| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420 |
- from __future__ import division, print_function, absolute_import
- import numpy as np
- import numpy.testing as npt
- import pytest
- from pytest import raises as assert_raises
- from scipy._lib._numpy_compat import suppress_warnings
- from scipy.integrate import IntegrationWarning
- from scipy import stats
- from scipy.special import betainc
- from. common_tests import (check_normalization, check_moment, check_mean_expect,
- check_var_expect, check_skew_expect,
- check_kurt_expect, check_entropy,
- check_private_entropy, check_entropy_vect_scale,
- check_edge_support, check_named_args,
- check_random_state_property,
- check_meth_dtype, check_ppf_dtype, check_cmplx_deriv,
- check_pickling, check_rvs_broadcast)
- from scipy.stats._distr_params import distcont
- """
- Test all continuous distributions.
- Parameters were chosen for those distributions that pass the
- Kolmogorov-Smirnov test. This provides safe parameters for each
- distributions so that we can perform further testing of class methods.
- These tests currently check only/mostly for serious errors and exceptions,
- not for numerically exact results.
- """
- # Note that you need to add new distributions you want tested
- # to _distr_params
- DECIMAL = 5 # specify the precision of the tests # increased from 0 to 5
- # Last four of these fail all around. Need to be checked
- distcont_extra = [
- ['betaprime', (100, 86)],
- ['fatiguelife', (5,)],
- ['mielke', (4.6420495492121487, 0.59707419545516938)],
- ['invweibull', (0.58847112119264788,)],
- # burr: sample mean test fails still for c<1
- ['burr', (0.94839838075366045, 4.3820284068855795)],
- # genextreme: sample mean test, sf-logsf test fail
- ['genextreme', (3.3184017469423535,)],
- ]
- distslow = ['kappa4', 'rdist', 'gausshyper',
- 'recipinvgauss', 'ksone', 'genexpon',
- 'vonmises', 'vonmises_line', 'mielke', 'semicircular',
- 'cosine', 'invweibull', 'powerlognorm', 'johnsonsu', 'kstwobign']
- # distslow are sorted by speed (very slow to slow)
- # These distributions fail the complex derivative test below.
- # Here 'fail' mean produce wrong results and/or raise exceptions, depending
- # on the implementation details of corresponding special functions.
- # cf https://github.com/scipy/scipy/pull/4979 for a discussion.
- fails_cmplx = set(['beta', 'betaprime', 'chi', 'chi2', 'dgamma', 'dweibull',
- 'erlang', 'f', 'gamma', 'gausshyper', 'gengamma',
- 'gennorm', 'genpareto', 'halfgennorm', 'invgamma',
- 'ksone', 'kstwobign', 'levy_l', 'loggamma', 'logistic',
- 'maxwell', 'nakagami', 'ncf', 'nct', 'ncx2', 'norminvgauss',
- 'pearson3', 'rice', 't', 'skewnorm', 'tukeylambda',
- 'vonmises', 'vonmises_line', 'rv_histogram_instance'])
- _h = np.histogram([1, 2, 2, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 5, 6,
- 6, 6, 6, 7, 7, 7, 8, 8, 9], bins=8)
- histogram_test_instance = stats.rv_histogram(_h)
- def cases_test_cont_basic():
- for distname, arg in distcont[:] + [(histogram_test_instance, tuple())]:
- if distname == 'levy_stable':
- continue
- elif distname in distslow:
- yield pytest.param(distname, arg, marks=pytest.mark.slow)
- else:
- yield distname, arg
- @pytest.mark.parametrize('distname,arg', cases_test_cont_basic())
- def test_cont_basic(distname, arg):
- # this test skips slow distributions
- if distname == 'truncnorm':
- pytest.xfail(reason=distname)
- try:
- distfn = getattr(stats, distname)
- except TypeError:
- distfn = distname
- distname = 'rv_histogram_instance'
- np.random.seed(765456)
- sn = 500
- with suppress_warnings() as sup:
- # frechet_l and frechet_r are deprecated, so all their
- # methods generate DeprecationWarnings.
- sup.filter(category=DeprecationWarning, message=".*frechet_")
- rvs = distfn.rvs(size=sn, *arg)
- sm = rvs.mean()
- sv = rvs.var()
- m, v = distfn.stats(*arg)
- check_sample_meanvar_(distfn, arg, m, v, sm, sv, sn, distname + 'sample mean test')
- check_cdf_ppf(distfn, arg, distname)
- check_sf_isf(distfn, arg, distname)
- check_pdf(distfn, arg, distname)
- check_pdf_logpdf(distfn, arg, distname)
- check_cdf_logcdf(distfn, arg, distname)
- check_sf_logsf(distfn, arg, distname)
- alpha = 0.01
- if distname == 'rv_histogram_instance':
- check_distribution_rvs(distfn.cdf, arg, alpha, rvs)
- else:
- check_distribution_rvs(distname, arg, alpha, rvs)
- locscale_defaults = (0, 1)
- meths = [distfn.pdf, distfn.logpdf, distfn.cdf, distfn.logcdf,
- distfn.logsf]
- # make sure arguments are within support
- spec_x = {'frechet_l': -0.5, 'weibull_max': -0.5, 'levy_l': -0.5,
- 'pareto': 1.5, 'tukeylambda': 0.3,
- 'rv_histogram_instance': 5.0}
- x = spec_x.get(distname, 0.5)
- if distname == 'invweibull':
- arg = (1,)
- elif distname == 'ksone':
- arg = (3,)
- check_named_args(distfn, x, arg, locscale_defaults, meths)
- check_random_state_property(distfn, arg)
- check_pickling(distfn, arg)
- # Entropy
- if distname not in ['ksone', 'kstwobign', 'ncf', 'crystalball']:
- check_entropy(distfn, arg, distname)
- if distfn.numargs == 0:
- check_vecentropy(distfn, arg)
- if (distfn.__class__._entropy != stats.rv_continuous._entropy
- and distname != 'vonmises'):
- check_private_entropy(distfn, arg, stats.rv_continuous)
- with suppress_warnings() as sup:
- sup.filter(IntegrationWarning, "The occurrence of roundoff error")
- sup.filter(IntegrationWarning, "Extremely bad integrand")
- sup.filter(RuntimeWarning, "invalid value")
- check_entropy_vect_scale(distfn, arg)
- check_edge_support(distfn, arg)
- check_meth_dtype(distfn, arg, meths)
- check_ppf_dtype(distfn, arg)
- if distname not in fails_cmplx:
- check_cmplx_deriv(distfn, arg)
- if distname != 'truncnorm':
- check_ppf_private(distfn, arg, distname)
- def test_levy_stable_random_state_property():
- # levy_stable only implements rvs(), so it is skipped in the
- # main loop in test_cont_basic(). Here we apply just the test
- # check_random_state_property to levy_stable.
- check_random_state_property(stats.levy_stable, (0.5, 0.1))
- def cases_test_moments():
- fail_normalization = set(['vonmises', 'ksone'])
- fail_higher = set(['vonmises', 'ksone', 'ncf'])
- for distname, arg in distcont[:] + [(histogram_test_instance, tuple())]:
- if distname == 'levy_stable':
- continue
- cond1 = distname not in fail_normalization
- cond2 = distname not in fail_higher
- yield distname, arg, cond1, cond2, False
- if not cond1 or not cond2:
- # Run the distributions that have issues twice, once skipping the
- # not_ok parts, once with the not_ok parts but marked as knownfail
- yield pytest.param(distname, arg, True, True, True,
- marks=pytest.mark.xfail)
- @pytest.mark.slow
- @pytest.mark.parametrize('distname,arg,normalization_ok,higher_ok,is_xfailing',
- cases_test_moments())
- def test_moments(distname, arg, normalization_ok, higher_ok, is_xfailing):
- try:
- distfn = getattr(stats, distname)
- except TypeError:
- distfn = distname
- distname = 'rv_histogram_instance'
- with suppress_warnings() as sup:
- sup.filter(IntegrationWarning,
- "The integral is probably divergent, or slowly convergent.")
- sup.filter(category=DeprecationWarning, message=".*frechet_")
- if is_xfailing:
- sup.filter(IntegrationWarning)
- m, v, s, k = distfn.stats(*arg, moments='mvsk')
- if normalization_ok:
- check_normalization(distfn, arg, distname)
- if higher_ok:
- check_mean_expect(distfn, arg, m, distname)
- check_skew_expect(distfn, arg, m, v, s, distname)
- check_var_expect(distfn, arg, m, v, distname)
- check_kurt_expect(distfn, arg, m, v, k, distname)
- check_loc_scale(distfn, arg, m, v, distname)
- check_moment(distfn, arg, m, v, distname)
- @pytest.mark.parametrize('dist,shape_args', distcont)
- def test_rvs_broadcast(dist, shape_args):
- if dist in ['gausshyper', 'genexpon']:
- pytest.skip("too slow")
- # If shape_only is True, it means the _rvs method of the
- # distribution uses more than one random number to generate a random
- # variate. That means the result of using rvs with broadcasting or
- # with a nontrivial size will not necessarily be the same as using the
- # numpy.vectorize'd version of rvs(), so we can only compare the shapes
- # of the results, not the values.
- # Whether or not a distribution is in the following list is an
- # implementation detail of the distribution, not a requirement. If
- # the implementation the rvs() method of a distribution changes, this
- # test might also have to be changed.
- shape_only = dist in ['betaprime', 'dgamma', 'exponnorm', 'norminvgauss',
- 'nct', 'dweibull', 'rice', 'levy_stable', 'skewnorm']
- distfunc = getattr(stats, dist)
- loc = np.zeros(2)
- scale = np.ones((3, 1))
- nargs = distfunc.numargs
- allargs = []
- bshape = [3, 2]
- # Generate shape parameter arguments...
- for k in range(nargs):
- shp = (k + 4,) + (1,)*(k + 2)
- allargs.append(shape_args[k]*np.ones(shp))
- bshape.insert(0, k + 4)
- allargs.extend([loc, scale])
- # bshape holds the expected shape when loc, scale, and the shape
- # parameters are all broadcast together.
- check_rvs_broadcast(distfunc, dist, allargs, bshape, shape_only, 'd')
- def test_rvs_gh2069_regression():
- # Regression tests for gh-2069. In scipy 0.17 and earlier,
- # these tests would fail.
- #
- # A typical example of the broken behavior:
- # >>> norm.rvs(loc=np.zeros(5), scale=np.ones(5))
- # array([-2.49613705, -2.49613705, -2.49613705, -2.49613705, -2.49613705])
- np.random.seed(123)
- vals = stats.norm.rvs(loc=np.zeros(5), scale=1)
- d = np.diff(vals)
- npt.assert_(np.all(d != 0), "All the values are equal, but they shouldn't be!")
- vals = stats.norm.rvs(loc=0, scale=np.ones(5))
- d = np.diff(vals)
- npt.assert_(np.all(d != 0), "All the values are equal, but they shouldn't be!")
- vals = stats.norm.rvs(loc=np.zeros(5), scale=np.ones(5))
- d = np.diff(vals)
- npt.assert_(np.all(d != 0), "All the values are equal, but they shouldn't be!")
- vals = stats.norm.rvs(loc=np.array([[0], [0]]), scale=np.ones(5))
- d = np.diff(vals.ravel())
- npt.assert_(np.all(d != 0), "All the values are equal, but they shouldn't be!")
- assert_raises(ValueError, stats.norm.rvs, [[0, 0], [0, 0]],
- [[1, 1], [1, 1]], 1)
- assert_raises(ValueError, stats.gamma.rvs, [2, 3, 4, 5], 0, 1, (2, 2))
- assert_raises(ValueError, stats.gamma.rvs, [1, 1, 1, 1], [0, 0, 0, 0],
- [[1], [2]], (4,))
- def check_sample_meanvar_(distfn, arg, m, v, sm, sv, sn, msg):
- # this did not work, skipped silently by nose
- if np.isfinite(m):
- check_sample_mean(sm, sv, sn, m)
- if np.isfinite(v):
- check_sample_var(sv, sn, v)
- def check_sample_mean(sm, v, n, popmean):
- # from stats.stats.ttest_1samp(a, popmean):
- # Calculates the t-obtained for the independent samples T-test on ONE group
- # of scores a, given a population mean.
- #
- # Returns: t-value, two-tailed prob
- df = n-1
- svar = ((n-1)*v) / float(df) # looks redundant
- t = (sm-popmean) / np.sqrt(svar*(1.0/n))
- prob = betainc(0.5*df, 0.5, df/(df + t*t))
- # return t,prob
- npt.assert_(prob > 0.01, 'mean fail, t,prob = %f, %f, m, sm=%f,%f' %
- (t, prob, popmean, sm))
- def check_sample_var(sv, n, popvar):
- # two-sided chisquare test for sample variance equal to
- # hypothesized variance
- df = n-1
- chi2 = (n-1)*popvar/float(popvar)
- pval = stats.distributions.chi2.sf(chi2, df) * 2
- npt.assert_(pval > 0.01, 'var fail, t, pval = %f, %f, v, sv=%f, %f' %
- (chi2, pval, popvar, sv))
- def check_cdf_ppf(distfn, arg, msg):
- values = [0.001, 0.5, 0.999]
- npt.assert_almost_equal(distfn.cdf(distfn.ppf(values, *arg), *arg),
- values, decimal=DECIMAL, err_msg=msg +
- ' - cdf-ppf roundtrip')
- def check_sf_isf(distfn, arg, msg):
- npt.assert_almost_equal(distfn.sf(distfn.isf([0.1, 0.5, 0.9], *arg), *arg),
- [0.1, 0.5, 0.9], decimal=DECIMAL, err_msg=msg +
- ' - sf-isf roundtrip')
- npt.assert_almost_equal(distfn.cdf([0.1, 0.9], *arg),
- 1.0 - distfn.sf([0.1, 0.9], *arg),
- decimal=DECIMAL, err_msg=msg +
- ' - cdf-sf relationship')
- def check_pdf(distfn, arg, msg):
- # compares pdf at median with numerical derivative of cdf
- median = distfn.ppf(0.5, *arg)
- eps = 1e-6
- pdfv = distfn.pdf(median, *arg)
- if (pdfv < 1e-4) or (pdfv > 1e4):
- # avoid checking a case where pdf is close to zero or
- # huge (singularity)
- median = median + 0.1
- pdfv = distfn.pdf(median, *arg)
- cdfdiff = (distfn.cdf(median + eps, *arg) -
- distfn.cdf(median - eps, *arg))/eps/2.0
- # replace with better diff and better test (more points),
- # actually, this works pretty well
- msg += ' - cdf-pdf relationship'
- npt.assert_almost_equal(pdfv, cdfdiff, decimal=DECIMAL, err_msg=msg)
- def check_pdf_logpdf(distfn, args, msg):
- # compares pdf at several points with the log of the pdf
- points = np.array([0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8])
- vals = distfn.ppf(points, *args)
- pdf = distfn.pdf(vals, *args)
- logpdf = distfn.logpdf(vals, *args)
- pdf = pdf[pdf != 0]
- logpdf = logpdf[np.isfinite(logpdf)]
- msg += " - logpdf-log(pdf) relationship"
- npt.assert_almost_equal(np.log(pdf), logpdf, decimal=7, err_msg=msg)
- def check_sf_logsf(distfn, args, msg):
- # compares sf at several points with the log of the sf
- points = np.array([0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8])
- vals = distfn.ppf(points, *args)
- sf = distfn.sf(vals, *args)
- logsf = distfn.logsf(vals, *args)
- sf = sf[sf != 0]
- logsf = logsf[np.isfinite(logsf)]
- msg += " - logsf-log(sf) relationship"
- npt.assert_almost_equal(np.log(sf), logsf, decimal=7, err_msg=msg)
- def check_cdf_logcdf(distfn, args, msg):
- # compares cdf at several points with the log of the cdf
- points = np.array([0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8])
- vals = distfn.ppf(points, *args)
- cdf = distfn.cdf(vals, *args)
- logcdf = distfn.logcdf(vals, *args)
- cdf = cdf[cdf != 0]
- logcdf = logcdf[np.isfinite(logcdf)]
- msg += " - logcdf-log(cdf) relationship"
- npt.assert_almost_equal(np.log(cdf), logcdf, decimal=7, err_msg=msg)
- def check_distribution_rvs(dist, args, alpha, rvs):
- # test from scipy.stats.tests
- # this version reuses existing random variables
- D, pval = stats.kstest(rvs, dist, args=args, N=1000)
- if (pval < alpha):
- D, pval = stats.kstest(dist, '', args=args, N=1000)
- npt.assert_(pval > alpha, "D = " + str(D) + "; pval = " + str(pval) +
- "; alpha = " + str(alpha) + "\nargs = " + str(args))
- def check_vecentropy(distfn, args):
- npt.assert_equal(distfn.vecentropy(*args), distfn._entropy(*args))
- def check_loc_scale(distfn, arg, m, v, msg):
- loc, scale = 10.0, 10.0
- mt, vt = distfn.stats(loc=loc, scale=scale, *arg)
- npt.assert_allclose(m*scale + loc, mt)
- npt.assert_allclose(v*scale*scale, vt)
- def check_ppf_private(distfn, arg, msg):
- # fails by design for truncnorm self.nb not defined
- ppfs = distfn._ppf(np.array([0.1, 0.5, 0.9]), *arg)
- npt.assert_(not np.any(np.isnan(ppfs)), msg + 'ppf private is nan')
|