| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223 |
- # Copyright (C) 2003-2005 Peter J. Verveer
- #
- # Redistribution and use in source and binary forms, with or without
- # modification, are permitted provided that the following conditions
- # are met:
- #
- # 1. Redistributions of source code must retain the above copyright
- # notice, this list of conditions and the following disclaimer.
- #
- # 2. Redistributions in binary form must reproduce the above
- # copyright notice, this list of conditions and the following
- # disclaimer in the documentation and/or other materials provided
- # with the distribution.
- #
- # 3. The name of the author may not be used to endorse or promote
- # products derived from this software without specific prior
- # written permission.
- #
- # THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS
- # OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
- # WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
- # ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
- # DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
- # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
- # GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
- # INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
- # WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
- # NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
- # SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
- from __future__ import division, print_function, absolute_import
- import warnings
- import numpy
- from . import _ni_support
- from . import _nd_image
- from . import filters
- __all__ = ['iterate_structure', 'generate_binary_structure', 'binary_erosion',
- 'binary_dilation', 'binary_opening', 'binary_closing',
- 'binary_hit_or_miss', 'binary_propagation', 'binary_fill_holes',
- 'grey_erosion', 'grey_dilation', 'grey_opening', 'grey_closing',
- 'morphological_gradient', 'morphological_laplace', 'white_tophat',
- 'black_tophat', 'distance_transform_bf', 'distance_transform_cdt',
- 'distance_transform_edt']
- def _center_is_true(structure, origin):
- structure = numpy.array(structure)
- coor = tuple([oo + ss // 2 for ss, oo in zip(structure.shape,
- origin)])
- return bool(structure[coor])
- def iterate_structure(structure, iterations, origin=None):
- """
- Iterate a structure by dilating it with itself.
- Parameters
- ----------
- structure : array_like
- Structuring element (an array of bools, for example), to be dilated with
- itself.
- iterations : int
- number of dilations performed on the structure with itself
- origin : optional
- If origin is None, only the iterated structure is returned. If
- not, a tuple of the iterated structure and the modified origin is
- returned.
- Returns
- -------
- iterate_structure : ndarray of bools
- A new structuring element obtained by dilating `structure`
- (`iterations` - 1) times with itself.
- See also
- --------
- generate_binary_structure
- Examples
- --------
- >>> from scipy import ndimage
- >>> struct = ndimage.generate_binary_structure(2, 1)
- >>> struct.astype(int)
- array([[0, 1, 0],
- [1, 1, 1],
- [0, 1, 0]])
- >>> ndimage.iterate_structure(struct, 2).astype(int)
- array([[0, 0, 1, 0, 0],
- [0, 1, 1, 1, 0],
- [1, 1, 1, 1, 1],
- [0, 1, 1, 1, 0],
- [0, 0, 1, 0, 0]])
- >>> ndimage.iterate_structure(struct, 3).astype(int)
- array([[0, 0, 0, 1, 0, 0, 0],
- [0, 0, 1, 1, 1, 0, 0],
- [0, 1, 1, 1, 1, 1, 0],
- [1, 1, 1, 1, 1, 1, 1],
- [0, 1, 1, 1, 1, 1, 0],
- [0, 0, 1, 1, 1, 0, 0],
- [0, 0, 0, 1, 0, 0, 0]])
- """
- structure = numpy.asarray(structure)
- if iterations < 2:
- return structure.copy()
- ni = iterations - 1
- shape = [ii + ni * (ii - 1) for ii in structure.shape]
- pos = [ni * (structure.shape[ii] // 2) for ii in range(len(shape))]
- slc = tuple(slice(pos[ii], pos[ii] + structure.shape[ii], None)
- for ii in range(len(shape)))
- out = numpy.zeros(shape, bool)
- out[slc] = structure != 0
- out = binary_dilation(out, structure, iterations=ni)
- if origin is None:
- return out
- else:
- origin = _ni_support._normalize_sequence(origin, structure.ndim)
- origin = [iterations * o for o in origin]
- return out, origin
- def generate_binary_structure(rank, connectivity):
- """
- Generate a binary structure for binary morphological operations.
- Parameters
- ----------
- rank : int
- Number of dimensions of the array to which the structuring element
- will be applied, as returned by `np.ndim`.
- connectivity : int
- `connectivity` determines which elements of the output array belong
- to the structure, i.e. are considered as neighbors of the central
- element. Elements up to a squared distance of `connectivity` from
- the center are considered neighbors. `connectivity` may range from 1
- (no diagonal elements are neighbors) to `rank` (all elements are
- neighbors).
- Returns
- -------
- output : ndarray of bools
- Structuring element which may be used for binary morphological
- operations, with `rank` dimensions and all dimensions equal to 3.
- See also
- --------
- iterate_structure, binary_dilation, binary_erosion
- Notes
- -----
- `generate_binary_structure` can only create structuring elements with
- dimensions equal to 3, i.e. minimal dimensions. For larger structuring
- elements, that are useful e.g. for eroding large objects, one may either
- use `iterate_structure`, or create directly custom arrays with
- numpy functions such as `numpy.ones`.
- Examples
- --------
- >>> from scipy import ndimage
- >>> struct = ndimage.generate_binary_structure(2, 1)
- >>> struct
- array([[False, True, False],
- [ True, True, True],
- [False, True, False]], dtype=bool)
- >>> a = np.zeros((5,5))
- >>> a[2, 2] = 1
- >>> a
- array([[ 0., 0., 0., 0., 0.],
- [ 0., 0., 0., 0., 0.],
- [ 0., 0., 1., 0., 0.],
- [ 0., 0., 0., 0., 0.],
- [ 0., 0., 0., 0., 0.]])
- >>> b = ndimage.binary_dilation(a, structure=struct).astype(a.dtype)
- >>> b
- array([[ 0., 0., 0., 0., 0.],
- [ 0., 0., 1., 0., 0.],
- [ 0., 1., 1., 1., 0.],
- [ 0., 0., 1., 0., 0.],
- [ 0., 0., 0., 0., 0.]])
- >>> ndimage.binary_dilation(b, structure=struct).astype(a.dtype)
- array([[ 0., 0., 1., 0., 0.],
- [ 0., 1., 1., 1., 0.],
- [ 1., 1., 1., 1., 1.],
- [ 0., 1., 1., 1., 0.],
- [ 0., 0., 1., 0., 0.]])
- >>> struct = ndimage.generate_binary_structure(2, 2)
- >>> struct
- array([[ True, True, True],
- [ True, True, True],
- [ True, True, True]], dtype=bool)
- >>> struct = ndimage.generate_binary_structure(3, 1)
- >>> struct # no diagonal elements
- array([[[False, False, False],
- [False, True, False],
- [False, False, False]],
- [[False, True, False],
- [ True, True, True],
- [False, True, False]],
- [[False, False, False],
- [False, True, False],
- [False, False, False]]], dtype=bool)
- """
- if connectivity < 1:
- connectivity = 1
- if rank < 1:
- return numpy.array(True, dtype=bool)
- output = numpy.fabs(numpy.indices([3] * rank) - 1)
- output = numpy.add.reduce(output, 0)
- return output <= connectivity
- def _binary_erosion(input, structure, iterations, mask, output,
- border_value, origin, invert, brute_force):
- input = numpy.asarray(input)
- if numpy.iscomplexobj(input):
- raise TypeError('Complex type not supported')
- if structure is None:
- structure = generate_binary_structure(input.ndim, 1)
- else:
- structure = numpy.asarray(structure, dtype=bool)
- if structure.ndim != input.ndim:
- raise RuntimeError('structure and input must have same dimensionality')
- if not structure.flags.contiguous:
- structure = structure.copy()
- if numpy.product(structure.shape, axis=0) < 1:
- raise RuntimeError('structure must not be empty')
- if mask is not None:
- mask = numpy.asarray(mask)
- if mask.shape != input.shape:
- raise RuntimeError('mask and input must have equal sizes')
- origin = _ni_support._normalize_sequence(origin, input.ndim)
- cit = _center_is_true(structure, origin)
- if isinstance(output, numpy.ndarray):
- if numpy.iscomplexobj(output):
- raise TypeError('Complex output type not supported')
- else:
- output = bool
- output = _ni_support._get_output(output, input)
- if iterations == 1:
- _nd_image.binary_erosion(input, structure, mask, output,
- border_value, origin, invert, cit, 0)
- return output
- elif cit and not brute_force:
- changed, coordinate_list = _nd_image.binary_erosion(
- input, structure, mask, output,
- border_value, origin, invert, cit, 1)
- structure = structure[tuple([slice(None, None, -1)] *
- structure.ndim)]
- for ii in range(len(origin)):
- origin[ii] = -origin[ii]
- if not structure.shape[ii] & 1:
- origin[ii] -= 1
- if mask is not None:
- mask = numpy.asarray(mask, dtype=numpy.int8)
- if not structure.flags.contiguous:
- structure = structure.copy()
- _nd_image.binary_erosion2(output, structure, mask, iterations - 1,
- origin, invert, coordinate_list)
- return output
- else:
- tmp_in = numpy.empty_like(input, dtype=bool)
- tmp_out = output
- if iterations >= 1 and not iterations & 1:
- tmp_in, tmp_out = tmp_out, tmp_in
- changed = _nd_image.binary_erosion(
- input, structure, mask, tmp_out,
- border_value, origin, invert, cit, 0)
- ii = 1
- while ii < iterations or (iterations < 1 and changed):
- tmp_in, tmp_out = tmp_out, tmp_in
- changed = _nd_image.binary_erosion(
- tmp_in, structure, mask, tmp_out,
- border_value, origin, invert, cit, 0)
- ii += 1
- return output
- def binary_erosion(input, structure=None, iterations=1, mask=None, output=None,
- border_value=0, origin=0, brute_force=False):
- """
- Multi-dimensional binary erosion with a given structuring element.
- Binary erosion is a mathematical morphology operation used for image
- processing.
- Parameters
- ----------
- input : array_like
- Binary image to be eroded. Non-zero (True) elements form
- the subset to be eroded.
- structure : array_like, optional
- Structuring element used for the erosion. Non-zero elements are
- considered True. If no structuring element is provided, an element
- is generated with a square connectivity equal to one.
- iterations : {int, float}, optional
- The erosion is repeated `iterations` times (one, by default).
- If iterations is less than 1, the erosion is repeated until the
- result does not change anymore.
- mask : array_like, optional
- If a mask is given, only those elements with a True value at
- the corresponding mask element are modified at each iteration.
- output : ndarray, optional
- Array of the same shape as input, into which the output is placed.
- By default, a new array is created.
- border_value : int (cast to 0 or 1), optional
- Value at the border in the output array.
- origin : int or tuple of ints, optional
- Placement of the filter, by default 0.
- brute_force : boolean, optional
- Memory condition: if False, only the pixels whose value was changed in
- the last iteration are tracked as candidates to be updated (eroded) in
- the current iteration; if True all pixels are considered as candidates
- for erosion, regardless of what happened in the previous iteration.
- False by default.
- Returns
- -------
- binary_erosion : ndarray of bools
- Erosion of the input by the structuring element.
- See also
- --------
- grey_erosion, binary_dilation, binary_closing, binary_opening,
- generate_binary_structure
- Notes
- -----
- Erosion [1]_ is a mathematical morphology operation [2]_ that uses a
- structuring element for shrinking the shapes in an image. The binary
- erosion of an image by a structuring element is the locus of the points
- where a superimposition of the structuring element centered on the point
- is entirely contained in the set of non-zero elements of the image.
- References
- ----------
- .. [1] https://en.wikipedia.org/wiki/Erosion_%28morphology%29
- .. [2] https://en.wikipedia.org/wiki/Mathematical_morphology
- Examples
- --------
- >>> from scipy import ndimage
- >>> a = np.zeros((7,7), dtype=int)
- >>> a[1:6, 2:5] = 1
- >>> a
- array([[0, 0, 0, 0, 0, 0, 0],
- [0, 0, 1, 1, 1, 0, 0],
- [0, 0, 1, 1, 1, 0, 0],
- [0, 0, 1, 1, 1, 0, 0],
- [0, 0, 1, 1, 1, 0, 0],
- [0, 0, 1, 1, 1, 0, 0],
- [0, 0, 0, 0, 0, 0, 0]])
- >>> ndimage.binary_erosion(a).astype(a.dtype)
- array([[0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 1, 0, 0, 0],
- [0, 0, 0, 1, 0, 0, 0],
- [0, 0, 0, 1, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0]])
- >>> #Erosion removes objects smaller than the structure
- >>> ndimage.binary_erosion(a, structure=np.ones((5,5))).astype(a.dtype)
- array([[0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0]])
- """
- return _binary_erosion(input, structure, iterations, mask,
- output, border_value, origin, 0, brute_force)
- def binary_dilation(input, structure=None, iterations=1, mask=None,
- output=None, border_value=0, origin=0,
- brute_force=False):
- """
- Multi-dimensional binary dilation with the given structuring element.
- Parameters
- ----------
- input : array_like
- Binary array_like to be dilated. Non-zero (True) elements form
- the subset to be dilated.
- structure : array_like, optional
- Structuring element used for the dilation. Non-zero elements are
- considered True. If no structuring element is provided an element
- is generated with a square connectivity equal to one.
- iterations : {int, float}, optional
- The dilation is repeated `iterations` times (one, by default).
- If iterations is less than 1, the dilation is repeated until the
- result does not change anymore.
- mask : array_like, optional
- If a mask is given, only those elements with a True value at
- the corresponding mask element are modified at each iteration.
- output : ndarray, optional
- Array of the same shape as input, into which the output is placed.
- By default, a new array is created.
- border_value : int (cast to 0 or 1), optional
- Value at the border in the output array.
- origin : int or tuple of ints, optional
- Placement of the filter, by default 0.
- brute_force : boolean, optional
- Memory condition: if False, only the pixels whose value was changed in
- the last iteration are tracked as candidates to be updated (dilated)
- in the current iteration; if True all pixels are considered as
- candidates for dilation, regardless of what happened in the previous
- iteration. False by default.
- Returns
- -------
- binary_dilation : ndarray of bools
- Dilation of the input by the structuring element.
- See also
- --------
- grey_dilation, binary_erosion, binary_closing, binary_opening,
- generate_binary_structure
- Notes
- -----
- Dilation [1]_ is a mathematical morphology operation [2]_ that uses a
- structuring element for expanding the shapes in an image. The binary
- dilation of an image by a structuring element is the locus of the points
- covered by the structuring element, when its center lies within the
- non-zero points of the image.
- References
- ----------
- .. [1] https://en.wikipedia.org/wiki/Dilation_%28morphology%29
- .. [2] https://en.wikipedia.org/wiki/Mathematical_morphology
- Examples
- --------
- >>> from scipy import ndimage
- >>> a = np.zeros((5, 5))
- >>> a[2, 2] = 1
- >>> a
- array([[ 0., 0., 0., 0., 0.],
- [ 0., 0., 0., 0., 0.],
- [ 0., 0., 1., 0., 0.],
- [ 0., 0., 0., 0., 0.],
- [ 0., 0., 0., 0., 0.]])
- >>> ndimage.binary_dilation(a)
- array([[False, False, False, False, False],
- [False, False, True, False, False],
- [False, True, True, True, False],
- [False, False, True, False, False],
- [False, False, False, False, False]], dtype=bool)
- >>> ndimage.binary_dilation(a).astype(a.dtype)
- array([[ 0., 0., 0., 0., 0.],
- [ 0., 0., 1., 0., 0.],
- [ 0., 1., 1., 1., 0.],
- [ 0., 0., 1., 0., 0.],
- [ 0., 0., 0., 0., 0.]])
- >>> # 3x3 structuring element with connectivity 1, used by default
- >>> struct1 = ndimage.generate_binary_structure(2, 1)
- >>> struct1
- array([[False, True, False],
- [ True, True, True],
- [False, True, False]], dtype=bool)
- >>> # 3x3 structuring element with connectivity 2
- >>> struct2 = ndimage.generate_binary_structure(2, 2)
- >>> struct2
- array([[ True, True, True],
- [ True, True, True],
- [ True, True, True]], dtype=bool)
- >>> ndimage.binary_dilation(a, structure=struct1).astype(a.dtype)
- array([[ 0., 0., 0., 0., 0.],
- [ 0., 0., 1., 0., 0.],
- [ 0., 1., 1., 1., 0.],
- [ 0., 0., 1., 0., 0.],
- [ 0., 0., 0., 0., 0.]])
- >>> ndimage.binary_dilation(a, structure=struct2).astype(a.dtype)
- array([[ 0., 0., 0., 0., 0.],
- [ 0., 1., 1., 1., 0.],
- [ 0., 1., 1., 1., 0.],
- [ 0., 1., 1., 1., 0.],
- [ 0., 0., 0., 0., 0.]])
- >>> ndimage.binary_dilation(a, structure=struct1,\\
- ... iterations=2).astype(a.dtype)
- array([[ 0., 0., 1., 0., 0.],
- [ 0., 1., 1., 1., 0.],
- [ 1., 1., 1., 1., 1.],
- [ 0., 1., 1., 1., 0.],
- [ 0., 0., 1., 0., 0.]])
- """
- input = numpy.asarray(input)
- if structure is None:
- structure = generate_binary_structure(input.ndim, 1)
- origin = _ni_support._normalize_sequence(origin, input.ndim)
- structure = numpy.asarray(structure)
- structure = structure[tuple([slice(None, None, -1)] *
- structure.ndim)]
- for ii in range(len(origin)):
- origin[ii] = -origin[ii]
- if not structure.shape[ii] & 1:
- origin[ii] -= 1
- return _binary_erosion(input, structure, iterations, mask,
- output, border_value, origin, 1, brute_force)
- def binary_opening(input, structure=None, iterations=1, output=None,
- origin=0, mask=None, border_value=0, brute_force=False):
- """
- Multi-dimensional binary opening with the given structuring element.
- The *opening* of an input image by a structuring element is the
- *dilation* of the *erosion* of the image by the structuring element.
- Parameters
- ----------
- input : array_like
- Binary array_like to be opened. Non-zero (True) elements form
- the subset to be opened.
- structure : array_like, optional
- Structuring element used for the opening. Non-zero elements are
- considered True. If no structuring element is provided an element
- is generated with a square connectivity equal to one (i.e., only
- nearest neighbors are connected to the center, diagonally-connected
- elements are not considered neighbors).
- iterations : {int, float}, optional
- The erosion step of the opening, then the dilation step are each
- repeated `iterations` times (one, by default). If `iterations` is
- less than 1, each operation is repeated until the result does
- not change anymore.
- output : ndarray, optional
- Array of the same shape as input, into which the output is placed.
- By default, a new array is created.
- origin : int or tuple of ints, optional
- Placement of the filter, by default 0.
- mask : array_like, optional
- If a mask is given, only those elements with a True value at
- the corresponding mask element are modified at each iteration.
- .. versionadded:: 1.1.0
- border_value : int (cast to 0 or 1), optional
- Value at the border in the output array.
- .. versionadded:: 1.1.0
- brute_force : boolean, optional
- Memory condition: if False, only the pixels whose value was changed in
- the last iteration are tracked as candidates to be updated in the
- current iteration; if true all pixels are considered as candidates for
- update, regardless of what happened in the previous iteration.
- False by default.
- .. versionadded:: 1.1.0
- Returns
- -------
- binary_opening : ndarray of bools
- Opening of the input by the structuring element.
- See also
- --------
- grey_opening, binary_closing, binary_erosion, binary_dilation,
- generate_binary_structure
- Notes
- -----
- *Opening* [1]_ is a mathematical morphology operation [2]_ that
- consists in the succession of an erosion and a dilation of the
- input with the same structuring element. Opening therefore removes
- objects smaller than the structuring element.
- Together with *closing* (`binary_closing`), opening can be used for
- noise removal.
- References
- ----------
- .. [1] https://en.wikipedia.org/wiki/Opening_%28morphology%29
- .. [2] https://en.wikipedia.org/wiki/Mathematical_morphology
- Examples
- --------
- >>> from scipy import ndimage
- >>> a = np.zeros((5,5), dtype=int)
- >>> a[1:4, 1:4] = 1; a[4, 4] = 1
- >>> a
- array([[0, 0, 0, 0, 0],
- [0, 1, 1, 1, 0],
- [0, 1, 1, 1, 0],
- [0, 1, 1, 1, 0],
- [0, 0, 0, 0, 1]])
- >>> # Opening removes small objects
- >>> ndimage.binary_opening(a, structure=np.ones((3,3))).astype(int)
- array([[0, 0, 0, 0, 0],
- [0, 1, 1, 1, 0],
- [0, 1, 1, 1, 0],
- [0, 1, 1, 1, 0],
- [0, 0, 0, 0, 0]])
- >>> # Opening can also smooth corners
- >>> ndimage.binary_opening(a).astype(int)
- array([[0, 0, 0, 0, 0],
- [0, 0, 1, 0, 0],
- [0, 1, 1, 1, 0],
- [0, 0, 1, 0, 0],
- [0, 0, 0, 0, 0]])
- >>> # Opening is the dilation of the erosion of the input
- >>> ndimage.binary_erosion(a).astype(int)
- array([[0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0],
- [0, 0, 1, 0, 0],
- [0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0]])
- >>> ndimage.binary_dilation(ndimage.binary_erosion(a)).astype(int)
- array([[0, 0, 0, 0, 0],
- [0, 0, 1, 0, 0],
- [0, 1, 1, 1, 0],
- [0, 0, 1, 0, 0],
- [0, 0, 0, 0, 0]])
- """
- input = numpy.asarray(input)
- if structure is None:
- rank = input.ndim
- structure = generate_binary_structure(rank, 1)
- tmp = binary_erosion(input, structure, iterations, mask, None,
- border_value, origin, brute_force)
- return binary_dilation(tmp, structure, iterations, mask, output,
- border_value, origin, brute_force)
- def binary_closing(input, structure=None, iterations=1, output=None,
- origin=0, mask=None, border_value=0, brute_force=False):
- """
- Multi-dimensional binary closing with the given structuring element.
- The *closing* of an input image by a structuring element is the
- *erosion* of the *dilation* of the image by the structuring element.
- Parameters
- ----------
- input : array_like
- Binary array_like to be closed. Non-zero (True) elements form
- the subset to be closed.
- structure : array_like, optional
- Structuring element used for the closing. Non-zero elements are
- considered True. If no structuring element is provided an element
- is generated with a square connectivity equal to one (i.e., only
- nearest neighbors are connected to the center, diagonally-connected
- elements are not considered neighbors).
- iterations : {int, float}, optional
- The dilation step of the closing, then the erosion step are each
- repeated `iterations` times (one, by default). If iterations is
- less than 1, each operations is repeated until the result does
- not change anymore.
- output : ndarray, optional
- Array of the same shape as input, into which the output is placed.
- By default, a new array is created.
- origin : int or tuple of ints, optional
- Placement of the filter, by default 0.
- mask : array_like, optional
- If a mask is given, only those elements with a True value at
- the corresponding mask element are modified at each iteration.
- .. versionadded:: 1.1.0
- border_value : int (cast to 0 or 1), optional
- Value at the border in the output array.
- .. versionadded:: 1.1.0
- brute_force : boolean, optional
- Memory condition: if False, only the pixels whose value was changed in
- the last iteration are tracked as candidates to be updated in the
- current iteration; if true al pixels are considered as candidates for
- update, regardless of what happened in the previous iteration.
- False by default.
- .. versionadded:: 1.1.0
- Returns
- -------
- binary_closing : ndarray of bools
- Closing of the input by the structuring element.
- See also
- --------
- grey_closing, binary_opening, binary_dilation, binary_erosion,
- generate_binary_structure
- Notes
- -----
- *Closing* [1]_ is a mathematical morphology operation [2]_ that
- consists in the succession of a dilation and an erosion of the
- input with the same structuring element. Closing therefore fills
- holes smaller than the structuring element.
- Together with *opening* (`binary_opening`), closing can be used for
- noise removal.
- References
- ----------
- .. [1] https://en.wikipedia.org/wiki/Closing_%28morphology%29
- .. [2] https://en.wikipedia.org/wiki/Mathematical_morphology
- Examples
- --------
- >>> from scipy import ndimage
- >>> a = np.zeros((5,5), dtype=int)
- >>> a[1:-1, 1:-1] = 1; a[2,2] = 0
- >>> a
- array([[0, 0, 0, 0, 0],
- [0, 1, 1, 1, 0],
- [0, 1, 0, 1, 0],
- [0, 1, 1, 1, 0],
- [0, 0, 0, 0, 0]])
- >>> # Closing removes small holes
- >>> ndimage.binary_closing(a).astype(int)
- array([[0, 0, 0, 0, 0],
- [0, 1, 1, 1, 0],
- [0, 1, 1, 1, 0],
- [0, 1, 1, 1, 0],
- [0, 0, 0, 0, 0]])
- >>> # Closing is the erosion of the dilation of the input
- >>> ndimage.binary_dilation(a).astype(int)
- array([[0, 1, 1, 1, 0],
- [1, 1, 1, 1, 1],
- [1, 1, 1, 1, 1],
- [1, 1, 1, 1, 1],
- [0, 1, 1, 1, 0]])
- >>> ndimage.binary_erosion(ndimage.binary_dilation(a)).astype(int)
- array([[0, 0, 0, 0, 0],
- [0, 1, 1, 1, 0],
- [0, 1, 1, 1, 0],
- [0, 1, 1, 1, 0],
- [0, 0, 0, 0, 0]])
- >>> a = np.zeros((7,7), dtype=int)
- >>> a[1:6, 2:5] = 1; a[1:3,3] = 0
- >>> a
- array([[0, 0, 0, 0, 0, 0, 0],
- [0, 0, 1, 0, 1, 0, 0],
- [0, 0, 1, 0, 1, 0, 0],
- [0, 0, 1, 1, 1, 0, 0],
- [0, 0, 1, 1, 1, 0, 0],
- [0, 0, 1, 1, 1, 0, 0],
- [0, 0, 0, 0, 0, 0, 0]])
- >>> # In addition to removing holes, closing can also
- >>> # coarsen boundaries with fine hollows.
- >>> ndimage.binary_closing(a).astype(int)
- array([[0, 0, 0, 0, 0, 0, 0],
- [0, 0, 1, 0, 1, 0, 0],
- [0, 0, 1, 1, 1, 0, 0],
- [0, 0, 1, 1, 1, 0, 0],
- [0, 0, 1, 1, 1, 0, 0],
- [0, 0, 1, 1, 1, 0, 0],
- [0, 0, 0, 0, 0, 0, 0]])
- >>> ndimage.binary_closing(a, structure=np.ones((2,2))).astype(int)
- array([[0, 0, 0, 0, 0, 0, 0],
- [0, 0, 1, 1, 1, 0, 0],
- [0, 0, 1, 1, 1, 0, 0],
- [0, 0, 1, 1, 1, 0, 0],
- [0, 0, 1, 1, 1, 0, 0],
- [0, 0, 1, 1, 1, 0, 0],
- [0, 0, 0, 0, 0, 0, 0]])
- """
- input = numpy.asarray(input)
- if structure is None:
- rank = input.ndim
- structure = generate_binary_structure(rank, 1)
- tmp = binary_dilation(input, structure, iterations, mask, None,
- border_value, origin, brute_force)
- return binary_erosion(tmp, structure, iterations, mask, output,
- border_value, origin, brute_force)
- def binary_hit_or_miss(input, structure1=None, structure2=None,
- output=None, origin1=0, origin2=None):
- """
- Multi-dimensional binary hit-or-miss transform.
- The hit-or-miss transform finds the locations of a given pattern
- inside the input image.
- Parameters
- ----------
- input : array_like (cast to booleans)
- Binary image where a pattern is to be detected.
- structure1 : array_like (cast to booleans), optional
- Part of the structuring element to be fitted to the foreground
- (non-zero elements) of `input`. If no value is provided, a
- structure of square connectivity 1 is chosen.
- structure2 : array_like (cast to booleans), optional
- Second part of the structuring element that has to miss completely
- the foreground. If no value is provided, the complementary of
- `structure1` is taken.
- output : ndarray, optional
- Array of the same shape as input, into which the output is placed.
- By default, a new array is created.
- origin1 : int or tuple of ints, optional
- Placement of the first part of the structuring element `structure1`,
- by default 0 for a centered structure.
- origin2 : int or tuple of ints, optional
- Placement of the second part of the structuring element `structure2`,
- by default 0 for a centered structure. If a value is provided for
- `origin1` and not for `origin2`, then `origin2` is set to `origin1`.
- Returns
- -------
- binary_hit_or_miss : ndarray
- Hit-or-miss transform of `input` with the given structuring
- element (`structure1`, `structure2`).
- See also
- --------
- ndimage.morphology, binary_erosion
- References
- ----------
- .. [1] https://en.wikipedia.org/wiki/Hit-or-miss_transform
- Examples
- --------
- >>> from scipy import ndimage
- >>> a = np.zeros((7,7), dtype=int)
- >>> a[1, 1] = 1; a[2:4, 2:4] = 1; a[4:6, 4:6] = 1
- >>> a
- array([[0, 0, 0, 0, 0, 0, 0],
- [0, 1, 0, 0, 0, 0, 0],
- [0, 0, 1, 1, 0, 0, 0],
- [0, 0, 1, 1, 0, 0, 0],
- [0, 0, 0, 0, 1, 1, 0],
- [0, 0, 0, 0, 1, 1, 0],
- [0, 0, 0, 0, 0, 0, 0]])
- >>> structure1 = np.array([[1, 0, 0], [0, 1, 1], [0, 1, 1]])
- >>> structure1
- array([[1, 0, 0],
- [0, 1, 1],
- [0, 1, 1]])
- >>> # Find the matches of structure1 in the array a
- >>> ndimage.binary_hit_or_miss(a, structure1=structure1).astype(int)
- array([[0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0],
- [0, 0, 1, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 1, 0, 0],
- [0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0]])
- >>> # Change the origin of the filter
- >>> # origin1=1 is equivalent to origin1=(1,1) here
- >>> ndimage.binary_hit_or_miss(a, structure1=structure1,\\
- ... origin1=1).astype(int)
- array([[0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 1, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 1, 0],
- [0, 0, 0, 0, 0, 0, 0]])
- """
- input = numpy.asarray(input)
- if structure1 is None:
- structure1 = generate_binary_structure(input.ndim, 1)
- if structure2 is None:
- structure2 = numpy.logical_not(structure1)
- origin1 = _ni_support._normalize_sequence(origin1, input.ndim)
- if origin2 is None:
- origin2 = origin1
- else:
- origin2 = _ni_support._normalize_sequence(origin2, input.ndim)
- tmp1 = _binary_erosion(input, structure1, 1, None, None, 0, origin1,
- 0, False)
- inplace = isinstance(output, numpy.ndarray)
- result = _binary_erosion(input, structure2, 1, None, output, 0,
- origin2, 1, False)
- if inplace:
- numpy.logical_not(output, output)
- numpy.logical_and(tmp1, output, output)
- else:
- numpy.logical_not(result, result)
- return numpy.logical_and(tmp1, result)
- def binary_propagation(input, structure=None, mask=None,
- output=None, border_value=0, origin=0):
- """
- Multi-dimensional binary propagation with the given structuring element.
- Parameters
- ----------
- input : array_like
- Binary image to be propagated inside `mask`.
- structure : array_like, optional
- Structuring element used in the successive dilations. The output
- may depend on the structuring element, especially if `mask` has
- several connex components. If no structuring element is
- provided, an element is generated with a squared connectivity equal
- to one.
- mask : array_like, optional
- Binary mask defining the region into which `input` is allowed to
- propagate.
- output : ndarray, optional
- Array of the same shape as input, into which the output is placed.
- By default, a new array is created.
- border_value : int (cast to 0 or 1), optional
- Value at the border in the output array.
- origin : int or tuple of ints, optional
- Placement of the filter, by default 0.
- Returns
- -------
- binary_propagation : ndarray
- Binary propagation of `input` inside `mask`.
- Notes
- -----
- This function is functionally equivalent to calling binary_dilation
- with the number of iterations less than one: iterative dilation until
- the result does not change anymore.
- The succession of an erosion and propagation inside the original image
- can be used instead of an *opening* for deleting small objects while
- keeping the contours of larger objects untouched.
- References
- ----------
- .. [1] http://cmm.ensmp.fr/~serra/cours/pdf/en/ch6en.pdf, slide 15.
- .. [2] I.T. Young, J.J. Gerbrands, and L.J. van Vliet, "Fundamentals of
- image processing", 1998
- ftp://qiftp.tudelft.nl/DIPimage/docs/FIP2.3.pdf
- Examples
- --------
- >>> from scipy import ndimage
- >>> input = np.zeros((8, 8), dtype=int)
- >>> input[2, 2] = 1
- >>> mask = np.zeros((8, 8), dtype=int)
- >>> mask[1:4, 1:4] = mask[4, 4] = mask[6:8, 6:8] = 1
- >>> input
- array([[0, 0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0],
- [0, 0, 1, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0]])
- >>> mask
- array([[0, 0, 0, 0, 0, 0, 0, 0],
- [0, 1, 1, 1, 0, 0, 0, 0],
- [0, 1, 1, 1, 0, 0, 0, 0],
- [0, 1, 1, 1, 0, 0, 0, 0],
- [0, 0, 0, 0, 1, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 1, 1],
- [0, 0, 0, 0, 0, 0, 1, 1]])
- >>> ndimage.binary_propagation(input, mask=mask).astype(int)
- array([[0, 0, 0, 0, 0, 0, 0, 0],
- [0, 1, 1, 1, 0, 0, 0, 0],
- [0, 1, 1, 1, 0, 0, 0, 0],
- [0, 1, 1, 1, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0]])
- >>> ndimage.binary_propagation(input, mask=mask,\\
- ... structure=np.ones((3,3))).astype(int)
- array([[0, 0, 0, 0, 0, 0, 0, 0],
- [0, 1, 1, 1, 0, 0, 0, 0],
- [0, 1, 1, 1, 0, 0, 0, 0],
- [0, 1, 1, 1, 0, 0, 0, 0],
- [0, 0, 0, 0, 1, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0]])
- >>> # Comparison between opening and erosion+propagation
- >>> a = np.zeros((6,6), dtype=int)
- >>> a[2:5, 2:5] = 1; a[0, 0] = 1; a[5, 5] = 1
- >>> a
- array([[1, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0],
- [0, 0, 1, 1, 1, 0],
- [0, 0, 1, 1, 1, 0],
- [0, 0, 1, 1, 1, 0],
- [0, 0, 0, 0, 0, 1]])
- >>> ndimage.binary_opening(a).astype(int)
- array([[0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0],
- [0, 0, 0, 1, 0, 0],
- [0, 0, 1, 1, 1, 0],
- [0, 0, 0, 1, 0, 0],
- [0, 0, 0, 0, 0, 0]])
- >>> b = ndimage.binary_erosion(a)
- >>> b.astype(int)
- array([[0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0],
- [0, 0, 0, 1, 0, 0],
- [0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0]])
- >>> ndimage.binary_propagation(b, mask=a).astype(int)
- array([[0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0],
- [0, 0, 1, 1, 1, 0],
- [0, 0, 1, 1, 1, 0],
- [0, 0, 1, 1, 1, 0],
- [0, 0, 0, 0, 0, 0]])
- """
- return binary_dilation(input, structure, -1, mask, output,
- border_value, origin)
- def binary_fill_holes(input, structure=None, output=None, origin=0):
- """
- Fill the holes in binary objects.
- Parameters
- ----------
- input : array_like
- n-dimensional binary array with holes to be filled
- structure : array_like, optional
- Structuring element used in the computation; large-size elements
- make computations faster but may miss holes separated from the
- background by thin regions. The default element (with a square
- connectivity equal to one) yields the intuitive result where all
- holes in the input have been filled.
- output : ndarray, optional
- Array of the same shape as input, into which the output is placed.
- By default, a new array is created.
- origin : int, tuple of ints, optional
- Position of the structuring element.
- Returns
- -------
- out : ndarray
- Transformation of the initial image `input` where holes have been
- filled.
- See also
- --------
- binary_dilation, binary_propagation, label
- Notes
- -----
- The algorithm used in this function consists in invading the complementary
- of the shapes in `input` from the outer boundary of the image,
- using binary dilations. Holes are not connected to the boundary and are
- therefore not invaded. The result is the complementary subset of the
- invaded region.
- References
- ----------
- .. [1] https://en.wikipedia.org/wiki/Mathematical_morphology
- Examples
- --------
- >>> from scipy import ndimage
- >>> a = np.zeros((5, 5), dtype=int)
- >>> a[1:4, 1:4] = 1
- >>> a[2,2] = 0
- >>> a
- array([[0, 0, 0, 0, 0],
- [0, 1, 1, 1, 0],
- [0, 1, 0, 1, 0],
- [0, 1, 1, 1, 0],
- [0, 0, 0, 0, 0]])
- >>> ndimage.binary_fill_holes(a).astype(int)
- array([[0, 0, 0, 0, 0],
- [0, 1, 1, 1, 0],
- [0, 1, 1, 1, 0],
- [0, 1, 1, 1, 0],
- [0, 0, 0, 0, 0]])
- >>> # Too big structuring element
- >>> ndimage.binary_fill_holes(a, structure=np.ones((5,5))).astype(int)
- array([[0, 0, 0, 0, 0],
- [0, 1, 1, 1, 0],
- [0, 1, 0, 1, 0],
- [0, 1, 1, 1, 0],
- [0, 0, 0, 0, 0]])
- """
- mask = numpy.logical_not(input)
- tmp = numpy.zeros(mask.shape, bool)
- inplace = isinstance(output, numpy.ndarray)
- if inplace:
- binary_dilation(tmp, structure, -1, mask, output, 1, origin)
- numpy.logical_not(output, output)
- else:
- output = binary_dilation(tmp, structure, -1, mask, None, 1,
- origin)
- numpy.logical_not(output, output)
- return output
- def grey_erosion(input, size=None, footprint=None, structure=None,
- output=None, mode="reflect", cval=0.0, origin=0):
- """
- Calculate a greyscale erosion, using either a structuring element,
- or a footprint corresponding to a flat structuring element.
- Grayscale erosion is a mathematical morphology operation. For the
- simple case of a full and flat structuring element, it can be viewed
- as a minimum filter over a sliding window.
- Parameters
- ----------
- input : array_like
- Array over which the grayscale erosion is to be computed.
- size : tuple of ints
- Shape of a flat and full structuring element used for the grayscale
- erosion. Optional if `footprint` or `structure` is provided.
- footprint : array of ints, optional
- Positions of non-infinite elements of a flat structuring element
- used for the grayscale erosion. Non-zero values give the set of
- neighbors of the center over which the minimum is chosen.
- structure : array of ints, optional
- Structuring element used for the grayscale erosion. `structure`
- may be a non-flat structuring element.
- output : array, optional
- An array used for storing the output of the erosion may be provided.
- mode : {'reflect','constant','nearest','mirror', 'wrap'}, optional
- The `mode` parameter determines how the array borders are
- handled, where `cval` is the value when mode is equal to
- 'constant'. Default is 'reflect'
- cval : scalar, optional
- Value to fill past edges of input if `mode` is 'constant'. Default
- is 0.0.
- origin : scalar, optional
- The `origin` parameter controls the placement of the filter.
- Default 0
- Returns
- -------
- output : ndarray
- Grayscale erosion of `input`.
- See also
- --------
- binary_erosion, grey_dilation, grey_opening, grey_closing
- generate_binary_structure, ndimage.minimum_filter
- Notes
- -----
- The grayscale erosion of an image input by a structuring element s defined
- over a domain E is given by:
- (input+s)(x) = min {input(y) - s(x-y), for y in E}
- In particular, for structuring elements defined as
- s(y) = 0 for y in E, the grayscale erosion computes the minimum of the
- input image inside a sliding window defined by E.
- Grayscale erosion [1]_ is a *mathematical morphology* operation [2]_.
- References
- ----------
- .. [1] https://en.wikipedia.org/wiki/Erosion_%28morphology%29
- .. [2] https://en.wikipedia.org/wiki/Mathematical_morphology
- Examples
- --------
- >>> from scipy import ndimage
- >>> a = np.zeros((7,7), dtype=int)
- >>> a[1:6, 1:6] = 3
- >>> a[4,4] = 2; a[2,3] = 1
- >>> a
- array([[0, 0, 0, 0, 0, 0, 0],
- [0, 3, 3, 3, 3, 3, 0],
- [0, 3, 3, 1, 3, 3, 0],
- [0, 3, 3, 3, 3, 3, 0],
- [0, 3, 3, 3, 2, 3, 0],
- [0, 3, 3, 3, 3, 3, 0],
- [0, 0, 0, 0, 0, 0, 0]])
- >>> ndimage.grey_erosion(a, size=(3,3))
- array([[0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0],
- [0, 0, 1, 1, 1, 0, 0],
- [0, 0, 1, 1, 1, 0, 0],
- [0, 0, 3, 2, 2, 0, 0],
- [0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0]])
- >>> footprint = ndimage.generate_binary_structure(2, 1)
- >>> footprint
- array([[False, True, False],
- [ True, True, True],
- [False, True, False]], dtype=bool)
- >>> # Diagonally-connected elements are not considered neighbors
- >>> ndimage.grey_erosion(a, size=(3,3), footprint=footprint)
- array([[0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0],
- [0, 0, 1, 1, 1, 0, 0],
- [0, 0, 3, 1, 2, 0, 0],
- [0, 0, 3, 2, 2, 0, 0],
- [0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0]])
- """
- if size is None and footprint is None and structure is None:
- raise ValueError("size, footprint or structure must be specified")
- return filters._min_or_max_filter(input, size, footprint, structure,
- output, mode, cval, origin, 1)
- def grey_dilation(input, size=None, footprint=None, structure=None,
- output=None, mode="reflect", cval=0.0, origin=0):
- """
- Calculate a greyscale dilation, using either a structuring element,
- or a footprint corresponding to a flat structuring element.
- Grayscale dilation is a mathematical morphology operation. For the
- simple case of a full and flat structuring element, it can be viewed
- as a maximum filter over a sliding window.
- Parameters
- ----------
- input : array_like
- Array over which the grayscale dilation is to be computed.
- size : tuple of ints
- Shape of a flat and full structuring element used for the grayscale
- dilation. Optional if `footprint` or `structure` is provided.
- footprint : array of ints, optional
- Positions of non-infinite elements of a flat structuring element
- used for the grayscale dilation. Non-zero values give the set of
- neighbors of the center over which the maximum is chosen.
- structure : array of ints, optional
- Structuring element used for the grayscale dilation. `structure`
- may be a non-flat structuring element.
- output : array, optional
- An array used for storing the output of the dilation may be provided.
- mode : {'reflect','constant','nearest','mirror', 'wrap'}, optional
- The `mode` parameter determines how the array borders are
- handled, where `cval` is the value when mode is equal to
- 'constant'. Default is 'reflect'
- cval : scalar, optional
- Value to fill past edges of input if `mode` is 'constant'. Default
- is 0.0.
- origin : scalar, optional
- The `origin` parameter controls the placement of the filter.
- Default 0
- Returns
- -------
- grey_dilation : ndarray
- Grayscale dilation of `input`.
- See also
- --------
- binary_dilation, grey_erosion, grey_closing, grey_opening
- generate_binary_structure, ndimage.maximum_filter
- Notes
- -----
- The grayscale dilation of an image input by a structuring element s defined
- over a domain E is given by:
- (input+s)(x) = max {input(y) + s(x-y), for y in E}
- In particular, for structuring elements defined as
- s(y) = 0 for y in E, the grayscale dilation computes the maximum of the
- input image inside a sliding window defined by E.
- Grayscale dilation [1]_ is a *mathematical morphology* operation [2]_.
- References
- ----------
- .. [1] https://en.wikipedia.org/wiki/Dilation_%28morphology%29
- .. [2] https://en.wikipedia.org/wiki/Mathematical_morphology
- Examples
- --------
- >>> from scipy import ndimage
- >>> a = np.zeros((7,7), dtype=int)
- >>> a[2:5, 2:5] = 1
- >>> a[4,4] = 2; a[2,3] = 3
- >>> a
- array([[0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0],
- [0, 0, 1, 3, 1, 0, 0],
- [0, 0, 1, 1, 1, 0, 0],
- [0, 0, 1, 1, 2, 0, 0],
- [0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0]])
- >>> ndimage.grey_dilation(a, size=(3,3))
- array([[0, 0, 0, 0, 0, 0, 0],
- [0, 1, 3, 3, 3, 1, 0],
- [0, 1, 3, 3, 3, 1, 0],
- [0, 1, 3, 3, 3, 2, 0],
- [0, 1, 1, 2, 2, 2, 0],
- [0, 1, 1, 2, 2, 2, 0],
- [0, 0, 0, 0, 0, 0, 0]])
- >>> ndimage.grey_dilation(a, footprint=np.ones((3,3)))
- array([[0, 0, 0, 0, 0, 0, 0],
- [0, 1, 3, 3, 3, 1, 0],
- [0, 1, 3, 3, 3, 1, 0],
- [0, 1, 3, 3, 3, 2, 0],
- [0, 1, 1, 2, 2, 2, 0],
- [0, 1, 1, 2, 2, 2, 0],
- [0, 0, 0, 0, 0, 0, 0]])
- >>> s = ndimage.generate_binary_structure(2,1)
- >>> s
- array([[False, True, False],
- [ True, True, True],
- [False, True, False]], dtype=bool)
- >>> ndimage.grey_dilation(a, footprint=s)
- array([[0, 0, 0, 0, 0, 0, 0],
- [0, 0, 1, 3, 1, 0, 0],
- [0, 1, 3, 3, 3, 1, 0],
- [0, 1, 1, 3, 2, 1, 0],
- [0, 1, 1, 2, 2, 2, 0],
- [0, 0, 1, 1, 2, 0, 0],
- [0, 0, 0, 0, 0, 0, 0]])
- >>> ndimage.grey_dilation(a, size=(3,3), structure=np.ones((3,3)))
- array([[1, 1, 1, 1, 1, 1, 1],
- [1, 2, 4, 4, 4, 2, 1],
- [1, 2, 4, 4, 4, 2, 1],
- [1, 2, 4, 4, 4, 3, 1],
- [1, 2, 2, 3, 3, 3, 1],
- [1, 2, 2, 3, 3, 3, 1],
- [1, 1, 1, 1, 1, 1, 1]])
- """
- if size is None and footprint is None and structure is None:
- raise ValueError("size, footprint or structure must be specified")
- if structure is not None:
- structure = numpy.asarray(structure)
- structure = structure[tuple([slice(None, None, -1)] *
- structure.ndim)]
- if footprint is not None:
- footprint = numpy.asarray(footprint)
- footprint = footprint[tuple([slice(None, None, -1)] *
- footprint.ndim)]
- input = numpy.asarray(input)
- origin = _ni_support._normalize_sequence(origin, input.ndim)
- for ii in range(len(origin)):
- origin[ii] = -origin[ii]
- if footprint is not None:
- sz = footprint.shape[ii]
- elif structure is not None:
- sz = structure.shape[ii]
- elif numpy.isscalar(size):
- sz = size
- else:
- sz = size[ii]
- if not sz & 1:
- origin[ii] -= 1
- return filters._min_or_max_filter(input, size, footprint, structure,
- output, mode, cval, origin, 0)
- def grey_opening(input, size=None, footprint=None, structure=None,
- output=None, mode="reflect", cval=0.0, origin=0):
- """
- Multi-dimensional greyscale opening.
- A greyscale opening consists in the succession of a greyscale erosion,
- and a greyscale dilation.
- Parameters
- ----------
- input : array_like
- Array over which the grayscale opening is to be computed.
- size : tuple of ints
- Shape of a flat and full structuring element used for the grayscale
- opening. Optional if `footprint` or `structure` is provided.
- footprint : array of ints, optional
- Positions of non-infinite elements of a flat structuring element
- used for the grayscale opening.
- structure : array of ints, optional
- Structuring element used for the grayscale opening. `structure`
- may be a non-flat structuring element.
- output : array, optional
- An array used for storing the output of the opening may be provided.
- mode : {'reflect', 'constant', 'nearest', 'mirror', 'wrap'}, optional
- The `mode` parameter determines how the array borders are
- handled, where `cval` is the value when mode is equal to
- 'constant'. Default is 'reflect'
- cval : scalar, optional
- Value to fill past edges of input if `mode` is 'constant'. Default
- is 0.0.
- origin : scalar, optional
- The `origin` parameter controls the placement of the filter.
- Default 0
- Returns
- -------
- grey_opening : ndarray
- Result of the grayscale opening of `input` with `structure`.
- See also
- --------
- binary_opening, grey_dilation, grey_erosion, grey_closing
- generate_binary_structure
- Notes
- -----
- The action of a grayscale opening with a flat structuring element amounts
- to smoothen high local maxima, whereas binary opening erases small objects.
- References
- ----------
- .. [1] https://en.wikipedia.org/wiki/Mathematical_morphology
- Examples
- --------
- >>> from scipy import ndimage
- >>> a = np.arange(36).reshape((6,6))
- >>> a[3, 3] = 50
- >>> a
- array([[ 0, 1, 2, 3, 4, 5],
- [ 6, 7, 8, 9, 10, 11],
- [12, 13, 14, 15, 16, 17],
- [18, 19, 20, 50, 22, 23],
- [24, 25, 26, 27, 28, 29],
- [30, 31, 32, 33, 34, 35]])
- >>> ndimage.grey_opening(a, size=(3,3))
- array([[ 0, 1, 2, 3, 4, 4],
- [ 6, 7, 8, 9, 10, 10],
- [12, 13, 14, 15, 16, 16],
- [18, 19, 20, 22, 22, 22],
- [24, 25, 26, 27, 28, 28],
- [24, 25, 26, 27, 28, 28]])
- >>> # Note that the local maximum a[3,3] has disappeared
- """
- if (size is not None) and (footprint is not None):
- warnings.warn("ignoring size because footprint is set", UserWarning, stacklevel=2)
- tmp = grey_erosion(input, size, footprint, structure, None, mode,
- cval, origin)
- return grey_dilation(tmp, size, footprint, structure, output, mode,
- cval, origin)
- def grey_closing(input, size=None, footprint=None, structure=None,
- output=None, mode="reflect", cval=0.0, origin=0):
- """
- Multi-dimensional greyscale closing.
- A greyscale closing consists in the succession of a greyscale dilation,
- and a greyscale erosion.
- Parameters
- ----------
- input : array_like
- Array over which the grayscale closing is to be computed.
- size : tuple of ints
- Shape of a flat and full structuring element used for the grayscale
- closing. Optional if `footprint` or `structure` is provided.
- footprint : array of ints, optional
- Positions of non-infinite elements of a flat structuring element
- used for the grayscale closing.
- structure : array of ints, optional
- Structuring element used for the grayscale closing. `structure`
- may be a non-flat structuring element.
- output : array, optional
- An array used for storing the output of the closing may be provided.
- mode : {'reflect', 'constant', 'nearest', 'mirror', 'wrap'}, optional
- The `mode` parameter determines how the array borders are
- handled, where `cval` is the value when mode is equal to
- 'constant'. Default is 'reflect'
- cval : scalar, optional
- Value to fill past edges of input if `mode` is 'constant'. Default
- is 0.0.
- origin : scalar, optional
- The `origin` parameter controls the placement of the filter.
- Default 0
- Returns
- -------
- grey_closing : ndarray
- Result of the grayscale closing of `input` with `structure`.
- See also
- --------
- binary_closing, grey_dilation, grey_erosion, grey_opening,
- generate_binary_structure
- Notes
- -----
- The action of a grayscale closing with a flat structuring element amounts
- to smoothen deep local minima, whereas binary closing fills small holes.
- References
- ----------
- .. [1] https://en.wikipedia.org/wiki/Mathematical_morphology
- Examples
- --------
- >>> from scipy import ndimage
- >>> a = np.arange(36).reshape((6,6))
- >>> a[3,3] = 0
- >>> a
- array([[ 0, 1, 2, 3, 4, 5],
- [ 6, 7, 8, 9, 10, 11],
- [12, 13, 14, 15, 16, 17],
- [18, 19, 20, 0, 22, 23],
- [24, 25, 26, 27, 28, 29],
- [30, 31, 32, 33, 34, 35]])
- >>> ndimage.grey_closing(a, size=(3,3))
- array([[ 7, 7, 8, 9, 10, 11],
- [ 7, 7, 8, 9, 10, 11],
- [13, 13, 14, 15, 16, 17],
- [19, 19, 20, 20, 22, 23],
- [25, 25, 26, 27, 28, 29],
- [31, 31, 32, 33, 34, 35]])
- >>> # Note that the local minimum a[3,3] has disappeared
- """
- if (size is not None) and (footprint is not None):
- warnings.warn("ignoring size because footprint is set", UserWarning, stacklevel=2)
- tmp = grey_dilation(input, size, footprint, structure, None, mode,
- cval, origin)
- return grey_erosion(tmp, size, footprint, structure, output, mode,
- cval, origin)
- def morphological_gradient(input, size=None, footprint=None, structure=None,
- output=None, mode="reflect", cval=0.0, origin=0):
- """
- Multi-dimensional morphological gradient.
- The morphological gradient is calculated as the difference between a
- dilation and an erosion of the input with a given structuring element.
- Parameters
- ----------
- input : array_like
- Array over which to compute the morphlogical gradient.
- size : tuple of ints
- Shape of a flat and full structuring element used for the mathematical
- morphology operations. Optional if `footprint` or `structure` is
- provided. A larger `size` yields a more blurred gradient.
- footprint : array of ints, optional
- Positions of non-infinite elements of a flat structuring element
- used for the morphology operations. Larger footprints
- give a more blurred morphological gradient.
- structure : array of ints, optional
- Structuring element used for the morphology operations.
- `structure` may be a non-flat structuring element.
- output : array, optional
- An array used for storing the output of the morphological gradient
- may be provided.
- mode : {'reflect', 'constant', 'nearest', 'mirror', 'wrap'}, optional
- The `mode` parameter determines how the array borders are
- handled, where `cval` is the value when mode is equal to
- 'constant'. Default is 'reflect'
- cval : scalar, optional
- Value to fill past edges of input if `mode` is 'constant'. Default
- is 0.0.
- origin : scalar, optional
- The `origin` parameter controls the placement of the filter.
- Default 0
- Returns
- -------
- morphological_gradient : ndarray
- Morphological gradient of `input`.
- See also
- --------
- grey_dilation, grey_erosion, ndimage.gaussian_gradient_magnitude
- Notes
- -----
- For a flat structuring element, the morphological gradient
- computed at a given point corresponds to the maximal difference
- between elements of the input among the elements covered by the
- structuring element centered on the point.
- References
- ----------
- .. [1] https://en.wikipedia.org/wiki/Mathematical_morphology
- Examples
- --------
- >>> from scipy import ndimage
- >>> a = np.zeros((7,7), dtype=int)
- >>> a[2:5, 2:5] = 1
- >>> ndimage.morphological_gradient(a, size=(3,3))
- array([[0, 0, 0, 0, 0, 0, 0],
- [0, 1, 1, 1, 1, 1, 0],
- [0, 1, 1, 1, 1, 1, 0],
- [0, 1, 1, 0, 1, 1, 0],
- [0, 1, 1, 1, 1, 1, 0],
- [0, 1, 1, 1, 1, 1, 0],
- [0, 0, 0, 0, 0, 0, 0]])
- >>> # The morphological gradient is computed as the difference
- >>> # between a dilation and an erosion
- >>> ndimage.grey_dilation(a, size=(3,3)) -\\
- ... ndimage.grey_erosion(a, size=(3,3))
- array([[0, 0, 0, 0, 0, 0, 0],
- [0, 1, 1, 1, 1, 1, 0],
- [0, 1, 1, 1, 1, 1, 0],
- [0, 1, 1, 0, 1, 1, 0],
- [0, 1, 1, 1, 1, 1, 0],
- [0, 1, 1, 1, 1, 1, 0],
- [0, 0, 0, 0, 0, 0, 0]])
- >>> a = np.zeros((7,7), dtype=int)
- >>> a[2:5, 2:5] = 1
- >>> a[4,4] = 2; a[2,3] = 3
- >>> a
- array([[0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0],
- [0, 0, 1, 3, 1, 0, 0],
- [0, 0, 1, 1, 1, 0, 0],
- [0, 0, 1, 1, 2, 0, 0],
- [0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0]])
- >>> ndimage.morphological_gradient(a, size=(3,3))
- array([[0, 0, 0, 0, 0, 0, 0],
- [0, 1, 3, 3, 3, 1, 0],
- [0, 1, 3, 3, 3, 1, 0],
- [0, 1, 3, 2, 3, 2, 0],
- [0, 1, 1, 2, 2, 2, 0],
- [0, 1, 1, 2, 2, 2, 0],
- [0, 0, 0, 0, 0, 0, 0]])
- """
- tmp = grey_dilation(input, size, footprint, structure, None, mode,
- cval, origin)
- if isinstance(output, numpy.ndarray):
- grey_erosion(input, size, footprint, structure, output, mode,
- cval, origin)
- return numpy.subtract(tmp, output, output)
- else:
- return (tmp - grey_erosion(input, size, footprint, structure,
- None, mode, cval, origin))
- def morphological_laplace(input, size=None, footprint=None,
- structure=None, output=None,
- mode="reflect", cval=0.0, origin=0):
- """
- Multi-dimensional morphological laplace.
- Parameters
- ----------
- input : array_like
- Input.
- size : int or sequence of ints, optional
- See `structure`.
- footprint : bool or ndarray, optional
- See `structure`.
- structure : structure, optional
- Either `size`, `footprint`, or the `structure` must be provided.
- output : ndarray, optional
- An output array can optionally be provided.
- mode : {'reflect','constant','nearest','mirror', 'wrap'}, optional
- The mode parameter determines how the array borders are handled.
- For 'constant' mode, values beyond borders are set to be `cval`.
- Default is 'reflect'.
- cval : scalar, optional
- Value to fill past edges of input if mode is 'constant'.
- Default is 0.0
- origin : origin, optional
- The origin parameter controls the placement of the filter.
- Returns
- -------
- morphological_laplace : ndarray
- Output
- """
- tmp1 = grey_dilation(input, size, footprint, structure, None, mode,
- cval, origin)
- if isinstance(output, numpy.ndarray):
- grey_erosion(input, size, footprint, structure, output, mode,
- cval, origin)
- numpy.add(tmp1, output, output)
- numpy.subtract(output, input, output)
- return numpy.subtract(output, input, output)
- else:
- tmp2 = grey_erosion(input, size, footprint, structure, None, mode,
- cval, origin)
- numpy.add(tmp1, tmp2, tmp2)
- numpy.subtract(tmp2, input, tmp2)
- numpy.subtract(tmp2, input, tmp2)
- return tmp2
- def white_tophat(input, size=None, footprint=None, structure=None,
- output=None, mode="reflect", cval=0.0, origin=0):
- """
- Multi-dimensional white tophat filter.
- Parameters
- ----------
- input : array_like
- Input.
- size : tuple of ints
- Shape of a flat and full structuring element used for the filter.
- Optional if `footprint` or `structure` is provided.
- footprint : array of ints, optional
- Positions of elements of a flat structuring element
- used for the white tophat filter.
- structure : array of ints, optional
- Structuring element used for the filter. `structure`
- may be a non-flat structuring element.
- output : array, optional
- An array used for storing the output of the filter may be provided.
- mode : {'reflect', 'constant', 'nearest', 'mirror', 'wrap'}, optional
- The `mode` parameter determines how the array borders are
- handled, where `cval` is the value when mode is equal to
- 'constant'. Default is 'reflect'
- cval : scalar, optional
- Value to fill past edges of input if `mode` is 'constant'.
- Default is 0.0.
- origin : scalar, optional
- The `origin` parameter controls the placement of the filter.
- Default is 0.
- Returns
- -------
- output : ndarray
- Result of the filter of `input` with `structure`.
- See also
- --------
- black_tophat
- """
- if (size is not None) and (footprint is not None):
- warnings.warn("ignoring size because footprint is set", UserWarning, stacklevel=2)
- tmp = grey_erosion(input, size, footprint, structure, None, mode,
- cval, origin)
- tmp = grey_dilation(tmp, size, footprint, structure, output, mode,
- cval, origin)
- if tmp is None:
- tmp = output
- if input.dtype == numpy.bool_ and tmp.dtype == numpy.bool_:
- numpy.bitwise_xor(input, tmp, out=tmp)
- else:
- numpy.subtract(input, tmp, out=tmp)
- return tmp
- def black_tophat(input, size=None, footprint=None,
- structure=None, output=None, mode="reflect",
- cval=0.0, origin=0):
- """
- Multi-dimensional black tophat filter.
- Parameters
- ----------
- input : array_like
- Input.
- size : tuple of ints, optional
- Shape of a flat and full structuring element used for the filter.
- Optional if `footprint` or `structure` is provided.
- footprint : array of ints, optional
- Positions of non-infinite elements of a flat structuring element
- used for the black tophat filter.
- structure : array of ints, optional
- Structuring element used for the filter. `structure`
- may be a non-flat structuring element.
- output : array, optional
- An array used for storing the output of the filter may be provided.
- mode : {'reflect', 'constant', 'nearest', 'mirror', 'wrap'}, optional
- The `mode` parameter determines how the array borders are
- handled, where `cval` is the value when mode is equal to
- 'constant'. Default is 'reflect'
- cval : scalar, optional
- Value to fill past edges of input if `mode` is 'constant'. Default
- is 0.0.
- origin : scalar, optional
- The `origin` parameter controls the placement of the filter.
- Default 0
- Returns
- -------
- black_tophat : ndarray
- Result of the filter of `input` with `structure`.
- See also
- --------
- white_tophat, grey_opening, grey_closing
- """
- if (size is not None) and (footprint is not None):
- warnings.warn("ignoring size because footprint is set", UserWarning, stacklevel=2)
- tmp = grey_dilation(input, size, footprint, structure, None, mode,
- cval, origin)
- tmp = grey_erosion(tmp, size, footprint, structure, output, mode,
- cval, origin)
- if tmp is None:
- tmp = output
- if input.dtype == numpy.bool_ and tmp.dtype == numpy.bool_:
- numpy.bitwise_xor(tmp, input, out=tmp)
- else:
- numpy.subtract(tmp, input, out=tmp)
- return tmp
- def distance_transform_bf(input, metric="euclidean", sampling=None,
- return_distances=True, return_indices=False,
- distances=None, indices=None):
- """
- Distance transform function by a brute force algorithm.
- This function calculates the distance transform of the `input`, by
- replacing each foreground (non-zero) element, with its
- shortest distance to the background (any zero-valued element).
- In addition to the distance transform, the feature transform can
- be calculated. In this case the index of the closest background
- element is returned along the first axis of the result.
- Parameters
- ----------
- input : array_like
- Input
- metric : str, optional
- Three types of distance metric are supported: 'euclidean', 'taxicab'
- and 'chessboard'.
- sampling : {int, sequence of ints}, optional
- This parameter is only used in the case of the euclidean `metric`
- distance transform.
- The sampling along each axis can be given by the `sampling` parameter
- which should be a sequence of length equal to the input rank, or a
- single number in which the `sampling` is assumed to be equal along all
- axes.
- return_distances : bool, optional
- The `return_distances` flag can be used to indicate if the distance
- transform is returned.
- The default is True.
- return_indices : bool, optional
- The `return_indices` flags can be used to indicate if the feature
- transform is returned.
- The default is False.
- distances : float64 ndarray, optional
- Optional output array to hold distances (if `return_distances` is
- True).
- indices : int64 ndarray, optional
- Optional output array to hold indices (if `return_indices` is True).
- Returns
- -------
- distances : ndarray
- Distance array if `return_distances` is True.
- indices : ndarray
- Indices array if `return_indices` is True.
- Notes
- -----
- This function employs a slow brute force algorithm, see also the
- function distance_transform_cdt for more efficient taxicab and
- chessboard algorithms.
- """
- if (not return_distances) and (not return_indices):
- msg = 'at least one of distances/indices must be specified'
- raise RuntimeError(msg)
- tmp1 = numpy.asarray(input) != 0
- struct = generate_binary_structure(tmp1.ndim, tmp1.ndim)
- tmp2 = binary_dilation(tmp1, struct)
- tmp2 = numpy.logical_xor(tmp1, tmp2)
- tmp1 = tmp1.astype(numpy.int8) - tmp2.astype(numpy.int8)
- metric = metric.lower()
- if metric == 'euclidean':
- metric = 1
- elif metric in ['taxicab', 'cityblock', 'manhattan']:
- metric = 2
- elif metric == 'chessboard':
- metric = 3
- else:
- raise RuntimeError('distance metric not supported')
- if sampling is not None:
- sampling = _ni_support._normalize_sequence(sampling, tmp1.ndim)
- sampling = numpy.asarray(sampling, dtype=numpy.float64)
- if not sampling.flags.contiguous:
- sampling = sampling.copy()
- if return_indices:
- ft = numpy.zeros(tmp1.shape, dtype=numpy.int32)
- else:
- ft = None
- if return_distances:
- if distances is None:
- if metric == 1:
- dt = numpy.zeros(tmp1.shape, dtype=numpy.float64)
- else:
- dt = numpy.zeros(tmp1.shape, dtype=numpy.uint32)
- else:
- if distances.shape != tmp1.shape:
- raise RuntimeError('distances array has wrong shape')
- if metric == 1:
- if distances.dtype.type != numpy.float64:
- raise RuntimeError('distances array must be float64')
- else:
- if distances.dtype.type != numpy.uint32:
- raise RuntimeError('distances array must be uint32')
- dt = distances
- else:
- dt = None
- _nd_image.distance_transform_bf(tmp1, metric, sampling, dt, ft)
- if return_indices:
- if isinstance(indices, numpy.ndarray):
- if indices.dtype.type != numpy.int32:
- raise RuntimeError('indices must of int32 type')
- if indices.shape != (tmp1.ndim,) + tmp1.shape:
- raise RuntimeError('indices has wrong shape')
- tmp2 = indices
- else:
- tmp2 = numpy.indices(tmp1.shape, dtype=numpy.int32)
- ft = numpy.ravel(ft)
- for ii in range(tmp2.shape[0]):
- rtmp = numpy.ravel(tmp2[ii, ...])[ft]
- rtmp.shape = tmp1.shape
- tmp2[ii, ...] = rtmp
- ft = tmp2
- # construct and return the result
- result = []
- if return_distances and not isinstance(distances, numpy.ndarray):
- result.append(dt)
- if return_indices and not isinstance(indices, numpy.ndarray):
- result.append(ft)
- if len(result) == 2:
- return tuple(result)
- elif len(result) == 1:
- return result[0]
- else:
- return None
- def distance_transform_cdt(input, metric='chessboard', return_distances=True,
- return_indices=False, distances=None, indices=None):
- """
- Distance transform for chamfer type of transforms.
- Parameters
- ----------
- input : array_like
- Input
- metric : {'chessboard', 'taxicab'}, optional
- The `metric` determines the type of chamfering that is done. If the
- `metric` is equal to 'taxicab' a structure is generated using
- generate_binary_structure with a squared distance equal to 1. If
- the `metric` is equal to 'chessboard', a `metric` is generated
- using generate_binary_structure with a squared distance equal to
- the dimensionality of the array. These choices correspond to the
- common interpretations of the 'taxicab' and the 'chessboard'
- distance metrics in two dimensions.
- The default for `metric` is 'chessboard'.
- return_distances, return_indices : bool, optional
- The `return_distances`, and `return_indices` flags can be used to
- indicate if the distance transform, the feature transform, or both
- must be returned.
- If the feature transform is returned (``return_indices=True``),
- the index of the closest background element is returned along
- the first axis of the result.
- The `return_distances` default is True, and the
- `return_indices` default is False.
- distances, indices : ndarrays of int32, optional
- The `distances` and `indices` arguments can be used to give optional
- output arrays that must be the same shape as `input`.
- """
- if (not return_distances) and (not return_indices):
- msg = 'at least one of distances/indices must be specified'
- raise RuntimeError(msg)
- ft_inplace = isinstance(indices, numpy.ndarray)
- dt_inplace = isinstance(distances, numpy.ndarray)
- input = numpy.asarray(input)
- if metric in ['taxicab', 'cityblock', 'manhattan']:
- rank = input.ndim
- metric = generate_binary_structure(rank, 1)
- elif metric == 'chessboard':
- rank = input.ndim
- metric = generate_binary_structure(rank, rank)
- else:
- try:
- metric = numpy.asarray(metric)
- except Exception:
- raise RuntimeError('invalid metric provided')
- for s in metric.shape:
- if s != 3:
- raise RuntimeError('metric sizes must be equal to 3')
- if not metric.flags.contiguous:
- metric = metric.copy()
- if dt_inplace:
- if distances.dtype.type != numpy.int32:
- raise RuntimeError('distances must be of int32 type')
- if distances.shape != input.shape:
- raise RuntimeError('distances has wrong shape')
- dt = distances
- dt[...] = numpy.where(input, -1, 0).astype(numpy.int32)
- else:
- dt = numpy.where(input, -1, 0).astype(numpy.int32)
- rank = dt.ndim
- if return_indices:
- sz = numpy.product(dt.shape, axis=0)
- ft = numpy.arange(sz, dtype=numpy.int32)
- ft.shape = dt.shape
- else:
- ft = None
- _nd_image.distance_transform_op(metric, dt, ft)
- dt = dt[tuple([slice(None, None, -1)] * rank)]
- if return_indices:
- ft = ft[tuple([slice(None, None, -1)] * rank)]
- _nd_image.distance_transform_op(metric, dt, ft)
- dt = dt[tuple([slice(None, None, -1)] * rank)]
- if return_indices:
- ft = ft[tuple([slice(None, None, -1)] * rank)]
- ft = numpy.ravel(ft)
- if ft_inplace:
- if indices.dtype.type != numpy.int32:
- raise RuntimeError('indices must of int32 type')
- if indices.shape != (dt.ndim,) + dt.shape:
- raise RuntimeError('indices has wrong shape')
- tmp = indices
- else:
- tmp = numpy.indices(dt.shape, dtype=numpy.int32)
- for ii in range(tmp.shape[0]):
- rtmp = numpy.ravel(tmp[ii, ...])[ft]
- rtmp.shape = dt.shape
- tmp[ii, ...] = rtmp
- ft = tmp
- # construct and return the result
- result = []
- if return_distances and not dt_inplace:
- result.append(dt)
- if return_indices and not ft_inplace:
- result.append(ft)
- if len(result) == 2:
- return tuple(result)
- elif len(result) == 1:
- return result[0]
- else:
- return None
- def distance_transform_edt(input, sampling=None, return_distances=True,
- return_indices=False, distances=None, indices=None):
- """
- Exact euclidean distance transform.
- In addition to the distance transform, the feature transform can
- be calculated. In this case the index of the closest background
- element is returned along the first axis of the result.
- Parameters
- ----------
- input : array_like
- Input data to transform. Can be any type but will be converted
- into binary: 1 wherever input equates to True, 0 elsewhere.
- sampling : float or int, or sequence of same, optional
- Spacing of elements along each dimension. If a sequence, must be of
- length equal to the input rank; if a single number, this is used for
- all axes. If not specified, a grid spacing of unity is implied.
- return_distances : bool, optional
- Whether to return distance matrix. At least one of
- return_distances/return_indices must be True. Default is True.
- return_indices : bool, optional
- Whether to return indices matrix. Default is False.
- distances : ndarray, optional
- Used for output of distance array, must be of type float64.
- indices : ndarray, optional
- Used for output of indices, must be of type int32.
- Returns
- -------
- distance_transform_edt : ndarray or list of ndarrays
- Either distance matrix, index matrix, or a list of the two,
- depending on `return_x` flags and `distance` and `indices`
- input parameters.
- Notes
- -----
- The euclidean distance transform gives values of the euclidean
- distance::
- n
- y_i = sqrt(sum (x[i]-b[i])**2)
- i
- where b[i] is the background point (value 0) with the smallest
- Euclidean distance to input points x[i], and n is the
- number of dimensions.
- Examples
- --------
- >>> from scipy import ndimage
- >>> a = np.array(([0,1,1,1,1],
- ... [0,0,1,1,1],
- ... [0,1,1,1,1],
- ... [0,1,1,1,0],
- ... [0,1,1,0,0]))
- >>> ndimage.distance_transform_edt(a)
- array([[ 0. , 1. , 1.4142, 2.2361, 3. ],
- [ 0. , 0. , 1. , 2. , 2. ],
- [ 0. , 1. , 1.4142, 1.4142, 1. ],
- [ 0. , 1. , 1.4142, 1. , 0. ],
- [ 0. , 1. , 1. , 0. , 0. ]])
- With a sampling of 2 units along x, 1 along y:
- >>> ndimage.distance_transform_edt(a, sampling=[2,1])
- array([[ 0. , 1. , 2. , 2.8284, 3.6056],
- [ 0. , 0. , 1. , 2. , 3. ],
- [ 0. , 1. , 2. , 2.2361, 2. ],
- [ 0. , 1. , 2. , 1. , 0. ],
- [ 0. , 1. , 1. , 0. , 0. ]])
- Asking for indices as well:
- >>> edt, inds = ndimage.distance_transform_edt(a, return_indices=True)
- >>> inds
- array([[[0, 0, 1, 1, 3],
- [1, 1, 1, 1, 3],
- [2, 2, 1, 3, 3],
- [3, 3, 4, 4, 3],
- [4, 4, 4, 4, 4]],
- [[0, 0, 1, 1, 4],
- [0, 1, 1, 1, 4],
- [0, 0, 1, 4, 4],
- [0, 0, 3, 3, 4],
- [0, 0, 3, 3, 4]]])
- With arrays provided for inplace outputs:
- >>> indices = np.zeros(((np.ndim(a),) + a.shape), dtype=np.int32)
- >>> ndimage.distance_transform_edt(a, return_indices=True, indices=indices)
- array([[ 0. , 1. , 1.4142, 2.2361, 3. ],
- [ 0. , 0. , 1. , 2. , 2. ],
- [ 0. , 1. , 1.4142, 1.4142, 1. ],
- [ 0. , 1. , 1.4142, 1. , 0. ],
- [ 0. , 1. , 1. , 0. , 0. ]])
- >>> indices
- array([[[0, 0, 1, 1, 3],
- [1, 1, 1, 1, 3],
- [2, 2, 1, 3, 3],
- [3, 3, 4, 4, 3],
- [4, 4, 4, 4, 4]],
- [[0, 0, 1, 1, 4],
- [0, 1, 1, 1, 4],
- [0, 0, 1, 4, 4],
- [0, 0, 3, 3, 4],
- [0, 0, 3, 3, 4]]])
- """
- if (not return_distances) and (not return_indices):
- msg = 'at least one of distances/indices must be specified'
- raise RuntimeError(msg)
- ft_inplace = isinstance(indices, numpy.ndarray)
- dt_inplace = isinstance(distances, numpy.ndarray)
- # calculate the feature transform
- input = numpy.atleast_1d(numpy.where(input, 1, 0).astype(numpy.int8))
- if sampling is not None:
- sampling = _ni_support._normalize_sequence(sampling, input.ndim)
- sampling = numpy.asarray(sampling, dtype=numpy.float64)
- if not sampling.flags.contiguous:
- sampling = sampling.copy()
- if ft_inplace:
- ft = indices
- if ft.shape != (input.ndim,) + input.shape:
- raise RuntimeError('indices has wrong shape')
- if ft.dtype.type != numpy.int32:
- raise RuntimeError('indices must be of int32 type')
- else:
- ft = numpy.zeros((input.ndim,) + input.shape, dtype=numpy.int32)
- _nd_image.euclidean_feature_transform(input, sampling, ft)
- # if requested, calculate the distance transform
- if return_distances:
- dt = ft - numpy.indices(input.shape, dtype=ft.dtype)
- dt = dt.astype(numpy.float64)
- if sampling is not None:
- for ii in range(len(sampling)):
- dt[ii, ...] *= sampling[ii]
- numpy.multiply(dt, dt, dt)
- if dt_inplace:
- dt = numpy.add.reduce(dt, axis=0)
- if distances.shape != dt.shape:
- raise RuntimeError('indices has wrong shape')
- if distances.dtype.type != numpy.float64:
- raise RuntimeError('indices must be of float64 type')
- numpy.sqrt(dt, distances)
- else:
- dt = numpy.add.reduce(dt, axis=0)
- dt = numpy.sqrt(dt)
- # construct and return the result
- result = []
- if return_distances and not dt_inplace:
- result.append(dt)
- if return_indices and not ft_inplace:
- result.append(ft)
- if len(result) == 2:
- return tuple(result)
- elif len(result) == 1:
- return result[0]
- else:
- return None
|