import copy import re import textwrap import numpy as np import pytest import pandas.util._test_decorators as td import pandas as pd from pandas import DataFrame import pandas.util.testing as tm jinja2 = pytest.importorskip('jinja2') from pandas.io.formats.style import Styler, _get_level_lengths # noqa # isort:skip class TestStyler(object): def setup_method(self, method): np.random.seed(24) self.s = DataFrame({'A': np.random.permutation(range(6))}) self.df = DataFrame({'A': [0, 1], 'B': np.random.randn(2)}) self.f = lambda x: x self.g = lambda x: x def h(x, foo='bar'): return pd.Series( 'color: {foo}'.format(foo=foo), index=x.index, name=x.name) self.h = h self.styler = Styler(self.df) self.attrs = pd.DataFrame({'A': ['color: red', 'color: blue']}) self.dataframes = [ self.df, pd.DataFrame({'f': [1., 2.], 'o': ['a', 'b'], 'c': pd.Categorical(['a', 'b'])}) ] def test_init_non_pandas(self): with pytest.raises(TypeError): Styler([1, 2, 3]) def test_init_series(self): result = Styler(pd.Series([1, 2])) assert result.data.ndim == 2 def test_repr_html_ok(self): self.styler._repr_html_() def test_repr_html_mathjax(self): # gh-19824 assert 'tex2jax_ignore' not in self.styler._repr_html_() with pd.option_context('display.html.use_mathjax', False): assert 'tex2jax_ignore' in self.styler._repr_html_() def test_update_ctx(self): self.styler._update_ctx(self.attrs) expected = {(0, 0): ['color: red'], (1, 0): ['color: blue']} assert self.styler.ctx == expected def test_update_ctx_flatten_multi(self): attrs = DataFrame({"A": ['color: red; foo: bar', 'color: blue; foo: baz']}) self.styler._update_ctx(attrs) expected = {(0, 0): ['color: red', ' foo: bar'], (1, 0): ['color: blue', ' foo: baz']} assert self.styler.ctx == expected def test_update_ctx_flatten_multi_traliing_semi(self): attrs = DataFrame({"A": ['color: red; foo: bar;', 'color: blue; foo: baz;']}) self.styler._update_ctx(attrs) expected = {(0, 0): ['color: red', ' foo: bar'], (1, 0): ['color: blue', ' foo: baz']} assert self.styler.ctx == expected def test_copy(self): s2 = copy.copy(self.styler) assert self.styler is not s2 assert self.styler.ctx is s2.ctx # shallow assert self.styler._todo is s2._todo self.styler._update_ctx(self.attrs) self.styler.highlight_max() assert self.styler.ctx == s2.ctx assert self.styler._todo == s2._todo def test_deepcopy(self): s2 = copy.deepcopy(self.styler) assert self.styler is not s2 assert self.styler.ctx is not s2.ctx assert self.styler._todo is not s2._todo self.styler._update_ctx(self.attrs) self.styler.highlight_max() assert self.styler.ctx != s2.ctx assert s2._todo == [] assert self.styler._todo != s2._todo def test_clear(self): s = self.df.style.highlight_max()._compute() assert len(s.ctx) > 0 assert len(s._todo) > 0 s.clear() assert len(s.ctx) == 0 assert len(s._todo) == 0 def test_render(self): df = pd.DataFrame({"A": [0, 1]}) style = lambda x: pd.Series(["color: red", "color: blue"], name=x.name) s = Styler(df, uuid='AB').apply(style) s.render() # it worked? def test_render_empty_dfs(self): empty_df = DataFrame() es = Styler(empty_df) es.render() # An index but no columns DataFrame(columns=['a']).style.render() # A column but no index DataFrame(index=['a']).style.render() # No IndexError raised? def test_render_double(self): df = pd.DataFrame({"A": [0, 1]}) style = lambda x: pd.Series(["color: red; border: 1px", "color: blue; border: 2px"], name=x.name) s = Styler(df, uuid='AB').apply(style) s.render() # it worked? def test_set_properties(self): df = pd.DataFrame({"A": [0, 1]}) result = df.style.set_properties(color='white', size='10px')._compute().ctx # order is deterministic v = ["color: white", "size: 10px"] expected = {(0, 0): v, (1, 0): v} assert result.keys() == expected.keys() for v1, v2 in zip(result.values(), expected.values()): assert sorted(v1) == sorted(v2) def test_set_properties_subset(self): df = pd.DataFrame({'A': [0, 1]}) result = df.style.set_properties(subset=pd.IndexSlice[0, 'A'], color='white')._compute().ctx expected = {(0, 0): ['color: white']} assert result == expected def test_empty_index_name_doesnt_display(self): # https://github.com/pandas-dev/pandas/pull/12090#issuecomment-180695902 df = pd.DataFrame({'A': [1, 2], 'B': [3, 4], 'C': [5, 6]}) result = df.style._translate() expected = [[{'class': 'blank level0', 'type': 'th', 'value': '', 'is_visible': True, 'display_value': ''}, {'class': 'col_heading level0 col0', 'display_value': 'A', 'type': 'th', 'value': 'A', 'is_visible': True, }, {'class': 'col_heading level0 col1', 'display_value': 'B', 'type': 'th', 'value': 'B', 'is_visible': True, }, {'class': 'col_heading level0 col2', 'display_value': 'C', 'type': 'th', 'value': 'C', 'is_visible': True, }]] assert result['head'] == expected def test_index_name(self): # https://github.com/pandas-dev/pandas/issues/11655 df = pd.DataFrame({'A': [1, 2], 'B': [3, 4], 'C': [5, 6]}) result = df.set_index('A').style._translate() expected = [[{'class': 'blank level0', 'type': 'th', 'value': '', 'display_value': '', 'is_visible': True}, {'class': 'col_heading level0 col0', 'type': 'th', 'value': 'B', 'display_value': 'B', 'is_visible': True}, {'class': 'col_heading level0 col1', 'type': 'th', 'value': 'C', 'display_value': 'C', 'is_visible': True}], [{'class': 'index_name level0', 'type': 'th', 'value': 'A'}, {'class': 'blank', 'type': 'th', 'value': ''}, {'class': 'blank', 'type': 'th', 'value': ''}]] assert result['head'] == expected def test_multiindex_name(self): # https://github.com/pandas-dev/pandas/issues/11655 df = pd.DataFrame({'A': [1, 2], 'B': [3, 4], 'C': [5, 6]}) result = df.set_index(['A', 'B']).style._translate() expected = [[ {'class': 'blank', 'type': 'th', 'value': '', 'display_value': '', 'is_visible': True}, {'class': 'blank level0', 'type': 'th', 'value': '', 'display_value': '', 'is_visible': True}, {'class': 'col_heading level0 col0', 'type': 'th', 'value': 'C', 'display_value': 'C', 'is_visible': True}], [{'class': 'index_name level0', 'type': 'th', 'value': 'A'}, {'class': 'index_name level1', 'type': 'th', 'value': 'B'}, {'class': 'blank', 'type': 'th', 'value': ''}]] assert result['head'] == expected def test_numeric_columns(self): # https://github.com/pandas-dev/pandas/issues/12125 # smoke test for _translate df = pd.DataFrame({0: [1, 2, 3]}) df.style._translate() def test_apply_axis(self): df = pd.DataFrame({'A': [0, 0], 'B': [1, 1]}) f = lambda x: ['val: {max}'.format(max=x.max()) for v in x] result = df.style.apply(f, axis=1) assert len(result._todo) == 1 assert len(result.ctx) == 0 result._compute() expected = {(0, 0): ['val: 1'], (0, 1): ['val: 1'], (1, 0): ['val: 1'], (1, 1): ['val: 1']} assert result.ctx == expected result = df.style.apply(f, axis=0) expected = {(0, 0): ['val: 0'], (0, 1): ['val: 1'], (1, 0): ['val: 0'], (1, 1): ['val: 1']} result._compute() assert result.ctx == expected result = df.style.apply(f) # default result._compute() assert result.ctx == expected def test_apply_subset(self): axes = [0, 1] slices = [pd.IndexSlice[:], pd.IndexSlice[:, ['A']], pd.IndexSlice[[1], :], pd.IndexSlice[[1], ['A']], pd.IndexSlice[:2, ['A', 'B']]] for ax in axes: for slice_ in slices: result = self.df.style.apply(self.h, axis=ax, subset=slice_, foo='baz')._compute().ctx expected = {(r, c): ['color: baz'] for r, row in enumerate(self.df.index) for c, col in enumerate(self.df.columns) if row in self.df.loc[slice_].index and col in self.df.loc[slice_].columns} assert result == expected def test_applymap_subset(self): def f(x): return 'foo: bar' slices = [pd.IndexSlice[:], pd.IndexSlice[:, ['A']], pd.IndexSlice[[1], :], pd.IndexSlice[[1], ['A']], pd.IndexSlice[:2, ['A', 'B']]] for slice_ in slices: result = self.df.style.applymap(f, subset=slice_)._compute().ctx expected = {(r, c): ['foo: bar'] for r, row in enumerate(self.df.index) for c, col in enumerate(self.df.columns) if row in self.df.loc[slice_].index and col in self.df.loc[slice_].columns} assert result == expected def test_applymap_subset_multiindex(self): # GH 19861 # Smoke test for applymap def color_negative_red(val): """ Takes a scalar and returns a string with the css property `'color: red'` for negative strings, black otherwise. """ color = 'red' if val < 0 else 'black' return 'color: %s' % color dic = { ('a', 'd'): [-1.12, 2.11], ('a', 'c'): [2.78, -2.88], ('b', 'c'): [-3.99, 3.77], ('b', 'd'): [4.21, -1.22], } idx = pd.IndexSlice df = pd.DataFrame(dic, index=[0, 1]) (df.style .applymap(color_negative_red, subset=idx[:, idx['b', 'd']]) .render()) def test_where_with_one_style(self): # GH 17474 def f(x): return x > 0.5 style1 = 'foo: bar' result = self.df.style.where(f, style1)._compute().ctx expected = {(r, c): [style1 if f(self.df.loc[row, col]) else ''] for r, row in enumerate(self.df.index) for c, col in enumerate(self.df.columns)} assert result == expected def test_where_subset(self): # GH 17474 def f(x): return x > 0.5 style1 = 'foo: bar' style2 = 'baz: foo' slices = [pd.IndexSlice[:], pd.IndexSlice[:, ['A']], pd.IndexSlice[[1], :], pd.IndexSlice[[1], ['A']], pd.IndexSlice[:2, ['A', 'B']]] for slice_ in slices: result = self.df.style.where(f, style1, style2, subset=slice_)._compute().ctx expected = {(r, c): [style1 if f(self.df.loc[row, col]) else style2] for r, row in enumerate(self.df.index) for c, col in enumerate(self.df.columns) if row in self.df.loc[slice_].index and col in self.df.loc[slice_].columns} assert result == expected def test_where_subset_compare_with_applymap(self): # GH 17474 def f(x): return x > 0.5 style1 = 'foo: bar' style2 = 'baz: foo' def g(x): return style1 if f(x) else style2 slices = [pd.IndexSlice[:], pd.IndexSlice[:, ['A']], pd.IndexSlice[[1], :], pd.IndexSlice[[1], ['A']], pd.IndexSlice[:2, ['A', 'B']]] for slice_ in slices: result = self.df.style.where(f, style1, style2, subset=slice_)._compute().ctx expected = self.df.style.applymap(g, subset=slice_)._compute().ctx assert result == expected def test_empty(self): df = pd.DataFrame({'A': [1, 0]}) s = df.style s.ctx = {(0, 0): ['color: red'], (1, 0): ['']} result = s._translate()['cellstyle'] expected = [{'props': [['color', ' red']], 'selector': 'row0_col0'}, {'props': [['', '']], 'selector': 'row1_col0'}] assert result == expected def test_bar_align_left(self): df = pd.DataFrame({'A': [0, 1, 2]}) result = df.style.bar()._compute().ctx expected = { (0, 0): ['width: 10em', ' height: 80%'], (1, 0): ['width: 10em', ' height: 80%', 'background: linear-gradient(' '90deg,#d65f5f 50.0%, transparent 50.0%)'], (2, 0): ['width: 10em', ' height: 80%', 'background: linear-gradient(' '90deg,#d65f5f 100.0%, transparent 100.0%)'] } assert result == expected result = df.style.bar(color='red', width=50)._compute().ctx expected = { (0, 0): ['width: 10em', ' height: 80%'], (1, 0): ['width: 10em', ' height: 80%', 'background: linear-gradient(' '90deg,red 25.0%, transparent 25.0%)'], (2, 0): ['width: 10em', ' height: 80%', 'background: linear-gradient(' '90deg,red 50.0%, transparent 50.0%)'] } assert result == expected df['C'] = ['a'] * len(df) result = df.style.bar(color='red', width=50)._compute().ctx assert result == expected df['C'] = df['C'].astype('category') result = df.style.bar(color='red', width=50)._compute().ctx assert result == expected def test_bar_align_left_0points(self): df = pd.DataFrame([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) result = df.style.bar()._compute().ctx expected = {(0, 0): ['width: 10em', ' height: 80%'], (0, 1): ['width: 10em', ' height: 80%'], (0, 2): ['width: 10em', ' height: 80%'], (1, 0): ['width: 10em', ' height: 80%', 'background: linear-gradient(90deg,#d65f5f 50.0%,' ' transparent 50.0%)'], (1, 1): ['width: 10em', ' height: 80%', 'background: linear-gradient(90deg,#d65f5f 50.0%,' ' transparent 50.0%)'], (1, 2): ['width: 10em', ' height: 80%', 'background: linear-gradient(90deg,#d65f5f 50.0%,' ' transparent 50.0%)'], (2, 0): ['width: 10em', ' height: 80%', 'background: linear-gradient(90deg,#d65f5f 100.0%' ', transparent 100.0%)'], (2, 1): ['width: 10em', ' height: 80%', 'background: linear-gradient(90deg,#d65f5f 100.0%' ', transparent 100.0%)'], (2, 2): ['width: 10em', ' height: 80%', 'background: linear-gradient(90deg,#d65f5f 100.0%' ', transparent 100.0%)']} assert result == expected result = df.style.bar(axis=1)._compute().ctx expected = {(0, 0): ['width: 10em', ' height: 80%'], (0, 1): ['width: 10em', ' height: 80%', 'background: linear-gradient(90deg,#d65f5f 50.0%,' ' transparent 50.0%)'], (0, 2): ['width: 10em', ' height: 80%', 'background: linear-gradient(90deg,#d65f5f 100.0%' ', transparent 100.0%)'], (1, 0): ['width: 10em', ' height: 80%'], (1, 1): ['width: 10em', ' height: 80%', 'background: linear-gradient(90deg,#d65f5f 50.0%' ', transparent 50.0%)'], (1, 2): ['width: 10em', ' height: 80%', 'background: linear-gradient(90deg,#d65f5f 100.0%' ', transparent 100.0%)'], (2, 0): ['width: 10em', ' height: 80%'], (2, 1): ['width: 10em', ' height: 80%', 'background: linear-gradient(90deg,#d65f5f 50.0%' ', transparent 50.0%)'], (2, 2): ['width: 10em', ' height: 80%', 'background: linear-gradient(90deg,#d65f5f 100.0%' ', transparent 100.0%)']} assert result == expected def test_bar_align_mid_pos_and_neg(self): df = pd.DataFrame({'A': [-10, 0, 20, 90]}) result = df.style.bar(align='mid', color=[ '#d65f5f', '#5fba7d'])._compute().ctx expected = {(0, 0): ['width: 10em', ' height: 80%', 'background: linear-gradient(90deg,' '#d65f5f 10.0%, transparent 10.0%)'], (1, 0): ['width: 10em', ' height: 80%', ], (2, 0): ['width: 10em', ' height: 80%', 'background: linear-gradient(90deg, ' 'transparent 10.0%, #5fba7d 10.0%' ', #5fba7d 30.0%, transparent 30.0%)'], (3, 0): ['width: 10em', ' height: 80%', 'background: linear-gradient(90deg, ' 'transparent 10.0%, ' '#5fba7d 10.0%, #5fba7d 100.0%, ' 'transparent 100.0%)']} assert result == expected def test_bar_align_mid_all_pos(self): df = pd.DataFrame({'A': [10, 20, 50, 100]}) result = df.style.bar(align='mid', color=[ '#d65f5f', '#5fba7d'])._compute().ctx expected = {(0, 0): ['width: 10em', ' height: 80%', 'background: linear-gradient(90deg,' '#5fba7d 10.0%, transparent 10.0%)'], (1, 0): ['width: 10em', ' height: 80%', 'background: linear-gradient(90deg,' '#5fba7d 20.0%, transparent 20.0%)'], (2, 0): ['width: 10em', ' height: 80%', 'background: linear-gradient(90deg,' '#5fba7d 50.0%, transparent 50.0%)'], (3, 0): ['width: 10em', ' height: 80%', 'background: linear-gradient(90deg,' '#5fba7d 100.0%, transparent 100.0%)']} assert result == expected def test_bar_align_mid_all_neg(self): df = pd.DataFrame({'A': [-100, -60, -30, -20]}) result = df.style.bar(align='mid', color=[ '#d65f5f', '#5fba7d'])._compute().ctx expected = {(0, 0): ['width: 10em', ' height: 80%', 'background: linear-gradient(90deg,' '#d65f5f 100.0%, transparent 100.0%)'], (1, 0): ['width: 10em', ' height: 80%', 'background: linear-gradient(90deg, ' 'transparent 40.0%, ' '#d65f5f 40.0%, #d65f5f 100.0%, ' 'transparent 100.0%)'], (2, 0): ['width: 10em', ' height: 80%', 'background: linear-gradient(90deg, ' 'transparent 70.0%, ' '#d65f5f 70.0%, #d65f5f 100.0%, ' 'transparent 100.0%)'], (3, 0): ['width: 10em', ' height: 80%', 'background: linear-gradient(90deg, ' 'transparent 80.0%, ' '#d65f5f 80.0%, #d65f5f 100.0%, ' 'transparent 100.0%)']} assert result == expected def test_bar_align_zero_pos_and_neg(self): # See https://github.com/pandas-dev/pandas/pull/14757 df = pd.DataFrame({'A': [-10, 0, 20, 90]}) result = df.style.bar(align='zero', color=[ '#d65f5f', '#5fba7d'], width=90)._compute().ctx expected = {(0, 0): ['width: 10em', ' height: 80%', 'background: linear-gradient(90deg, ' 'transparent 40.0%, #d65f5f 40.0%, ' '#d65f5f 45.0%, transparent 45.0%)'], (1, 0): ['width: 10em', ' height: 80%'], (2, 0): ['width: 10em', ' height: 80%', 'background: linear-gradient(90deg, ' 'transparent 45.0%, #5fba7d 45.0%, ' '#5fba7d 55.0%, transparent 55.0%)'], (3, 0): ['width: 10em', ' height: 80%', 'background: linear-gradient(90deg, ' 'transparent 45.0%, #5fba7d 45.0%, ' '#5fba7d 90.0%, transparent 90.0%)']} assert result == expected def test_bar_align_left_axis_none(self): df = pd.DataFrame({'A': [0, 1], 'B': [2, 4]}) result = df.style.bar(axis=None)._compute().ctx expected = { (0, 0): ['width: 10em', ' height: 80%'], (1, 0): ['width: 10em', ' height: 80%', 'background: linear-gradient(90deg,' '#d65f5f 25.0%, transparent 25.0%)'], (0, 1): ['width: 10em', ' height: 80%', 'background: linear-gradient(90deg,' '#d65f5f 50.0%, transparent 50.0%)'], (1, 1): ['width: 10em', ' height: 80%', 'background: linear-gradient(90deg,' '#d65f5f 100.0%, transparent 100.0%)'] } assert result == expected def test_bar_align_zero_axis_none(self): df = pd.DataFrame({'A': [0, 1], 'B': [-2, 4]}) result = df.style.bar(align='zero', axis=None)._compute().ctx expected = { (0, 0): ['width: 10em', ' height: 80%'], (1, 0): ['width: 10em', ' height: 80%', 'background: linear-gradient(90deg, ' 'transparent 50.0%, #d65f5f 50.0%, ' '#d65f5f 62.5%, transparent 62.5%)'], (0, 1): ['width: 10em', ' height: 80%', 'background: linear-gradient(90deg, ' 'transparent 25.0%, #d65f5f 25.0%, ' '#d65f5f 50.0%, transparent 50.0%)'], (1, 1): ['width: 10em', ' height: 80%', 'background: linear-gradient(90deg, ' 'transparent 50.0%, #d65f5f 50.0%, ' '#d65f5f 100.0%, transparent 100.0%)'] } assert result == expected def test_bar_align_mid_axis_none(self): df = pd.DataFrame({'A': [0, 1], 'B': [-2, 4]}) result = df.style.bar(align='mid', axis=None)._compute().ctx expected = { (0, 0): ['width: 10em', ' height: 80%'], (1, 0): ['width: 10em', ' height: 80%', 'background: linear-gradient(90deg, ' 'transparent 33.3%, #d65f5f 33.3%, ' '#d65f5f 50.0%, transparent 50.0%)'], (0, 1): ['width: 10em', ' height: 80%', 'background: linear-gradient(90deg,' '#d65f5f 33.3%, transparent 33.3%)'], (1, 1): ['width: 10em', ' height: 80%', 'background: linear-gradient(90deg, ' 'transparent 33.3%, #d65f5f 33.3%, ' '#d65f5f 100.0%, transparent 100.0%)'] } assert result == expected def test_bar_align_mid_vmin(self): df = pd.DataFrame({'A': [0, 1], 'B': [-2, 4]}) result = df.style.bar(align='mid', axis=None, vmin=-6)._compute().ctx expected = { (0, 0): ['width: 10em', ' height: 80%'], (1, 0): ['width: 10em', ' height: 80%', 'background: linear-gradient(90deg, ' 'transparent 60.0%, #d65f5f 60.0%, ' '#d65f5f 70.0%, transparent 70.0%)'], (0, 1): ['width: 10em', ' height: 80%', 'background: linear-gradient(90deg, ' 'transparent 40.0%, #d65f5f 40.0%, ' '#d65f5f 60.0%, transparent 60.0%)'], (1, 1): ['width: 10em', ' height: 80%', 'background: linear-gradient(90deg, ' 'transparent 60.0%, #d65f5f 60.0%, ' '#d65f5f 100.0%, transparent 100.0%)'] } assert result == expected def test_bar_align_mid_vmax(self): df = pd.DataFrame({'A': [0, 1], 'B': [-2, 4]}) result = df.style.bar(align='mid', axis=None, vmax=8)._compute().ctx expected = { (0, 0): ['width: 10em', ' height: 80%'], (1, 0): ['width: 10em', ' height: 80%', 'background: linear-gradient(90deg, ' 'transparent 20.0%, #d65f5f 20.0%, ' '#d65f5f 30.0%, transparent 30.0%)'], (0, 1): ['width: 10em', ' height: 80%', 'background: linear-gradient(90deg,' '#d65f5f 20.0%, transparent 20.0%)'], (1, 1): ['width: 10em', ' height: 80%', 'background: linear-gradient(90deg, ' 'transparent 20.0%, #d65f5f 20.0%, ' '#d65f5f 60.0%, transparent 60.0%)'] } assert result == expected def test_bar_align_mid_vmin_vmax_wide(self): df = pd.DataFrame({'A': [0, 1], 'B': [-2, 4]}) result = df.style.bar(align='mid', axis=None, vmin=-3, vmax=7)._compute().ctx expected = { (0, 0): ['width: 10em', ' height: 80%'], (1, 0): ['width: 10em', ' height: 80%', 'background: linear-gradient(90deg, ' 'transparent 30.0%, #d65f5f 30.0%, ' '#d65f5f 40.0%, transparent 40.0%)'], (0, 1): ['width: 10em', ' height: 80%', 'background: linear-gradient(90deg, ' 'transparent 10.0%, #d65f5f 10.0%, ' '#d65f5f 30.0%, transparent 30.0%)'], (1, 1): ['width: 10em', ' height: 80%', 'background: linear-gradient(90deg, ' 'transparent 30.0%, #d65f5f 30.0%, ' '#d65f5f 70.0%, transparent 70.0%)'] } assert result == expected def test_bar_align_mid_vmin_vmax_clipping(self): df = pd.DataFrame({'A': [0, 1], 'B': [-2, 4]}) result = df.style.bar(align='mid', axis=None, vmin=-1, vmax=3)._compute().ctx expected = { (0, 0): ['width: 10em', ' height: 80%'], (1, 0): ['width: 10em', ' height: 80%', 'background: linear-gradient(90deg, ' 'transparent 25.0%, #d65f5f 25.0%, ' '#d65f5f 50.0%, transparent 50.0%)'], (0, 1): ['width: 10em', ' height: 80%', 'background: linear-gradient(90deg,' '#d65f5f 25.0%, transparent 25.0%)'], (1, 1): ['width: 10em', ' height: 80%', 'background: linear-gradient(90deg, ' 'transparent 25.0%, #d65f5f 25.0%, ' '#d65f5f 100.0%, transparent 100.0%)'] } assert result == expected def test_bar_align_mid_nans(self): df = pd.DataFrame({'A': [1, None], 'B': [-1, 3]}) result = df.style.bar(align='mid', axis=None)._compute().ctx expected = { (0, 0): ['width: 10em', ' height: 80%', 'background: linear-gradient(90deg, ' 'transparent 25.0%, #d65f5f 25.0%, ' '#d65f5f 50.0%, transparent 50.0%)'], (1, 0): [''], (0, 1): ['width: 10em', ' height: 80%', 'background: linear-gradient(90deg,' '#d65f5f 25.0%, transparent 25.0%)'], (1, 1): ['width: 10em', ' height: 80%', 'background: linear-gradient(90deg, ' 'transparent 25.0%, #d65f5f 25.0%, ' '#d65f5f 100.0%, transparent 100.0%)'] } assert result == expected def test_bar_align_zero_nans(self): df = pd.DataFrame({'A': [1, None], 'B': [-1, 2]}) result = df.style.bar(align='zero', axis=None)._compute().ctx expected = { (0, 0): ['width: 10em', ' height: 80%', 'background: linear-gradient(90deg, ' 'transparent 50.0%, #d65f5f 50.0%, ' '#d65f5f 75.0%, transparent 75.0%)'], (1, 0): [''], (0, 1): ['width: 10em', ' height: 80%', 'background: linear-gradient(90deg, ' 'transparent 25.0%, #d65f5f 25.0%, ' '#d65f5f 50.0%, transparent 50.0%)'], (1, 1): ['width: 10em', ' height: 80%', 'background: linear-gradient(90deg, ' 'transparent 50.0%, #d65f5f 50.0%, ' '#d65f5f 100.0%, transparent 100.0%)'] } assert result == expected def test_bar_bad_align_raises(self): df = pd.DataFrame({'A': [-100, -60, -30, -20]}) with pytest.raises(ValueError): df.style.bar(align='poorly', color=['#d65f5f', '#5fba7d']) def test_highlight_null(self, null_color='red'): df = pd.DataFrame({'A': [0, np.nan]}) result = df.style.highlight_null()._compute().ctx expected = {(0, 0): [''], (1, 0): ['background-color: red']} assert result == expected def test_nonunique_raises(self): df = pd.DataFrame([[1, 2]], columns=['A', 'A']) with pytest.raises(ValueError): df.style with pytest.raises(ValueError): Styler(df) def test_caption(self): styler = Styler(self.df, caption='foo') result = styler.render() assert all(['caption' in result, 'foo' in result]) styler = self.df.style result = styler.set_caption('baz') assert styler is result assert styler.caption == 'baz' def test_uuid(self): styler = Styler(self.df, uuid='abc123') result = styler.render() assert 'abc123' in result styler = self.df.style result = styler.set_uuid('aaa') assert result is styler assert result.uuid == 'aaa' def test_unique_id(self): # See https://github.com/pandas-dev/pandas/issues/16780 df = pd.DataFrame({'a': [1, 3, 5, 6], 'b': [2, 4, 12, 21]}) result = df.style.render(uuid='test') assert 'test' in result ids = re.findall('id="(.*?)"', result) assert np.unique(ids).size == len(ids) def test_table_styles(self): style = [{'selector': 'th', 'props': [('foo', 'bar')]}] styler = Styler(self.df, table_styles=style) result = ' '.join(styler.render().split()) assert 'th { foo: bar; }' in result styler = self.df.style result = styler.set_table_styles(style) assert styler is result assert styler.table_styles == style def test_table_attributes(self): attributes = 'class="foo" data-bar' styler = Styler(self.df, table_attributes=attributes) result = styler.render() assert 'class="foo" data-bar' in result result = self.df.style.set_table_attributes(attributes).render() assert 'class="foo" data-bar' in result def test_precision(self): with pd.option_context('display.precision', 10): s = Styler(self.df) assert s.precision == 10 s = Styler(self.df, precision=2) assert s.precision == 2 s2 = s.set_precision(4) assert s is s2 assert s.precision == 4 def test_apply_none(self): def f(x): return pd.DataFrame(np.where(x == x.max(), 'color: red', ''), index=x.index, columns=x.columns) result = (pd.DataFrame([[1, 2], [3, 4]]) .style.apply(f, axis=None)._compute().ctx) assert result[(1, 1)] == ['color: red'] def test_trim(self): result = self.df.style.render() # trim=True assert result.count('#') == 0 result = self.df.style.highlight_max().render() assert result.count('#') == len(self.df.columns) def test_highlight_max(self): df = pd.DataFrame([[1, 2], [3, 4]], columns=['A', 'B']) # max(df) = min(-df) for max_ in [True, False]: if max_: attr = 'highlight_max' else: df = -df attr = 'highlight_min' result = getattr(df.style, attr)()._compute().ctx assert result[(1, 1)] == ['background-color: yellow'] result = getattr(df.style, attr)(color='green')._compute().ctx assert result[(1, 1)] == ['background-color: green'] result = getattr(df.style, attr)(subset='A')._compute().ctx assert result[(1, 0)] == ['background-color: yellow'] result = getattr(df.style, attr)(axis=0)._compute().ctx expected = {(1, 0): ['background-color: yellow'], (1, 1): ['background-color: yellow'], (0, 1): [''], (0, 0): ['']} assert result == expected result = getattr(df.style, attr)(axis=1)._compute().ctx expected = {(0, 1): ['background-color: yellow'], (1, 1): ['background-color: yellow'], (0, 0): [''], (1, 0): ['']} assert result == expected # separate since we can't negate the strs df['C'] = ['a', 'b'] result = df.style.highlight_max()._compute().ctx expected = {(1, 1): ['background-color: yellow']} result = df.style.highlight_min()._compute().ctx expected = {(0, 0): ['background-color: yellow']} def test_export(self): f = lambda x: 'color: red' if x > 0 else 'color: blue' g = lambda x, y, z: 'color: {z}'.format(z=z) \ if x > 0 else 'color: {z}'.format(z=z) style1 = self.styler style1.applymap(f)\ .applymap(g, y='a', z='b')\ .highlight_max() result = style1.export() style2 = self.df.style style2.use(result) assert style1._todo == style2._todo style2.render() def test_display_format(self): df = pd.DataFrame(np.random.random(size=(2, 2))) ctx = df.style.format("{:0.1f}")._translate() assert all(['display_value' in c for c in row] for row in ctx['body']) assert all([len(c['display_value']) <= 3 for c in row[1:]] for row in ctx['body']) assert len(ctx['body'][0][1]['display_value'].lstrip('-')) <= 3 def test_display_format_raises(self): df = pd.DataFrame(np.random.randn(2, 2)) with pytest.raises(TypeError): df.style.format(5) with pytest.raises(TypeError): df.style.format(True) def test_display_subset(self): df = pd.DataFrame([[.1234, .1234], [1.1234, 1.1234]], columns=['a', 'b']) ctx = df.style.format({"a": "{:0.1f}", "b": "{0:.2%}"}, subset=pd.IndexSlice[0, :])._translate() expected = '0.1' assert ctx['body'][0][1]['display_value'] == expected assert ctx['body'][1][1]['display_value'] == '1.1234' assert ctx['body'][0][2]['display_value'] == '12.34%' raw_11 = '1.1234' ctx = df.style.format("{:0.1f}", subset=pd.IndexSlice[0, :])._translate() assert ctx['body'][0][1]['display_value'] == expected assert ctx['body'][1][1]['display_value'] == raw_11 ctx = df.style.format("{:0.1f}", subset=pd.IndexSlice[0, :])._translate() assert ctx['body'][0][1]['display_value'] == expected assert ctx['body'][1][1]['display_value'] == raw_11 ctx = df.style.format("{:0.1f}", subset=pd.IndexSlice['a'])._translate() assert ctx['body'][0][1]['display_value'] == expected assert ctx['body'][0][2]['display_value'] == '0.1234' ctx = df.style.format("{:0.1f}", subset=pd.IndexSlice[0, 'a'])._translate() assert ctx['body'][0][1]['display_value'] == expected assert ctx['body'][1][1]['display_value'] == raw_11 ctx = df.style.format("{:0.1f}", subset=pd.IndexSlice[[0, 1], ['a']])._translate() assert ctx['body'][0][1]['display_value'] == expected assert ctx['body'][1][1]['display_value'] == '1.1' assert ctx['body'][0][2]['display_value'] == '0.1234' assert ctx['body'][1][2]['display_value'] == '1.1234' def test_display_dict(self): df = pd.DataFrame([[.1234, .1234], [1.1234, 1.1234]], columns=['a', 'b']) ctx = df.style.format({"a": "{:0.1f}", "b": "{0:.2%}"})._translate() assert ctx['body'][0][1]['display_value'] == '0.1' assert ctx['body'][0][2]['display_value'] == '12.34%' df['c'] = ['aaa', 'bbb'] ctx = df.style.format({"a": "{:0.1f}", "c": str.upper})._translate() assert ctx['body'][0][1]['display_value'] == '0.1' assert ctx['body'][0][3]['display_value'] == 'AAA' def test_bad_apply_shape(self): df = pd.DataFrame([[1, 2], [3, 4]]) with pytest.raises(ValueError): df.style._apply(lambda x: 'x', subset=pd.IndexSlice[[0, 1], :]) with pytest.raises(ValueError): df.style._apply(lambda x: [''], subset=pd.IndexSlice[[0, 1], :]) with pytest.raises(ValueError): df.style._apply(lambda x: ['', '', '', '']) with pytest.raises(ValueError): df.style._apply(lambda x: ['', '', ''], subset=1) with pytest.raises(ValueError): df.style._apply(lambda x: ['', '', ''], axis=1) def test_apply_bad_return(self): def f(x): return '' df = pd.DataFrame([[1, 2], [3, 4]]) with pytest.raises(TypeError): df.style._apply(f, axis=None) def test_apply_bad_labels(self): def f(x): return pd.DataFrame(index=[1, 2], columns=['a', 'b']) df = pd.DataFrame([[1, 2], [3, 4]]) with pytest.raises(ValueError): df.style._apply(f, axis=None) def test_get_level_lengths(self): index = pd.MultiIndex.from_product([['a', 'b'], [0, 1, 2]]) expected = {(0, 0): 3, (0, 3): 3, (1, 0): 1, (1, 1): 1, (1, 2): 1, (1, 3): 1, (1, 4): 1, (1, 5): 1} result = _get_level_lengths(index) tm.assert_dict_equal(result, expected) def test_get_level_lengths_un_sorted(self): index = pd.MultiIndex.from_arrays([ [1, 1, 2, 1], ['a', 'b', 'b', 'd'] ]) expected = {(0, 0): 2, (0, 2): 1, (0, 3): 1, (1, 0): 1, (1, 1): 1, (1, 2): 1, (1, 3): 1} result = _get_level_lengths(index) tm.assert_dict_equal(result, expected) def test_mi_sparse(self): df = pd.DataFrame({'A': [1, 2]}, index=pd.MultiIndex.from_arrays([['a', 'a'], [0, 1]])) result = df.style._translate() body_0 = result['body'][0][0] expected_0 = { "value": "a", "display_value": "a", "is_visible": True, "type": "th", "attributes": ["rowspan=2"], "class": "row_heading level0 row0", "id": "level0_row0" } tm.assert_dict_equal(body_0, expected_0) body_1 = result['body'][0][1] expected_1 = { "value": 0, "display_value": 0, "is_visible": True, "type": "th", "class": "row_heading level1 row0", "id": "level1_row0" } tm.assert_dict_equal(body_1, expected_1) body_10 = result['body'][1][0] expected_10 = { "value": 'a', "display_value": 'a', "is_visible": False, "type": "th", "class": "row_heading level0 row1", "id": "level0_row1" } tm.assert_dict_equal(body_10, expected_10) head = result['head'][0] expected = [ {'type': 'th', 'class': 'blank', 'value': '', 'is_visible': True, "display_value": ''}, {'type': 'th', 'class': 'blank level0', 'value': '', 'is_visible': True, 'display_value': ''}, {'type': 'th', 'class': 'col_heading level0 col0', 'value': 'A', 'is_visible': True, 'display_value': 'A'}] assert head == expected def test_mi_sparse_disabled(self): with pd.option_context('display.multi_sparse', False): df = pd.DataFrame({'A': [1, 2]}, index=pd.MultiIndex.from_arrays([['a', 'a'], [0, 1]])) result = df.style._translate() body = result['body'] for row in body: assert 'attributes' not in row[0] def test_mi_sparse_index_names(self): df = pd.DataFrame({'A': [1, 2]}, index=pd.MultiIndex.from_arrays( [['a', 'a'], [0, 1]], names=['idx_level_0', 'idx_level_1']) ) result = df.style._translate() head = result['head'][1] expected = [{ 'class': 'index_name level0', 'value': 'idx_level_0', 'type': 'th'}, {'class': 'index_name level1', 'value': 'idx_level_1', 'type': 'th'}, {'class': 'blank', 'value': '', 'type': 'th'}] assert head == expected def test_mi_sparse_column_names(self): df = pd.DataFrame( np.arange(16).reshape(4, 4), index=pd.MultiIndex.from_arrays( [['a', 'a', 'b', 'a'], [0, 1, 1, 2]], names=['idx_level_0', 'idx_level_1']), columns=pd.MultiIndex.from_arrays( [['C1', 'C1', 'C2', 'C2'], [1, 0, 1, 0]], names=['col_0', 'col_1'] ) ) result = df.style._translate() head = result['head'][1] expected = [ {'class': 'blank', 'value': '', 'display_value': '', 'type': 'th', 'is_visible': True}, {'class': 'index_name level1', 'value': 'col_1', 'display_value': 'col_1', 'is_visible': True, 'type': 'th'}, {'class': 'col_heading level1 col0', 'display_value': 1, 'is_visible': True, 'type': 'th', 'value': 1}, {'class': 'col_heading level1 col1', 'display_value': 0, 'is_visible': True, 'type': 'th', 'value': 0}, {'class': 'col_heading level1 col2', 'display_value': 1, 'is_visible': True, 'type': 'th', 'value': 1}, {'class': 'col_heading level1 col3', 'display_value': 0, 'is_visible': True, 'type': 'th', 'value': 0}, ] assert head == expected def test_hide_single_index(self): # GH 14194 # single unnamed index ctx = self.df.style._translate() assert ctx['body'][0][0]['is_visible'] assert ctx['head'][0][0]['is_visible'] ctx2 = self.df.style.hide_index()._translate() assert not ctx2['body'][0][0]['is_visible'] assert not ctx2['head'][0][0]['is_visible'] # single named index ctx3 = self.df.set_index('A').style._translate() assert ctx3['body'][0][0]['is_visible'] assert len(ctx3['head']) == 2 # 2 header levels assert ctx3['head'][0][0]['is_visible'] ctx4 = self.df.set_index('A').style.hide_index()._translate() assert not ctx4['body'][0][0]['is_visible'] assert len(ctx4['head']) == 1 # only 1 header levels assert not ctx4['head'][0][0]['is_visible'] def test_hide_multiindex(self): # GH 14194 df = pd.DataFrame({'A': [1, 2]}, index=pd.MultiIndex.from_arrays( [['a', 'a'], [0, 1]], names=['idx_level_0', 'idx_level_1']) ) ctx1 = df.style._translate() # tests for 'a' and '0' assert ctx1['body'][0][0]['is_visible'] assert ctx1['body'][0][1]['is_visible'] # check for blank header rows assert ctx1['head'][0][0]['is_visible'] assert ctx1['head'][0][1]['is_visible'] ctx2 = df.style.hide_index()._translate() # tests for 'a' and '0' assert not ctx2['body'][0][0]['is_visible'] assert not ctx2['body'][0][1]['is_visible'] # check for blank header rows assert not ctx2['head'][0][0]['is_visible'] assert not ctx2['head'][0][1]['is_visible'] def test_hide_columns_single_level(self): # GH 14194 # test hiding single column ctx = self.df.style._translate() assert ctx['head'][0][1]['is_visible'] assert ctx['head'][0][1]['display_value'] == 'A' assert ctx['head'][0][2]['is_visible'] assert ctx['head'][0][2]['display_value'] == 'B' assert ctx['body'][0][1]['is_visible'] # col A, row 1 assert ctx['body'][1][2]['is_visible'] # col B, row 1 ctx = self.df.style.hide_columns('A')._translate() assert not ctx['head'][0][1]['is_visible'] assert not ctx['body'][0][1]['is_visible'] # col A, row 1 assert ctx['body'][1][2]['is_visible'] # col B, row 1 # test hiding mulitiple columns ctx = self.df.style.hide_columns(['A', 'B'])._translate() assert not ctx['head'][0][1]['is_visible'] assert not ctx['head'][0][2]['is_visible'] assert not ctx['body'][0][1]['is_visible'] # col A, row 1 assert not ctx['body'][1][2]['is_visible'] # col B, row 1 def test_hide_columns_mult_levels(self): # GH 14194 # setup dataframe with multiple column levels and indices i1 = pd.MultiIndex.from_arrays([['a', 'a'], [0, 1]], names=['idx_level_0', 'idx_level_1']) i2 = pd.MultiIndex.from_arrays([['b', 'b'], [0, 1]], names=['col_level_0', 'col_level_1']) df = pd.DataFrame([[1, 2], [3, 4]], index=i1, columns=i2) ctx = df.style._translate() # column headers assert ctx['head'][0][2]['is_visible'] assert ctx['head'][1][2]['is_visible'] assert ctx['head'][1][3]['display_value'] == 1 # indices assert ctx['body'][0][0]['is_visible'] # data assert ctx['body'][1][2]['is_visible'] assert ctx['body'][1][2]['display_value'] == 3 assert ctx['body'][1][3]['is_visible'] assert ctx['body'][1][3]['display_value'] == 4 # hide top column level, which hides both columns ctx = df.style.hide_columns('b')._translate() assert not ctx['head'][0][2]['is_visible'] # b assert not ctx['head'][1][2]['is_visible'] # 0 assert not ctx['body'][1][2]['is_visible'] # 3 assert ctx['body'][0][0]['is_visible'] # index # hide first column only ctx = df.style.hide_columns([('b', 0)])._translate() assert ctx['head'][0][2]['is_visible'] # b assert not ctx['head'][1][2]['is_visible'] # 0 assert not ctx['body'][1][2]['is_visible'] # 3 assert ctx['body'][1][3]['is_visible'] assert ctx['body'][1][3]['display_value'] == 4 # hide second column and index ctx = df.style.hide_columns([('b', 1)]).hide_index()._translate() assert not ctx['body'][0][0]['is_visible'] # index assert ctx['head'][0][2]['is_visible'] # b assert ctx['head'][1][2]['is_visible'] # 0 assert not ctx['head'][1][3]['is_visible'] # 1 assert not ctx['body'][1][3]['is_visible'] # 4 assert ctx['body'][1][2]['is_visible'] assert ctx['body'][1][2]['display_value'] == 3 def test_pipe(self): def set_caption_from_template(styler, a, b): return styler.set_caption( 'Dataframe with a = {a} and b = {b}'.format(a=a, b=b)) styler = self.df.style.pipe(set_caption_from_template, 'A', b='B') assert 'Dataframe with a = A and b = B' in styler.render() # Test with an argument that is a (callable, keyword_name) pair. def f(a, b, styler): return (a, b, styler) styler = self.df.style result = styler.pipe((f, 'styler'), a=1, b=2) assert result == (1, 2, styler) @td.skip_if_no_mpl class TestStylerMatplotlibDep(object): def test_background_gradient(self): df = pd.DataFrame([[1, 2], [2, 4]], columns=['A', 'B']) for c_map in [None, 'YlOrRd']: result = df.style.background_gradient(cmap=c_map)._compute().ctx assert all("#" in x[0] for x in result.values()) assert result[(0, 0)] == result[(0, 1)] assert result[(1, 0)] == result[(1, 1)] result = df.style.background_gradient( subset=pd.IndexSlice[1, 'A'])._compute().ctx assert result[(1, 0)] == ['background-color: #fff7fb', 'color: #000000'] @pytest.mark.parametrize( 'c_map,expected', [ (None, { (0, 0): ['background-color: #440154', 'color: #f1f1f1'], (1, 0): ['background-color: #fde725', 'color: #000000']}), ('YlOrRd', { (0, 0): ['background-color: #ffffcc', 'color: #000000'], (1, 0): ['background-color: #800026', 'color: #f1f1f1']})]) def test_text_color_threshold(self, c_map, expected): df = pd.DataFrame([1, 2], columns=['A']) result = df.style.background_gradient(cmap=c_map)._compute().ctx assert result == expected @pytest.mark.parametrize("text_color_threshold", [1.1, '1', -1, [2, 2]]) def test_text_color_threshold_raises(self, text_color_threshold): df = pd.DataFrame([[1, 2], [2, 4]], columns=['A', 'B']) msg = "`text_color_threshold` must be a value from 0 to 1." with pytest.raises(ValueError, match=msg): df.style.background_gradient( text_color_threshold=text_color_threshold)._compute() @td.skip_if_no_mpl def test_background_gradient_axis(self): df = pd.DataFrame([[1, 2], [2, 4]], columns=['A', 'B']) low = ['background-color: #f7fbff', 'color: #000000'] high = ['background-color: #08306b', 'color: #f1f1f1'] mid = ['background-color: #abd0e6', 'color: #000000'] result = df.style.background_gradient(cmap='Blues', axis=0)._compute().ctx assert result[(0, 0)] == low assert result[(0, 1)] == low assert result[(1, 0)] == high assert result[(1, 1)] == high result = df.style.background_gradient(cmap='Blues', axis=1)._compute().ctx assert result[(0, 0)] == low assert result[(0, 1)] == high assert result[(1, 0)] == low assert result[(1, 1)] == high result = df.style.background_gradient(cmap='Blues', axis=None)._compute().ctx assert result[(0, 0)] == low assert result[(0, 1)] == mid assert result[(1, 0)] == mid assert result[(1, 1)] == high def test_block_names(): # catch accidental removal of a block expected = { 'before_style', 'style', 'table_styles', 'before_cellstyle', 'cellstyle', 'before_table', 'table', 'caption', 'thead', 'tbody', 'after_table', 'before_head_rows', 'head_tr', 'after_head_rows', 'before_rows', 'tr', 'after_rows', } result = set(Styler.template.blocks) assert result == expected def test_from_custom_template(tmpdir): p = tmpdir.mkdir("templates").join("myhtml.tpl") p.write(textwrap.dedent("""\ {% extends "html.tpl" %} {% block table %}