| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625 |
- #-------------------------------------------------------------------------------
- #
- # Define classes for (uni/multi)-variate kernel density estimation.
- #
- # Currently, only Gaussian kernels are implemented.
- #
- # Written by: Robert Kern
- #
- # Date: 2004-08-09
- #
- # Modified: 2005-02-10 by Robert Kern.
- # Contributed to Scipy
- # 2005-10-07 by Robert Kern.
- # Some fixes to match the new scipy_core
- #
- # Copyright 2004-2005 by Enthought, Inc.
- #
- #-------------------------------------------------------------------------------
- from __future__ import division, print_function, absolute_import
- # Standard library imports.
- import warnings
- # Scipy imports.
- from scipy._lib.six import callable, string_types
- from scipy import linalg, special
- from scipy.special import logsumexp
- from scipy._lib._numpy_compat import cov
- from numpy import (atleast_2d, reshape, zeros, newaxis, dot, exp, pi, sqrt,
- ravel, power, atleast_1d, squeeze, sum, transpose, ones)
- import numpy as np
- from numpy.random import choice, multivariate_normal
- # Local imports.
- from . import mvn
- __all__ = ['gaussian_kde']
- class gaussian_kde(object):
- """Representation of a kernel-density estimate using Gaussian kernels.
- Kernel density estimation is a way to estimate the probability density
- function (PDF) of a random variable in a non-parametric way.
- `gaussian_kde` works for both uni-variate and multi-variate data. It
- includes automatic bandwidth determination. The estimation works best for
- a unimodal distribution; bimodal or multi-modal distributions tend to be
- oversmoothed.
- Parameters
- ----------
- dataset : array_like
- Datapoints to estimate from. In case of univariate data this is a 1-D
- array, otherwise a 2-D array with shape (# of dims, # of data).
- bw_method : str, scalar or callable, optional
- The method used to calculate the estimator bandwidth. This can be
- 'scott', 'silverman', a scalar constant or a callable. If a scalar,
- this will be used directly as `kde.factor`. If a callable, it should
- take a `gaussian_kde` instance as only parameter and return a scalar.
- If None (default), 'scott' is used. See Notes for more details.
- weights : array_like, optional
- weights of datapoints. This must be the same shape as dataset.
- If None (default), the samples are assumed to be equally weighted
- Attributes
- ----------
- dataset : ndarray
- The dataset with which `gaussian_kde` was initialized.
- d : int
- Number of dimensions.
- n : int
- Number of datapoints.
- neff : int
- Effective number of datapoints.
- .. versionadded:: 1.2.0
- factor : float
- The bandwidth factor, obtained from `kde.covariance_factor`, with which
- the covariance matrix is multiplied.
- covariance : ndarray
- The covariance matrix of `dataset`, scaled by the calculated bandwidth
- (`kde.factor`).
- inv_cov : ndarray
- The inverse of `covariance`.
- Methods
- -------
- evaluate
- __call__
- integrate_gaussian
- integrate_box_1d
- integrate_box
- integrate_kde
- pdf
- logpdf
- resample
- set_bandwidth
- covariance_factor
- Notes
- -----
- Bandwidth selection strongly influences the estimate obtained from the KDE
- (much more so than the actual shape of the kernel). Bandwidth selection
- can be done by a "rule of thumb", by cross-validation, by "plug-in
- methods" or by other means; see [3]_, [4]_ for reviews. `gaussian_kde`
- uses a rule of thumb, the default is Scott's Rule.
- Scott's Rule [1]_, implemented as `scotts_factor`, is::
- n**(-1./(d+4)),
- with ``n`` the number of data points and ``d`` the number of dimensions.
- In the case of unequally weighted points, `scotts_factor` becomes::
- neff**(-1./(d+4)),
- with ``neff`` the effective number of datapoints.
- Silverman's Rule [2]_, implemented as `silverman_factor`, is::
- (n * (d + 2) / 4.)**(-1. / (d + 4)).
- or in the case of unequally weighted points::
- (neff * (d + 2) / 4.)**(-1. / (d + 4)).
- Good general descriptions of kernel density estimation can be found in [1]_
- and [2]_, the mathematics for this multi-dimensional implementation can be
- found in [1]_.
- With a set of weighted samples, the effective number of datapoints ``neff``
- is defined by::
- neff = sum(weights)^2 / sum(weights^2)
- as detailed in [5]_.
- References
- ----------
- .. [1] D.W. Scott, "Multivariate Density Estimation: Theory, Practice, and
- Visualization", John Wiley & Sons, New York, Chicester, 1992.
- .. [2] B.W. Silverman, "Density Estimation for Statistics and Data
- Analysis", Vol. 26, Monographs on Statistics and Applied Probability,
- Chapman and Hall, London, 1986.
- .. [3] B.A. Turlach, "Bandwidth Selection in Kernel Density Estimation: A
- Review", CORE and Institut de Statistique, Vol. 19, pp. 1-33, 1993.
- .. [4] D.M. Bashtannyk and R.J. Hyndman, "Bandwidth selection for kernel
- conditional density estimation", Computational Statistics & Data
- Analysis, Vol. 36, pp. 279-298, 2001.
- .. [5] Gray P. G., 1969, Journal of the Royal Statistical Society.
- Series A (General), 132, 272
- Examples
- --------
- Generate some random two-dimensional data:
- >>> from scipy import stats
- >>> def measure(n):
- ... "Measurement model, return two coupled measurements."
- ... m1 = np.random.normal(size=n)
- ... m2 = np.random.normal(scale=0.5, size=n)
- ... return m1+m2, m1-m2
- >>> m1, m2 = measure(2000)
- >>> xmin = m1.min()
- >>> xmax = m1.max()
- >>> ymin = m2.min()
- >>> ymax = m2.max()
- Perform a kernel density estimate on the data:
- >>> X, Y = np.mgrid[xmin:xmax:100j, ymin:ymax:100j]
- >>> positions = np.vstack([X.ravel(), Y.ravel()])
- >>> values = np.vstack([m1, m2])
- >>> kernel = stats.gaussian_kde(values)
- >>> Z = np.reshape(kernel(positions).T, X.shape)
- Plot the results:
- >>> import matplotlib.pyplot as plt
- >>> fig, ax = plt.subplots()
- >>> ax.imshow(np.rot90(Z), cmap=plt.cm.gist_earth_r,
- ... extent=[xmin, xmax, ymin, ymax])
- >>> ax.plot(m1, m2, 'k.', markersize=2)
- >>> ax.set_xlim([xmin, xmax])
- >>> ax.set_ylim([ymin, ymax])
- >>> plt.show()
- """
- def __init__(self, dataset, bw_method=None, weights=None):
- self.dataset = atleast_2d(dataset)
- if not self.dataset.size > 1:
- raise ValueError("`dataset` input should have multiple elements.")
- self.d, self.n = self.dataset.shape
- if weights is not None:
- self._weights = atleast_1d(weights).astype(float)
- self._weights /= sum(self._weights)
- if self.weights.ndim != 1:
- raise ValueError("`weights` input should be one-dimensional.")
- if len(self._weights) != self.n:
- raise ValueError("`weights` input should be of length n")
- self._neff = 1/sum(self._weights**2)
- self.set_bandwidth(bw_method=bw_method)
- def evaluate(self, points):
- """Evaluate the estimated pdf on a set of points.
- Parameters
- ----------
- points : (# of dimensions, # of points)-array
- Alternatively, a (# of dimensions,) vector can be passed in and
- treated as a single point.
- Returns
- -------
- values : (# of points,)-array
- The values at each point.
- Raises
- ------
- ValueError : if the dimensionality of the input points is different than
- the dimensionality of the KDE.
- """
- points = atleast_2d(points)
- d, m = points.shape
- if d != self.d:
- if d == 1 and m == self.d:
- # points was passed in as a row vector
- points = reshape(points, (self.d, 1))
- m = 1
- else:
- msg = "points have dimension %s, dataset has dimension %s" % (d,
- self.d)
- raise ValueError(msg)
- result = zeros((m,), dtype=float)
- whitening = linalg.cholesky(self.inv_cov)
- scaled_dataset = dot(whitening, self.dataset)
- scaled_points = dot(whitening, points)
- if m >= self.n:
- # there are more points than data, so loop over data
- for i in range(self.n):
- diff = scaled_dataset[:, i, newaxis] - scaled_points
- energy = sum(diff * diff, axis=0) / 2.0
- result += self.weights[i]*exp(-energy)
- else:
- # loop over points
- for i in range(m):
- diff = scaled_dataset - scaled_points[:, i, newaxis]
- energy = sum(diff * diff, axis=0) / 2.0
- result[i] = sum(exp(-energy)*self.weights, axis=0)
- result = result * self.n / self._norm_factor
- return result
- __call__ = evaluate
- def integrate_gaussian(self, mean, cov):
- """
- Multiply estimated density by a multivariate Gaussian and integrate
- over the whole space.
- Parameters
- ----------
- mean : aray_like
- A 1-D array, specifying the mean of the Gaussian.
- cov : array_like
- A 2-D array, specifying the covariance matrix of the Gaussian.
- Returns
- -------
- result : scalar
- The value of the integral.
- Raises
- ------
- ValueError
- If the mean or covariance of the input Gaussian differs from
- the KDE's dimensionality.
- """
- mean = atleast_1d(squeeze(mean))
- cov = atleast_2d(cov)
- if mean.shape != (self.d,):
- raise ValueError("mean does not have dimension %s" % self.d)
- if cov.shape != (self.d, self.d):
- raise ValueError("covariance does not have dimension %s" % self.d)
- # make mean a column vector
- mean = mean[:, newaxis]
- sum_cov = self.covariance + cov
- # This will raise LinAlgError if the new cov matrix is not s.p.d
- # cho_factor returns (ndarray, bool) where bool is a flag for whether
- # or not ndarray is upper or lower triangular
- sum_cov_chol = linalg.cho_factor(sum_cov)
- diff = self.dataset - mean
- tdiff = linalg.cho_solve(sum_cov_chol, diff)
- sqrt_det = np.prod(np.diagonal(sum_cov_chol[0]))
- norm_const = power(2 * pi, sum_cov.shape[0] / 2.0) * sqrt_det
- energies = sum(diff * tdiff, axis=0) / 2.0
- result = sum(exp(-energies)*self.weights, axis=0) / norm_const
- return result
- def integrate_box_1d(self, low, high):
- """
- Computes the integral of a 1D pdf between two bounds.
- Parameters
- ----------
- low : scalar
- Lower bound of integration.
- high : scalar
- Upper bound of integration.
- Returns
- -------
- value : scalar
- The result of the integral.
- Raises
- ------
- ValueError
- If the KDE is over more than one dimension.
- """
- if self.d != 1:
- raise ValueError("integrate_box_1d() only handles 1D pdfs")
- stdev = ravel(sqrt(self.covariance))[0]
- normalized_low = ravel((low - self.dataset) / stdev)
- normalized_high = ravel((high - self.dataset) / stdev)
- value = np.sum(self.weights*(
- special.ndtr(normalized_high) -
- special.ndtr(normalized_low)))
- return value
- def integrate_box(self, low_bounds, high_bounds, maxpts=None):
- """Computes the integral of a pdf over a rectangular interval.
- Parameters
- ----------
- low_bounds : array_like
- A 1-D array containing the lower bounds of integration.
- high_bounds : array_like
- A 1-D array containing the upper bounds of integration.
- maxpts : int, optional
- The maximum number of points to use for integration.
- Returns
- -------
- value : scalar
- The result of the integral.
- """
- if maxpts is not None:
- extra_kwds = {'maxpts': maxpts}
- else:
- extra_kwds = {}
- value, inform = mvn.mvnun_weighted(low_bounds, high_bounds,
- self.dataset, self.weights,
- self.covariance, **extra_kwds)
- if inform:
- msg = ('An integral in mvn.mvnun requires more points than %s' %
- (self.d * 1000))
- warnings.warn(msg)
- return value
- def integrate_kde(self, other):
- """
- Computes the integral of the product of this kernel density estimate
- with another.
- Parameters
- ----------
- other : gaussian_kde instance
- The other kde.
- Returns
- -------
- value : scalar
- The result of the integral.
- Raises
- ------
- ValueError
- If the KDEs have different dimensionality.
- """
- if other.d != self.d:
- raise ValueError("KDEs are not the same dimensionality")
- # we want to iterate over the smallest number of points
- if other.n < self.n:
- small = other
- large = self
- else:
- small = self
- large = other
- sum_cov = small.covariance + large.covariance
- sum_cov_chol = linalg.cho_factor(sum_cov)
- result = 0.0
- for i in range(small.n):
- mean = small.dataset[:, i, newaxis]
- diff = large.dataset - mean
- tdiff = linalg.cho_solve(sum_cov_chol, diff)
- energies = sum(diff * tdiff, axis=0) / 2.0
- result += sum(exp(-energies)*large.weights, axis=0)*small.weights[i]
- sqrt_det = np.prod(np.diagonal(sum_cov_chol[0]))
- norm_const = power(2 * pi, sum_cov.shape[0] / 2.0) * sqrt_det
- result /= norm_const
- return result
- def resample(self, size=None):
- """
- Randomly sample a dataset from the estimated pdf.
- Parameters
- ----------
- size : int, optional
- The number of samples to draw. If not provided, then the size is
- the same as the effective number of samples in the underlying
- dataset.
- Returns
- -------
- resample : (self.d, `size`) ndarray
- The sampled dataset.
- """
- if size is None:
- size = int(self.neff)
- norm = transpose(multivariate_normal(zeros((self.d,), float),
- self.covariance, size=size))
- indices = choice(self.n, size=size, p=self.weights)
- means = self.dataset[:, indices]
- return means + norm
- def scotts_factor(self):
- return power(self.neff, -1./(self.d+4))
- def silverman_factor(self):
- return power(self.neff*(self.d+2.0)/4.0, -1./(self.d+4))
- # Default method to calculate bandwidth, can be overwritten by subclass
- covariance_factor = scotts_factor
- covariance_factor.__doc__ = """Computes the coefficient (`kde.factor`) that
- multiplies the data covariance matrix to obtain the kernel covariance
- matrix. The default is `scotts_factor`. A subclass can overwrite this
- method to provide a different method, or set it through a call to
- `kde.set_bandwidth`."""
- def set_bandwidth(self, bw_method=None):
- """Compute the estimator bandwidth with given method.
- The new bandwidth calculated after a call to `set_bandwidth` is used
- for subsequent evaluations of the estimated density.
- Parameters
- ----------
- bw_method : str, scalar or callable, optional
- The method used to calculate the estimator bandwidth. This can be
- 'scott', 'silverman', a scalar constant or a callable. If a
- scalar, this will be used directly as `kde.factor`. If a callable,
- it should take a `gaussian_kde` instance as only parameter and
- return a scalar. If None (default), nothing happens; the current
- `kde.covariance_factor` method is kept.
- Notes
- -----
- .. versionadded:: 0.11
- Examples
- --------
- >>> import scipy.stats as stats
- >>> x1 = np.array([-7, -5, 1, 4, 5.])
- >>> kde = stats.gaussian_kde(x1)
- >>> xs = np.linspace(-10, 10, num=50)
- >>> y1 = kde(xs)
- >>> kde.set_bandwidth(bw_method='silverman')
- >>> y2 = kde(xs)
- >>> kde.set_bandwidth(bw_method=kde.factor / 3.)
- >>> y3 = kde(xs)
- >>> import matplotlib.pyplot as plt
- >>> fig, ax = plt.subplots()
- >>> ax.plot(x1, np.ones(x1.shape) / (4. * x1.size), 'bo',
- ... label='Data points (rescaled)')
- >>> ax.plot(xs, y1, label='Scott (default)')
- >>> ax.plot(xs, y2, label='Silverman')
- >>> ax.plot(xs, y3, label='Const (1/3 * Silverman)')
- >>> ax.legend()
- >>> plt.show()
- """
- if bw_method is None:
- pass
- elif bw_method == 'scott':
- self.covariance_factor = self.scotts_factor
- elif bw_method == 'silverman':
- self.covariance_factor = self.silverman_factor
- elif np.isscalar(bw_method) and not isinstance(bw_method, string_types):
- self._bw_method = 'use constant'
- self.covariance_factor = lambda: bw_method
- elif callable(bw_method):
- self._bw_method = bw_method
- self.covariance_factor = lambda: self._bw_method(self)
- else:
- msg = "`bw_method` should be 'scott', 'silverman', a scalar " \
- "or a callable."
- raise ValueError(msg)
- self._compute_covariance()
- def _compute_covariance(self):
- """Computes the covariance matrix for each Gaussian kernel using
- covariance_factor().
- """
- self.factor = self.covariance_factor()
- # Cache covariance and inverse covariance of the data
- if not hasattr(self, '_data_inv_cov'):
- self._data_covariance = atleast_2d(cov(self.dataset, rowvar=1,
- bias=False,
- aweights=self.weights))
- self._data_inv_cov = linalg.inv(self._data_covariance)
- self.covariance = self._data_covariance * self.factor**2
- self.inv_cov = self._data_inv_cov / self.factor**2
- self._norm_factor = sqrt(linalg.det(2*pi*self.covariance)) * self.n
- def pdf(self, x):
- """
- Evaluate the estimated pdf on a provided set of points.
- Notes
- -----
- This is an alias for `gaussian_kde.evaluate`. See the ``evaluate``
- docstring for more details.
- """
- return self.evaluate(x)
- def logpdf(self, x):
- """
- Evaluate the log of the estimated pdf on a provided set of points.
- """
- points = atleast_2d(x)
- d, m = points.shape
- if d != self.d:
- if d == 1 and m == self.d:
- # points was passed in as a row vector
- points = reshape(points, (self.d, 1))
- m = 1
- else:
- msg = "points have dimension %s, dataset has dimension %s" % (d,
- self.d)
- raise ValueError(msg)
- result = zeros((m,), dtype=float)
- if m >= self.n:
- # there are more points than data, so loop over data
- energy = zeros((self.n, m), dtype=float)
- for i in range(self.n):
- diff = self.dataset[:, i, newaxis] - points
- tdiff = dot(self.inv_cov, diff)
- energy[i] = sum(diff*tdiff, axis=0) / 2.0
- result = logsumexp(-energy,
- b=self.weights[i]*self.n/self._norm_factor,
- axis=0)
- else:
- # loop over points
- for i in range(m):
- diff = self.dataset - points[:, i, newaxis]
- tdiff = dot(self.inv_cov, diff)
- energy = sum(diff * tdiff, axis=0) / 2.0
- result[i] = logsumexp(-energy,
- b=self.weights*self.n/self._norm_factor)
- return result
- @property
- def weights(self):
- try:
- return self._weights
- except AttributeError:
- self._weights = ones(self.n)/self.n
- return self._weights
- @property
- def neff(self):
- try:
- return self._neff
- except AttributeError:
- self._neff = 1/sum(self.weights**2)
- return self._neff
|