import numpy as np import pytest from pandas.compat import lrange, product as cart_product from pandas import DataFrame, Index, MultiIndex, Series, concat, date_range import pandas.core.common as com from pandas.util import testing as tm @pytest.fixture def four_level_index_dataframe(): arr = np.array([[-0.5109, -2.3358, -0.4645, 0.05076, 0.364], [0.4473, 1.4152, 0.2834, 1.00661, 0.1744], [-0.6662, -0.5243, -0.358, 0.89145, 2.5838]]) index = MultiIndex( levels=[['a', 'x'], ['b', 'q'], [10.0032, 20.0, 30.0], [3, 4, 5]], codes=[[0, 0, 1], [0, 1, 1], [0, 1, 2], [2, 1, 0]], names=['one', 'two', 'three', 'four']) return DataFrame(arr, index=index, columns=list('ABCDE')) @pytest.mark.parametrize('key, level, exp_arr, exp_index', [ ('a', 'lvl0', lambda x: x[:, 0:2], Index(['bar', 'foo'], name='lvl1')), ('foo', 'lvl1', lambda x: x[:, 1:2], Index(['a'], name='lvl0')) ]) def test_xs_named_levels_axis_eq_1(key, level, exp_arr, exp_index): # see gh-2903 arr = np.random.randn(4, 4) index = MultiIndex(levels=[['a', 'b'], ['bar', 'foo', 'hello', 'world']], codes=[[0, 0, 1, 1], [0, 1, 2, 3]], names=['lvl0', 'lvl1']) df = DataFrame(arr, columns=index) result = df.xs(key, level=level, axis=1) expected = DataFrame(exp_arr(arr), columns=exp_index) tm.assert_frame_equal(result, expected) def test_xs_values(multiindex_dataframe_random_data): df = multiindex_dataframe_random_data result = df.xs(('bar', 'two')).values expected = df.values[4] tm.assert_almost_equal(result, expected) def test_xs_loc_equality(multiindex_dataframe_random_data): df = multiindex_dataframe_random_data result = df.xs(('bar', 'two')) expected = df.loc[('bar', 'two')] tm.assert_series_equal(result, expected) def test_xs_missing_values_in_index(): # see gh-6574 # missing values in returned index should be preserrved acc = [ ('a', 'abcde', 1), ('b', 'bbcde', 2), ('y', 'yzcde', 25), ('z', 'xbcde', 24), ('z', None, 26), ('z', 'zbcde', 25), ('z', 'ybcde', 26), ] df = DataFrame(acc, columns=['a1', 'a2', 'cnt']).set_index(['a1', 'a2']) expected = DataFrame({'cnt': [24, 26, 25, 26]}, index=Index( ['xbcde', np.nan, 'zbcde', 'ybcde'], name='a2')) result = df.xs('z', level='a1') tm.assert_frame_equal(result, expected) @pytest.mark.parametrize('key, level', [ ('one', 'second'), (['one'], ['second']) ]) def test_xs_with_duplicates(key, level, multiindex_dataframe_random_data): # see gh-13719 frame = multiindex_dataframe_random_data df = concat([frame] * 2) assert df.index.is_unique is False expected = concat([frame.xs('one', level='second')] * 2) result = df.xs(key, level=level) tm.assert_frame_equal(result, expected) def test_xs_level(multiindex_dataframe_random_data): df = multiindex_dataframe_random_data result = df.xs('two', level='second') expected = df[df.index.get_level_values(1) == 'two'] expected.index = Index(['foo', 'bar', 'baz', 'qux'], name='first') tm.assert_frame_equal(result, expected) def test_xs_level_eq_2(): arr = np.random.randn(3, 5) index = MultiIndex( levels=[['a', 'p', 'x'], ['b', 'q', 'y'], ['c', 'r', 'z']], codes=[[2, 0, 1], [2, 0, 1], [2, 0, 1]]) df = DataFrame(arr, index=index) expected = DataFrame(arr[1:2], index=[['a'], ['b']]) result = df.xs('c', level=2) tm.assert_frame_equal(result, expected) @pytest.mark.parametrize('indexer', [ lambda df: df.xs(('a', 4), level=['one', 'four']), lambda df: df.xs('a').xs(4, level='four') ]) def test_xs_level_multiple(indexer, four_level_index_dataframe): df = four_level_index_dataframe expected_values = [[0.4473, 1.4152, 0.2834, 1.00661, 0.1744]] expected_index = MultiIndex( levels=[['q'], [20.0]], codes=[[0], [0]], names=['two', 'three']) expected = DataFrame( expected_values, index=expected_index, columns=list('ABCDE')) result = indexer(df) tm.assert_frame_equal(result, expected) def test_xs_setting_with_copy_error(multiindex_dataframe_random_data): # this is a copy in 0.14 df = multiindex_dataframe_random_data result = df.xs('two', level='second') # setting this will give a SettingWithCopyError # as we are trying to write a view msg = 'A value is trying to be set on a copy of a slice from a DataFrame' with pytest.raises(com.SettingWithCopyError, match=msg): result[:] = 10 def test_xs_setting_with_copy_error_multiple(four_level_index_dataframe): # this is a copy in 0.14 df = four_level_index_dataframe result = df.xs(('a', 4), level=['one', 'four']) # setting this will give a SettingWithCopyError # as we are trying to write a view msg = 'A value is trying to be set on a copy of a slice from a DataFrame' with pytest.raises(com.SettingWithCopyError, match=msg): result[:] = 10 def test_xs_integer_key(): # see gh-2107 dates = lrange(20111201, 20111205) ids = 'abcde' index = MultiIndex.from_tuples( [x for x in cart_product(dates, ids)], names=['date', 'secid']) df = DataFrame( np.random.randn(len(index), 3), index, ['X', 'Y', 'Z']) result = df.xs(20111201, level='date') expected = df.loc[20111201, :] tm.assert_frame_equal(result, expected) @pytest.mark.parametrize('indexer', [ lambda df: df.xs('a', level=0), lambda df: df.xs('a') ]) def test_xs_level0(indexer, four_level_index_dataframe): df = four_level_index_dataframe expected_values = [[-0.5109, -2.3358, -0.4645, 0.05076, 0.364], [0.4473, 1.4152, 0.2834, 1.00661, 0.1744]] expected_index = MultiIndex( levels=[['b', 'q'], [10.0032, 20.0], [4, 5]], codes=[[0, 1], [0, 1], [1, 0]], names=['two', 'three', 'four']) expected = DataFrame( expected_values, index=expected_index, columns=list('ABCDE')) result = indexer(df) tm.assert_frame_equal(result, expected) def test_xs_level_series(multiindex_dataframe_random_data): # this test is not explicitly testing .xs functionality # TODO: move to another module or refactor df = multiindex_dataframe_random_data s = df['A'] result = s[:, 'two'] expected = df.xs('two', level=1)['A'] tm.assert_series_equal(result, expected) def test_xs_level_series_ymd(multiindex_year_month_day_dataframe_random_data): # this test is not explicitly testing .xs functionality # TODO: move to another module or refactor df = multiindex_year_month_day_dataframe_random_data s = df['A'] result = s[2000, 5] expected = df.loc[2000, 5]['A'] tm.assert_series_equal(result, expected) def test_xs_level_series_slice_not_implemented( multiindex_year_month_day_dataframe_random_data): # this test is not explicitly testing .xs functionality # TODO: move to another module or refactor # not implementing this for now df = multiindex_year_month_day_dataframe_random_data s = df['A'] msg = r'\(2000, slice\(3, 4, None\)\)' with pytest.raises(TypeError, match=msg): s[2000, 3:4] def test_series_getitem_multiindex_xs(): # GH6258 dt = list(date_range('20130903', periods=3)) idx = MultiIndex.from_product([list('AB'), dt]) s = Series([1, 3, 4, 1, 3, 4], index=idx) expected = Series([1, 1], index=list('AB')) result = s.xs('20130903', level=1) tm.assert_series_equal(result, expected) def test_series_getitem_multiindex_xs_by_label(): # GH5684 idx = MultiIndex.from_tuples([('a', 'one'), ('a', 'two'), ('b', 'one'), ('b', 'two')]) s = Series([1, 2, 3, 4], index=idx) s.index.set_names(['L1', 'L2'], inplace=True) expected = Series([1, 3], index=['a', 'b']) expected.index.set_names(['L1'], inplace=True) result = s.xs('one', level='L2') tm.assert_series_equal(result, expected)