| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263 |
- from __future__ import division, print_function, absolute_import
- import scipy.sparse.linalg as la
- import scipy.sparse as sp
- import scipy.io as io
- import numpy as np
- import sys
- #problem = "SPARSKIT/drivcav/e05r0100"
- problem = "SPARSKIT/drivcav/e05r0200"
- #problem = "Harwell-Boeing/sherman/sherman1"
- #problem = "misc/hamm/add32"
- mm = np.lib._datasource.Repository('ftp://math.nist.gov/pub/MatrixMarket2/')
- f = mm.open('%s.mtx.gz' % problem)
- Am = io.mmread(f).tocsr()
- f.close()
- f = mm.open('%s_rhs1.mtx.gz' % problem)
- b = np.array(io.mmread(f)).ravel()
- f.close()
- count = [0]
- def matvec(v):
- count[0] += 1
- sys.stderr.write('%d\r' % count[0])
- return Am*v
- A = la.LinearOperator(matvec=matvec, shape=Am.shape, dtype=Am.dtype)
- M = 100
- print("MatrixMarket problem %s" % problem)
- print("Invert %d x %d matrix; nnz = %d" % (Am.shape[0], Am.shape[1], Am.nnz))
- count[0] = 0
- x0, info = la.gmres(A, b, restrt=M, tol=1e-14)
- count_0 = count[0]
- err0 = np.linalg.norm(Am*x0 - b) / np.linalg.norm(b)
- print("GMRES(%d):" % M, count_0, "matvecs, residual", err0)
- if info != 0:
- print("Didn't converge")
- count[0] = 0
- x1, info = la.lgmres(A, b, inner_m=M-6*2, outer_k=6, tol=1e-14)
- count_1 = count[0]
- err1 = np.linalg.norm(Am*x1 - b) / np.linalg.norm(b)
- print("LGMRES(%d,6) [same memory req.]:" % (M-2*6), count_1,
- "matvecs, residual:", err1)
- if info != 0:
- print("Didn't converge")
- count[0] = 0
- x2, info = la.lgmres(A, b, inner_m=M-6, outer_k=6, tol=1e-14)
- count_2 = count[0]
- err2 = np.linalg.norm(Am*x2 - b) / np.linalg.norm(b)
- print("LGMRES(%d,6) [same subspace size]:" % (M-6), count_2,
- "matvecs, residual:", err2)
- if info != 0:
- print("Didn't converge")
|