_Numbers_int.py 12 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415
  1. # ===================================================================
  2. #
  3. # Copyright (c) 2014, Legrandin <helderijs@gmail.com>
  4. # All rights reserved.
  5. #
  6. # Redistribution and use in source and binary forms, with or without
  7. # modification, are permitted provided that the following conditions
  8. # are met:
  9. #
  10. # 1. Redistributions of source code must retain the above copyright
  11. # notice, this list of conditions and the following disclaimer.
  12. # 2. Redistributions in binary form must reproduce the above copyright
  13. # notice, this list of conditions and the following disclaimer in
  14. # the documentation and/or other materials provided with the
  15. # distribution.
  16. #
  17. # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
  18. # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
  19. # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
  20. # FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
  21. # COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
  22. # INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
  23. # BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
  24. # LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
  25. # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
  26. # LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
  27. # ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
  28. # POSSIBILITY OF SUCH DAMAGE.
  29. # ===================================================================
  30. from Crypto.Util.number import long_to_bytes, bytes_to_long
  31. from Crypto.Util.py3compat import maxint
  32. class Integer(object):
  33. """A class to model a natural integer (including zero)"""
  34. def __init__(self, value):
  35. if isinstance(value, float):
  36. raise ValueError("A floating point type is not a natural number")
  37. try:
  38. self._value = value._value
  39. except AttributeError:
  40. self._value = value
  41. # Conversions
  42. def __int__(self):
  43. return self._value
  44. def __str__(self):
  45. return str(int(self))
  46. def __repr__(self):
  47. return "Integer(%s)" % str(self)
  48. def to_bytes(self, block_size=0):
  49. if self._value < 0:
  50. raise ValueError("Conversion only valid for non-negative numbers")
  51. result = long_to_bytes(self._value, block_size)
  52. if len(result) > block_size > 0:
  53. raise ValueError("Value too large to encode")
  54. return result
  55. @staticmethod
  56. def from_bytes(byte_string):
  57. return Integer(bytes_to_long(byte_string))
  58. # Relations
  59. def __eq__(self, term):
  60. try:
  61. result = self._value == term._value
  62. except AttributeError:
  63. result = self._value == term
  64. return result
  65. def __ne__(self, term):
  66. return not self.__eq__(term)
  67. def __lt__(self, term):
  68. try:
  69. result = self._value < term._value
  70. except AttributeError:
  71. result = self._value < term
  72. return result
  73. def __le__(self, term):
  74. return self.__lt__(term) or self.__eq__(term)
  75. def __gt__(self, term):
  76. return not self.__le__(term)
  77. def __ge__(self, term):
  78. return not self.__lt__(term)
  79. def __nonzero__(self):
  80. return self._value != 0
  81. def is_negative(self):
  82. return self._value < 0
  83. # Arithmetic operations
  84. def __add__(self, term):
  85. try:
  86. return Integer(self._value + term._value)
  87. except AttributeError:
  88. return Integer(self._value + term)
  89. def __sub__(self, term):
  90. try:
  91. diff = self._value - term._value
  92. except AttributeError:
  93. diff = self._value - term
  94. return Integer(diff)
  95. def __mul__(self, factor):
  96. try:
  97. return Integer(self._value * factor._value)
  98. except AttributeError:
  99. return Integer(self._value * factor)
  100. def __floordiv__(self, divisor):
  101. try:
  102. divisor_value = divisor._value
  103. except AttributeError:
  104. divisor_value = divisor
  105. return Integer(self._value // divisor_value)
  106. def __mod__(self, divisor):
  107. try:
  108. divisor_value = divisor._value
  109. except AttributeError:
  110. divisor_value = divisor
  111. if divisor_value < 0:
  112. raise ValueError("Modulus must be positive")
  113. return Integer(self._value % divisor_value)
  114. def inplace_pow(self, exponent, modulus=None):
  115. try:
  116. exp_value = exponent._value
  117. except AttributeError:
  118. exp_value = exponent
  119. if exp_value < 0:
  120. raise ValueError("Exponent must not be negative")
  121. try:
  122. mod_value = modulus._value
  123. except AttributeError:
  124. mod_value = modulus
  125. if mod_value is not None:
  126. if mod_value < 0:
  127. raise ValueError("Modulus must be positive")
  128. if mod_value == 0:
  129. raise ZeroDivisionError("Modulus cannot be zero")
  130. self._value = pow(self._value, exp_value, mod_value)
  131. return self
  132. def __pow__(self, exponent, modulus=None):
  133. result = Integer(self)
  134. return result.inplace_pow(exponent, modulus)
  135. def __abs__(self):
  136. return abs(self._value)
  137. def sqrt(self):
  138. # http://stackoverflow.com/questions/15390807/integer-square-root-in-python
  139. if self._value < 0:
  140. raise ValueError("Square root of negative value")
  141. x = self._value
  142. y = (x + 1) // 2
  143. while y < x:
  144. x = y
  145. y = (x + self._value // x) // 2
  146. return Integer(x)
  147. def __iadd__(self, term):
  148. try:
  149. self._value += term._value
  150. except AttributeError:
  151. self._value += term
  152. return self
  153. def __isub__(self, term):
  154. try:
  155. self._value -= term._value
  156. except AttributeError:
  157. self._value -= term
  158. return self
  159. def __imul__(self, term):
  160. try:
  161. self._value *= term._value
  162. except AttributeError:
  163. self._value *= term
  164. return self
  165. def __imod__(self, term):
  166. try:
  167. modulus = term._value
  168. except AttributeError:
  169. modulus = term
  170. if modulus == 0:
  171. raise ZeroDivisionError("Division by zero")
  172. if modulus < 0:
  173. raise ValueError("Modulus must be positive")
  174. self._value %= modulus
  175. return self
  176. # Boolean/bit operations
  177. def __and__(self, term):
  178. try:
  179. return Integer(self._value & term._value)
  180. except AttributeError:
  181. return Integer(self._value & term)
  182. def __or__(self, term):
  183. try:
  184. return Integer(self._value | term._value)
  185. except AttributeError:
  186. return Integer(self._value | term)
  187. def __rshift__(self, pos):
  188. try:
  189. try:
  190. return Integer(self._value >> pos._value)
  191. except AttributeError:
  192. return Integer(self._value >> pos)
  193. except OverflowError:
  194. raise ValueError("Incorrect shift count")
  195. def __irshift__(self, pos):
  196. try:
  197. try:
  198. self._value >>= pos._value
  199. except AttributeError:
  200. self._value >>= pos
  201. except OverflowError:
  202. raise ValueError("Incorrect shift count")
  203. return self
  204. def __lshift__(self, pos):
  205. try:
  206. try:
  207. return Integer(self._value << pos._value)
  208. except AttributeError:
  209. return Integer(self._value << pos)
  210. except OverflowError:
  211. raise ValueError("Incorrect shift count")
  212. def __ilshift__(self, pos):
  213. try:
  214. try:
  215. self._value <<= pos._value
  216. except AttributeError:
  217. self._value <<= pos
  218. except OverflowError:
  219. raise ValueError("Incorrect shift count")
  220. return self
  221. def get_bit(self, n):
  222. try:
  223. try:
  224. return (self._value >> n._value) & 1
  225. except AttributeError:
  226. return (self._value >> n) & 1
  227. except OverflowError:
  228. raise ValueError("Incorrect bit position")
  229. # Extra
  230. def is_odd(self):
  231. return (self._value & 1) == 1
  232. def is_even(self):
  233. return (self._value & 1) == 0
  234. def size_in_bits(self):
  235. if self._value < 0:
  236. raise ValueError("Conversion only valid for non-negative numbers")
  237. if self._value == 0:
  238. return 1
  239. bit_size = 0
  240. tmp = self._value
  241. while tmp:
  242. tmp >>= 1
  243. bit_size += 1
  244. return bit_size
  245. def size_in_bytes(self):
  246. return (self.size_in_bits() - 1) // 8 + 1
  247. def is_perfect_square(self):
  248. if self._value < 0:
  249. return False
  250. if self._value in (0, 1):
  251. return True
  252. x = self._value // 2
  253. square_x = x ** 2
  254. while square_x > self._value:
  255. x = (square_x + self._value) // (2 * x)
  256. square_x = x ** 2
  257. return self._value == x ** 2
  258. def fail_if_divisible_by(self, small_prime):
  259. try:
  260. if (self._value % small_prime._value) == 0:
  261. raise ValueError("Value is composite")
  262. except AttributeError:
  263. if (self._value % small_prime) == 0:
  264. raise ValueError("Value is composite")
  265. def multiply_accumulate(self, a, b):
  266. if type(a) == Integer:
  267. a = a._value
  268. if type(b) == Integer:
  269. b = b._value
  270. self._value += a * b
  271. return self
  272. def set(self, source):
  273. if type(source) == Integer:
  274. self._value = source._value
  275. else:
  276. self._value = source
  277. def inplace_inverse(self, modulus):
  278. try:
  279. modulus = modulus._value
  280. except AttributeError:
  281. pass
  282. if modulus == 0:
  283. raise ZeroDivisionError("Modulus cannot be zero")
  284. if modulus < 0:
  285. raise ValueError("Modulus cannot be negative")
  286. r_p, r_n = self._value, modulus
  287. s_p, s_n = 1, 0
  288. while r_n > 0:
  289. q = r_p // r_n
  290. r_p, r_n = r_n, r_p - q * r_n
  291. s_p, s_n = s_n, s_p - q * s_n
  292. if r_p != 1:
  293. raise ValueError("No inverse value can be computed" + str(r_p))
  294. while s_p < 0:
  295. s_p += modulus
  296. self._value = s_p
  297. return self
  298. def inverse(self, modulus):
  299. result = Integer(self)
  300. result.inplace_inverse(modulus)
  301. return result
  302. def gcd(self, term):
  303. try:
  304. term = term._value
  305. except AttributeError:
  306. pass
  307. r_p, r_n = abs(self._value), abs(term)
  308. while r_n > 0:
  309. q = r_p // r_n
  310. r_p, r_n = r_n, r_p - q * r_n
  311. return Integer(r_p)
  312. def lcm(self, term):
  313. try:
  314. term = term._value
  315. except AttributeError:
  316. pass
  317. if self._value == 0 or term == 0:
  318. return Integer(0)
  319. return Integer(abs((self._value * term) // self.gcd(term)._value))
  320. @staticmethod
  321. def jacobi_symbol(a, n):
  322. if isinstance(a, Integer):
  323. a = a._value
  324. if isinstance(n, Integer):
  325. n = n._value
  326. if (n & 1) == 0:
  327. raise ValueError("n must be even for the Jacobi symbol")
  328. # Step 1
  329. a = a % n
  330. # Step 2
  331. if a == 1 or n == 1:
  332. return 1
  333. # Step 3
  334. if a == 0:
  335. return 0
  336. # Step 4
  337. e = 0
  338. a1 = a
  339. while (a1 & 1) == 0:
  340. a1 >>= 1
  341. e += 1
  342. # Step 5
  343. if (e & 1) == 0:
  344. s = 1
  345. elif n % 8 in (1, 7):
  346. s = 1
  347. else:
  348. s = -1
  349. # Step 6
  350. if n % 4 == 3 and a1 % 4 == 3:
  351. s = -s
  352. # Step 7
  353. n1 = n % a1
  354. # Step 8
  355. return s * Integer.jacobi_symbol(n1, a1)