. .. versionadded:: 0.21.0 level : int or level name, optional For MultiIndex, level for which the labels will be removed. inplace : bool, default False If True, do operation inplace and return None. errors : {'ignore', 'raise'}, default 'raise' If 'ignore', suppress error and only existing labels are dropped. Returns ------- dropped : pandas.Series Raises ------ KeyError If none of the labels are found in the index. See Also -------- Series.reindex : Return only specified index labels of Series. Series.dropna : Return series without null values. Series.drop_duplicates : Return Series with duplicate values removed. DataFrame.drop : Drop specified labels from rows or columns. Examples -------- >>> s = pd.Series(data=np.arange(3), index=['A','B','C']) >>> s A 0 B 1 C 2 dtype: int64 Drop labels B en C >>> s.drop(labels=['B','C']) A 0 dtype: int64 Drop 2nd level label in MultiIndex Series >>> midx = pd.MultiIndex(levels=[['lama', 'cow', 'falcon'], ... ['speed', 'weight', 'length']], ... codes=[[0, 0, 0, 1, 1, 1, 2, 2, 2], ... [0, 1, 2, 0, 1, 2, 0, 1, 2]]) >>> s = pd.Series([45, 200, 1.2, 30, 250, 1.5, 320, 1, 0.3], ... index=midx) >>> s lama speed 45.0 weight 200.0 length 1.2 cow speed 30.0 weight 250.0 length 1.5 falcon speed 320.0 weight 1.0 length 0.3 dtype: float64 >>> s.drop(labels='weight', level=1) lama speed 45.0 length 1.2 cow speed 30.0 length 1.5 falcon speed 320.0 length 0.3 dtype: float64 """ return super(Series, self).drop(labels=labels, axis=axis, index=index, columns=columns, level=level, inplace=inplace, errors=errors) @Substitution(**_shared_doc_kwargs) @Appender(generic.NDFrame.fillna.__doc__) def fillna(self, value=None, method=None, axis=None, inplace=False, limit=None, downcast=None, **kwargs): return super(Series, self).fillna(value=value, method=method, axis=axis, inplace=inplace, limit=limit, downcast=downcast, **kwargs) @Appender(generic._shared_docs['replace'] % _shared_doc_kwargs) def replace(self, to_replace=None, value=None, inplace=False, limit=None, regex=False, method='pad'): return super(Series, self).replace(to_replace=to_replace, value=value, inplace=inplace, limit=limit, regex=regex, method=method) @Appender(generic._shared_docs['shift'] % _shared_doc_kwargs) def shift(self, periods=1, freq=None, axis=0, fill_value=None): return super(Series, self).shift(periods=periods, freq=freq, axis=axis, fill_value=fill_value) def reindex_axis(self, labels, axis=0, **kwargs): """ Conform Series to new index with optional filling logic. .. deprecated:: 0.21.0 Use ``Series.reindex`` instead. """ # for compatibility with higher dims if axis != 0: raise ValueError("cannot reindex series on non-zero axis!") msg = ("'.reindex_axis' is deprecated and will be removed in a future " "version. Use '.reindex' instead.") warnings.warn(msg, FutureWarning, stacklevel=2) return self.reindex(index=labels, **kwargs) def memory_usage(self, index=True, deep=False): """ Return the memory usage of the Series. The memory usage can optionally include the contribution of the index and of elements of `object` dtype. Parameters ---------- index : bool, default True Specifies whether to include the memory usage of the Series index. deep : bool, default False If True, introspect the data deeply by interrogating `object` dtypes for system-level memory consumption, and include it in the returned value. Returns ------- int Bytes of memory consumed. See Also -------- numpy.ndarray.nbytes : Total bytes consumed by the elements of the array. DataFrame.memory_usage : Bytes consumed by a DataFrame. Examples -------- >>> s = pd.Series(range(3)) >>> s.memory_usage() 104 Not including the index gives the size of the rest of the data, which is necessarily smaller: >>> s.memory_usage(index=False) 24 The memory footprint of `object` values is ignored by default: >>> s = pd.Series(["a", "b"]) >>> s.values array(['a', 'b'], dtype=object) >>> s.memory_usage() 96 >>> s.memory_usage(deep=True) 212 """ v = super(Series, self).memory_usage(deep=deep) if index: v += self.index.memory_usage(deep=deep) return v @Appender(generic.NDFrame._take.__doc__) def _take(self, indices, axis=0, is_copy=False): indices = ensure_platform_int(indices) new_index = self.index.take(indices) if is_categorical_dtype(self): # https://github.com/pandas-dev/pandas/issues/20664 # TODO: remove when the default Categorical.take behavior changes indices = maybe_convert_indices(indices, len(self._get_axis(axis))) kwargs = {'allow_fill': False} else: kwargs = {} new_values = self._values.take(indices, **kwargs) result = (self._constructor(new_values, index=new_index, fastpath=True).__finalize__(self)) # Maybe set copy if we didn't actually change the index. if is_copy: if not result._get_axis(axis).equals(self._get_axis(axis)): result._set_is_copy(self) return result def isin(self, values): """ Check whether `values` are contained in Series. Return a boolean Series showing whether each element in the Series matches an element in the passed sequence of `values` exactly. Parameters ---------- values : set or list-like The sequence of values to test. Passing in a single string will raise a ``TypeError``. Instead, turn a single string into a list of one element. .. versionadded:: 0.18.1 Support for values as a set. Returns ------- isin : Series (bool dtype) Raises ------ TypeError * If `values` is a string See Also -------- DataFrame.isin : Equivalent method on DataFrame. Examples -------- >>> s = pd.Series(['lama', 'cow', 'lama', 'beetle', 'lama', ... 'hippo'], name='animal') >>> s.isin(['cow', 'lama']) 0 True 1 True 2 True 3 False 4 True 5 False Name: animal, dtype: bool Passing a single string as ``s.isin('lama')`` will raise an error. Use a list of one element instead: >>> s.isin(['lama']) 0 True 1 False 2 True 3 False 4 True 5 False Name: animal, dtype: bool """ result = algorithms.isin(self, values) return self._constructor(result, index=self.index).__finalize__(self) def between(self, left, right, inclusive=True): """ Return boolean Series equivalent to left <= series <= right. This function returns a boolean vector containing `True` wherever the corresponding Series element is between the boundary values `left` and `right`. NA values are treated as `False`. Parameters ---------- left : scalar Left boundary. right : scalar Right boundary. inclusive : bool, default True Include boundaries. Returns ------- Series Each element will be a boolean. See Also -------- Series.gt : Greater than of series and other. Series.lt : Less than of series and other. Notes ----- This function is equivalent to ``(left <= ser) & (ser <= right)`` Examples -------- >>> s = pd.Series([2, 0, 4, 8, np.nan]) Boundary values are included by default: >>> s.between(1, 4) 0 True 1 False 2 True 3 False 4 False dtype: bool With `inclusive` set to ``False`` boundary values are excluded: >>> s.between(1, 4, inclusive=False) 0 True 1 False 2 False 3 False 4 False dtype: bool `left` and `right` can be any scalar value: >>> s = pd.Series(['Alice', 'Bob', 'Carol', 'Eve']) >>> s.between('Anna', 'Daniel') 0 False 1 True 2 True 3 False dtype: bool """ if inclusive: lmask = self >= left rmask = self <= right else: lmask = self > left rmask = self < right return lmask & rmask @classmethod def from_csv(cls, path, sep=',', parse_dates=True, header=None, index_col=0, encoding=None, infer_datetime_format=False): """ Read CSV file. .. deprecated:: 0.21.0 Use :func:`pandas.read_csv` instead. It is preferable to use the more powerful :func:`pandas.read_csv` for most general purposes, but ``from_csv`` makes for an easy roundtrip to and from a file (the exact counterpart of ``to_csv``), especially with a time Series. This method only differs from :func:`pandas.read_csv` in some defaults: - `index_col` is ``0`` instead of ``None`` (take first column as index by default) - `header` is ``None`` instead of ``0`` (the first row is not used as the column names) - `parse_dates` is ``True`` instead of ``False`` (try parsing the index as datetime by default) With :func:`pandas.read_csv`, the option ``squeeze=True`` can be used to return a Series like ``from_csv``. Parameters ---------- path : string file path or file handle / StringIO sep : string, default ',' Field delimiter parse_dates : boolean, default True Parse dates. Different default from read_table header : int, default None Row to use as header (skip prior rows) index_col : int or sequence, default 0 Column to use for index. If a sequence is given, a MultiIndex is used. Different default from read_table encoding : string, optional a string representing the encoding to use if the contents are non-ascii, for python versions prior to 3 infer_datetime_format : boolean, default False If True and `parse_dates` is True for a column, try to infer the datetime format based on the first datetime string. If the format can be inferred, there often will be a large parsing speed-up. Returns ------- y : Series See Also -------- read_csv """ # We're calling `DataFrame.from_csv` in the implementation, # which will propagate a warning regarding `from_csv` deprecation. from pandas.core.frame import DataFrame df = DataFrame.from_csv(path, header=header, index_col=index_col, sep=sep, parse_dates=parse_dates, encoding=encoding, infer_datetime_format=infer_datetime_format) result = df.iloc[:, 0] if header is None: result.index.name = result.name = None return result @Appender(generic.NDFrame.to_csv.__doc__) def to_csv(self, *args, **kwargs): names = ["path_or_buf", "sep", "na_rep", "float_format", "columns", "header", "index", "index_label", "mode", "encoding", "compression", "quoting", "quotechar", "line_terminator", "chunksize", "tupleize_cols", "date_format", "doublequote", "escapechar", "decimal"] old_names = ["path_or_buf", "index", "sep", "na_rep", "float_format", "header", "index_label", "mode", "encoding", "compression", "date_format", "decimal"] if "path" in kwargs: warnings.warn("The signature of `Series.to_csv` was aligned " "to that of `DataFrame.to_csv`, and argument " "'path' will be renamed to 'path_or_buf'.", FutureWarning, stacklevel=2) kwargs["path_or_buf"] = kwargs.pop("path") if len(args) > 1: # Either "index" (old signature) or "sep" (new signature) is being # passed as second argument (while the first is the same) maybe_sep = args[1] if not (is_string_like(maybe_sep) and len(maybe_sep) == 1): # old signature warnings.warn("The signature of `Series.to_csv` was aligned " "to that of `DataFrame.to_csv`. Note that the " "order of arguments changed, and the new one " "has 'sep' in first place, for which \"{}\" is " "not a valid value. The old order will cease to " "be supported in a future version. Please refer " "to the documentation for `DataFrame.to_csv` " "when updating your function " "calls.".format(maybe_sep), FutureWarning, stacklevel=2) names = old_names pos_args = dict(zip(names[:len(args)], args)) for key in pos_args: if key in kwargs: raise ValueError("Argument given by name ('{}') and position " "({})".format(key, names.index(key))) kwargs[key] = pos_args[key] if kwargs.get("header", None) is None: warnings.warn("The signature of `Series.to_csv` was aligned " "to that of `DataFrame.to_csv`, and argument " "'header' will change its default value from False " "to True: please pass an explicit value to suppress " "this warning.", FutureWarning, stacklevel=2) kwargs["header"] = False # Backwards compatibility. return self.to_frame().to_csv(**kwargs) @Appender(generic._shared_docs['isna'] % _shared_doc_kwargs) def isna(self): return super(Series, self).isna() @Appender(generic._shared_docs['isna'] % _shared_doc_kwargs) def isnull(self): return super(Series, self).isnull() @Appender(generic._shared_docs['notna'] % _shared_doc_kwargs) def notna(self): return super(Series, self).notna() @Appender(generic._shared_docs['notna'] % _shared_doc_kwargs) def notnull(self): return super(Series, self).notnull() def dropna(self, axis=0, inplace=False, **kwargs): """ Return a new Series with missing values removed. See the :ref:`User Guide ` for more on which values are considered missing, and how to work with missing data. Parameters ---------- axis : {0 or 'index'}, default 0 There is only one axis to drop values from. inplace : bool, default False If True, do operation inplace and return None. **kwargs Not in use. Returns ------- Series Series with NA entries dropped from it. See Also -------- Series.isna: Indicate missing values. Series.notna : Indicate existing (non-missing) values. Series.fillna : Replace missing values. DataFrame.dropna : Drop rows or columns which contain NA values. Index.dropna : Drop missing indices. Examples -------- >>> ser = pd.Series([1., 2., np.nan]) >>> ser 0 1.0 1 2.0 2 NaN dtype: float64 Drop NA values from a Series. >>> ser.dropna() 0 1.0 1 2.0 dtype: float64 Keep the Series with valid entries in the same variable. >>> ser.dropna(inplace=True) >>> ser 0 1.0 1 2.0 dtype: float64 Empty strings are not considered NA values. ``None`` is considered an NA value. >>> ser = pd.Series([np.NaN, 2, pd.NaT, '', None, 'I stay']) >>> ser 0 NaN 1 2 2 NaT 3 4 None 5 I stay dtype: object >>> ser.dropna() 1 2 3 5 I stay dtype: object """ inplace = validate_bool_kwarg(inplace, 'inplace') kwargs.pop('how', None) if kwargs: raise TypeError('dropna() got an unexpected keyword ' 'argument "{0}"'.format(list(kwargs.keys())[0])) # Validate the axis parameter self._get_axis_number(axis or 0) if self._can_hold_na: result = remove_na_arraylike(self) if inplace: self._update_inplace(result) else: return result else: if inplace: # do nothing pass else: return self.copy() def valid(self, inplace=False, **kwargs): """ Return Series without null values. .. deprecated:: 0.23.0 Use :meth:`Series.dropna` instead. """ warnings.warn("Method .valid will be removed in a future version. " "Use .dropna instead.", FutureWarning, stacklevel=2) return self.dropna(inplace=inplace, **kwargs) # ---------------------------------------------------------------------- # Time series-oriented methods def to_timestamp(self, freq=None, how='start', copy=True): """ Cast to datetimeindex of timestamps, at *beginning* of period. Parameters ---------- freq : string, default frequency of PeriodIndex Desired frequency how : {'s', 'e', 'start', 'end'} Convention for converting period to timestamp; start of period vs. end Returns ------- ts : Series with DatetimeIndex """ new_values = self._values if copy: new_values = new_values.copy() new_index = self.index.to_timestamp(freq=freq, how=how) return self._constructor(new_values, index=new_index).__finalize__(self) def to_period(self, freq=None, copy=True): """ Convert Series from DatetimeIndex to PeriodIndex with desired frequency (inferred from index if not passed). Parameters ---------- freq : string, default Returns ------- ts : Series with PeriodIndex """ new_values = self._values if copy: new_values = new_values.copy() new_index = self.index.to_period(freq=freq) return self._constructor(new_values, index=new_index).__finalize__(self) # ---------------------------------------------------------------------- # Accessor Methods # ---------------------------------------------------------------------- str = CachedAccessor("str", StringMethods) dt = CachedAccessor("dt", CombinedDatetimelikeProperties) cat = CachedAccessor("cat", CategoricalAccessor) plot = CachedAccessor("plot", gfx.SeriesPlotMethods) sparse = CachedAccessor("sparse", SparseAccessor) # ---------------------------------------------------------------------- # Add plotting methods to Series hist = gfx.hist_series Series._setup_axes(['index'], info_axis=0, stat_axis=0, aliases={'rows': 0}, docs={'index': 'The index (axis labels) of the Series.'}) Series._add_numeric_operations() Series._add_series_only_operations() Series._add_series_or_dataframe_operations() # Add arithmetic! ops.add_flex_arithmetic_methods(Series) ops.add_special_arithmetic_methods(Series)