# coding=utf-8 # pylint: disable-msg=E1101,W0612 from datetime import datetime import numpy as np from numpy import nan import pytest import pandas.compat as compat from pandas.compat import lrange, range import pandas as pd from pandas import Categorical, Series, date_range, isna import pandas.util.testing as tm from pandas.util.testing import assert_series_equal @pytest.mark.parametrize( 'first_slice,second_slice', [ [[2, None], [None, -5]], [[None, 0], [None, -5]], [[None, -5], [None, 0]], [[None, 0], [None, 0]] ]) @pytest.mark.parametrize('fill', [None, -1]) def test_align(test_data, first_slice, second_slice, join_type, fill): a = test_data.ts[slice(*first_slice)] b = test_data.ts[slice(*second_slice)] aa, ab = a.align(b, join=join_type, fill_value=fill) join_index = a.index.join(b.index, how=join_type) if fill is not None: diff_a = aa.index.difference(join_index) diff_b = ab.index.difference(join_index) if len(diff_a) > 0: assert (aa.reindex(diff_a) == fill).all() if len(diff_b) > 0: assert (ab.reindex(diff_b) == fill).all() ea = a.reindex(join_index) eb = b.reindex(join_index) if fill is not None: ea = ea.fillna(fill) eb = eb.fillna(fill) assert_series_equal(aa, ea) assert_series_equal(ab, eb) assert aa.name == 'ts' assert ea.name == 'ts' assert ab.name == 'ts' assert eb.name == 'ts' @pytest.mark.parametrize( 'first_slice,second_slice', [ [[2, None], [None, -5]], [[None, 0], [None, -5]], [[None, -5], [None, 0]], [[None, 0], [None, 0]] ]) @pytest.mark.parametrize('method', ['pad', 'bfill']) @pytest.mark.parametrize('limit', [None, 1]) def test_align_fill_method(test_data, first_slice, second_slice, join_type, method, limit): a = test_data.ts[slice(*first_slice)] b = test_data.ts[slice(*second_slice)] aa, ab = a.align(b, join=join_type, method=method, limit=limit) join_index = a.index.join(b.index, how=join_type) ea = a.reindex(join_index) eb = b.reindex(join_index) ea = ea.fillna(method=method, limit=limit) eb = eb.fillna(method=method, limit=limit) assert_series_equal(aa, ea) assert_series_equal(ab, eb) def test_align_nocopy(test_data): b = test_data.ts[:5].copy() # do copy a = test_data.ts.copy() ra, _ = a.align(b, join='left') ra[:5] = 5 assert not (a[:5] == 5).any() # do not copy a = test_data.ts.copy() ra, _ = a.align(b, join='left', copy=False) ra[:5] = 5 assert (a[:5] == 5).all() # do copy a = test_data.ts.copy() b = test_data.ts[:5].copy() _, rb = a.align(b, join='right') rb[:3] = 5 assert not (b[:3] == 5).any() # do not copy a = test_data.ts.copy() b = test_data.ts[:5].copy() _, rb = a.align(b, join='right', copy=False) rb[:2] = 5 assert (b[:2] == 5).all() def test_align_same_index(test_data): a, b = test_data.ts.align(test_data.ts, copy=False) assert a.index is test_data.ts.index assert b.index is test_data.ts.index a, b = test_data.ts.align(test_data.ts, copy=True) assert a.index is not test_data.ts.index assert b.index is not test_data.ts.index def test_align_multiindex(): # GH 10665 midx = pd.MultiIndex.from_product([range(2), range(3), range(2)], names=('a', 'b', 'c')) idx = pd.Index(range(2), name='b') s1 = pd.Series(np.arange(12, dtype='int64'), index=midx) s2 = pd.Series(np.arange(2, dtype='int64'), index=idx) # these must be the same results (but flipped) res1l, res1r = s1.align(s2, join='left') res2l, res2r = s2.align(s1, join='right') expl = s1 tm.assert_series_equal(expl, res1l) tm.assert_series_equal(expl, res2r) expr = pd.Series([0, 0, 1, 1, np.nan, np.nan] * 2, index=midx) tm.assert_series_equal(expr, res1r) tm.assert_series_equal(expr, res2l) res1l, res1r = s1.align(s2, join='right') res2l, res2r = s2.align(s1, join='left') exp_idx = pd.MultiIndex.from_product([range(2), range(2), range(2)], names=('a', 'b', 'c')) expl = pd.Series([0, 1, 2, 3, 6, 7, 8, 9], index=exp_idx) tm.assert_series_equal(expl, res1l) tm.assert_series_equal(expl, res2r) expr = pd.Series([0, 0, 1, 1] * 2, index=exp_idx) tm.assert_series_equal(expr, res1r) tm.assert_series_equal(expr, res2l) def test_reindex(test_data): identity = test_data.series.reindex(test_data.series.index) # __array_interface__ is not defined for older numpies # and on some pythons try: assert np.may_share_memory(test_data.series.index, identity.index) except AttributeError: pass assert identity.index.is_(test_data.series.index) assert identity.index.identical(test_data.series.index) subIndex = test_data.series.index[10:20] subSeries = test_data.series.reindex(subIndex) for idx, val in compat.iteritems(subSeries): assert val == test_data.series[idx] subIndex2 = test_data.ts.index[10:20] subTS = test_data.ts.reindex(subIndex2) for idx, val in compat.iteritems(subTS): assert val == test_data.ts[idx] stuffSeries = test_data.ts.reindex(subIndex) assert np.isnan(stuffSeries).all() # This is extremely important for the Cython code to not screw up nonContigIndex = test_data.ts.index[::2] subNonContig = test_data.ts.reindex(nonContigIndex) for idx, val in compat.iteritems(subNonContig): assert val == test_data.ts[idx] # return a copy the same index here result = test_data.ts.reindex() assert not (result is test_data.ts) def test_reindex_nan(): ts = Series([2, 3, 5, 7], index=[1, 4, nan, 8]) i, j = [nan, 1, nan, 8, 4, nan], [2, 0, 2, 3, 1, 2] assert_series_equal(ts.reindex(i), ts.iloc[j]) ts.index = ts.index.astype('object') # reindex coerces index.dtype to float, loc/iloc doesn't assert_series_equal(ts.reindex(i), ts.iloc[j], check_index_type=False) def test_reindex_series_add_nat(): rng = date_range('1/1/2000 00:00:00', periods=10, freq='10s') series = Series(rng) result = series.reindex(lrange(15)) assert np.issubdtype(result.dtype, np.dtype('M8[ns]')) mask = result.isna() assert mask[-5:].all() assert not mask[:-5].any() def test_reindex_with_datetimes(): rng = date_range('1/1/2000', periods=20) ts = Series(np.random.randn(20), index=rng) result = ts.reindex(list(ts.index[5:10])) expected = ts[5:10] tm.assert_series_equal(result, expected) result = ts[list(ts.index[5:10])] tm.assert_series_equal(result, expected) def test_reindex_corner(test_data): # (don't forget to fix this) I think it's fixed test_data.empty.reindex(test_data.ts.index, method='pad') # it works # corner case: pad empty series reindexed = test_data.empty.reindex(test_data.ts.index, method='pad') # pass non-Index reindexed = test_data.ts.reindex(list(test_data.ts.index)) assert_series_equal(test_data.ts, reindexed) # bad fill method ts = test_data.ts[::2] msg = (r"Invalid fill method\. Expecting pad \(ffill\), backfill" r" \(bfill\) or nearest\. Got foo") with pytest.raises(ValueError, match=msg): ts.reindex(test_data.ts.index, method='foo') def test_reindex_pad(): s = Series(np.arange(10), dtype='int64') s2 = s[::2] reindexed = s2.reindex(s.index, method='pad') reindexed2 = s2.reindex(s.index, method='ffill') assert_series_equal(reindexed, reindexed2) expected = Series([0, 0, 2, 2, 4, 4, 6, 6, 8, 8], index=np.arange(10)) assert_series_equal(reindexed, expected) # GH4604 s = Series([1, 2, 3, 4, 5], index=['a', 'b', 'c', 'd', 'e']) new_index = ['a', 'g', 'c', 'f'] expected = Series([1, 1, 3, 3], index=new_index) # this changes dtype because the ffill happens after result = s.reindex(new_index).ffill() assert_series_equal(result, expected.astype('float64')) result = s.reindex(new_index).ffill(downcast='infer') assert_series_equal(result, expected) expected = Series([1, 5, 3, 5], index=new_index) result = s.reindex(new_index, method='ffill') assert_series_equal(result, expected) # inference of new dtype s = Series([True, False, False, True], index=list('abcd')) new_index = 'agc' result = s.reindex(list(new_index)).ffill() expected = Series([True, True, False], index=list(new_index)) assert_series_equal(result, expected) # GH4618 shifted series downcasting s = Series(False, index=lrange(0, 5)) result = s.shift(1).fillna(method='bfill') expected = Series(False, index=lrange(0, 5)) assert_series_equal(result, expected) def test_reindex_nearest(): s = Series(np.arange(10, dtype='int64')) target = [0.1, 0.9, 1.5, 2.0] actual = s.reindex(target, method='nearest') expected = Series(np.around(target).astype('int64'), target) assert_series_equal(expected, actual) actual = s.reindex_like(actual, method='nearest') assert_series_equal(expected, actual) actual = s.reindex_like(actual, method='nearest', tolerance=1) assert_series_equal(expected, actual) actual = s.reindex_like(actual, method='nearest', tolerance=[1, 2, 3, 4]) assert_series_equal(expected, actual) actual = s.reindex(target, method='nearest', tolerance=0.2) expected = Series([0, 1, np.nan, 2], target) assert_series_equal(expected, actual) actual = s.reindex(target, method='nearest', tolerance=[0.3, 0.01, 0.4, 3]) expected = Series([0, np.nan, np.nan, 2], target) assert_series_equal(expected, actual) def test_reindex_backfill(): pass def test_reindex_int(test_data): ts = test_data.ts[::2] int_ts = Series(np.zeros(len(ts), dtype=int), index=ts.index) # this should work fine reindexed_int = int_ts.reindex(test_data.ts.index) # if NaNs introduced assert reindexed_int.dtype == np.float_ # NO NaNs introduced reindexed_int = int_ts.reindex(int_ts.index[::2]) assert reindexed_int.dtype == np.int_ def test_reindex_bool(test_data): # A series other than float, int, string, or object ts = test_data.ts[::2] bool_ts = Series(np.zeros(len(ts), dtype=bool), index=ts.index) # this should work fine reindexed_bool = bool_ts.reindex(test_data.ts.index) # if NaNs introduced assert reindexed_bool.dtype == np.object_ # NO NaNs introduced reindexed_bool = bool_ts.reindex(bool_ts.index[::2]) assert reindexed_bool.dtype == np.bool_ def test_reindex_bool_pad(test_data): # fail ts = test_data.ts[5:] bool_ts = Series(np.zeros(len(ts), dtype=bool), index=ts.index) filled_bool = bool_ts.reindex(test_data.ts.index, method='pad') assert isna(filled_bool[:5]).all() def test_reindex_categorical(): index = date_range('20000101', periods=3) # reindexing to an invalid Categorical s = Series(['a', 'b', 'c'], dtype='category') result = s.reindex(index) expected = Series(Categorical(values=[np.nan, np.nan, np.nan], categories=['a', 'b', 'c'])) expected.index = index tm.assert_series_equal(result, expected) # partial reindexing expected = Series(Categorical(values=['b', 'c'], categories=['a', 'b', 'c'])) expected.index = [1, 2] result = s.reindex([1, 2]) tm.assert_series_equal(result, expected) expected = Series(Categorical( values=['c', np.nan], categories=['a', 'b', 'c'])) expected.index = [2, 3] result = s.reindex([2, 3]) tm.assert_series_equal(result, expected) def test_reindex_like(test_data): other = test_data.ts[::2] assert_series_equal(test_data.ts.reindex(other.index), test_data.ts.reindex_like(other)) # GH 7179 day1 = datetime(2013, 3, 5) day2 = datetime(2013, 5, 5) day3 = datetime(2014, 3, 5) series1 = Series([5, None, None], [day1, day2, day3]) series2 = Series([None, None], [day1, day3]) result = series1.reindex_like(series2, method='pad') expected = Series([5, np.nan], index=[day1, day3]) assert_series_equal(result, expected) def test_reindex_fill_value(): # ----------------------------------------------------------- # floats floats = Series([1., 2., 3.]) result = floats.reindex([1, 2, 3]) expected = Series([2., 3., np.nan], index=[1, 2, 3]) assert_series_equal(result, expected) result = floats.reindex([1, 2, 3], fill_value=0) expected = Series([2., 3., 0], index=[1, 2, 3]) assert_series_equal(result, expected) # ----------------------------------------------------------- # ints ints = Series([1, 2, 3]) result = ints.reindex([1, 2, 3]) expected = Series([2., 3., np.nan], index=[1, 2, 3]) assert_series_equal(result, expected) # don't upcast result = ints.reindex([1, 2, 3], fill_value=0) expected = Series([2, 3, 0], index=[1, 2, 3]) assert issubclass(result.dtype.type, np.integer) assert_series_equal(result, expected) # ----------------------------------------------------------- # objects objects = Series([1, 2, 3], dtype=object) result = objects.reindex([1, 2, 3]) expected = Series([2, 3, np.nan], index=[1, 2, 3], dtype=object) assert_series_equal(result, expected) result = objects.reindex([1, 2, 3], fill_value='foo') expected = Series([2, 3, 'foo'], index=[1, 2, 3], dtype=object) assert_series_equal(result, expected) # ------------------------------------------------------------ # bools bools = Series([True, False, True]) result = bools.reindex([1, 2, 3]) expected = Series([False, True, np.nan], index=[1, 2, 3], dtype=object) assert_series_equal(result, expected) result = bools.reindex([1, 2, 3], fill_value=False) expected = Series([False, True, False], index=[1, 2, 3]) assert_series_equal(result, expected) def test_reindex_datetimeindexes_tz_naive_and_aware(): # GH 8306 idx = date_range('20131101', tz='America/Chicago', periods=7) newidx = date_range('20131103', periods=10, freq='H') s = Series(range(7), index=idx) with pytest.raises(TypeError): s.reindex(newidx, method='ffill') def test_reindex_empty_series_tz_dtype(): # GH 20869 result = Series(dtype='datetime64[ns, UTC]').reindex([0, 1]) expected = Series([pd.NaT] * 2, dtype='datetime64[ns, UTC]') tm.assert_equal(result, expected) def test_rename(): # GH 17407 s = Series(range(1, 6), index=pd.Index(range(2, 7), name='IntIndex')) result = s.rename(str) expected = s.rename(lambda i: str(i)) assert_series_equal(result, expected) assert result.name == expected.name @pytest.mark.parametrize( 'data, index, drop_labels,' ' axis, expected_data, expected_index', [ # Unique Index ([1, 2], ['one', 'two'], ['two'], 0, [1], ['one']), ([1, 2], ['one', 'two'], ['two'], 'rows', [1], ['one']), ([1, 1, 2], ['one', 'two', 'one'], ['two'], 0, [1, 2], ['one', 'one']), # GH 5248 Non-Unique Index ([1, 1, 2], ['one', 'two', 'one'], 'two', 0, [1, 2], ['one', 'one']), ([1, 1, 2], ['one', 'two', 'one'], ['one'], 0, [1], ['two']), ([1, 1, 2], ['one', 'two', 'one'], 'one', 0, [1], ['two'])]) def test_drop_unique_and_non_unique_index(data, index, axis, drop_labels, expected_data, expected_index): s = Series(data=data, index=index) result = s.drop(drop_labels, axis=axis) expected = Series(data=expected_data, index=expected_index) tm.assert_series_equal(result, expected) @pytest.mark.parametrize( 'data, index, drop_labels,' ' axis, error_type, error_desc', [ # single string/tuple-like (range(3), list('abc'), 'bc', 0, KeyError, 'not found in axis'), # bad axis (range(3), list('abc'), ('a',), 0, KeyError, 'not found in axis'), (range(3), list('abc'), 'one', 'columns', ValueError, 'No axis named columns')]) def test_drop_exception_raised(data, index, drop_labels, axis, error_type, error_desc): with pytest.raises(error_type, match=error_desc): Series(data, index=index).drop(drop_labels, axis=axis) def test_drop_with_ignore_errors(): # errors='ignore' s = Series(range(3), index=list('abc')) result = s.drop('bc', errors='ignore') tm.assert_series_equal(result, s) result = s.drop(['a', 'd'], errors='ignore') expected = s.iloc[1:] tm.assert_series_equal(result, expected) # GH 8522 s = Series([2, 3], index=[True, False]) assert s.index.is_object() result = s.drop(True) expected = Series([3], index=[False]) tm.assert_series_equal(result, expected) @pytest.mark.parametrize('index', [[1, 2, 3], [1, 1, 3]]) @pytest.mark.parametrize('drop_labels', [[], [1], [3]]) def test_drop_empty_list(index, drop_labels): # GH 21494 expected_index = [i for i in index if i not in drop_labels] series = pd.Series(index=index).drop(drop_labels) tm.assert_series_equal(series, pd.Series(index=expected_index)) @pytest.mark.parametrize('data, index, drop_labels', [ (None, [1, 2, 3], [1, 4]), (None, [1, 2, 2], [1, 4]), ([2, 3], [0, 1], [False, True]) ]) def test_drop_non_empty_list(data, index, drop_labels): # GH 21494 and GH 16877 with pytest.raises(KeyError, match='not found in axis'): pd.Series(data=data, index=index).drop(drop_labels)