123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379 |
- # -*- coding: utf-8 -*-
- #
- # PublicKey/DSA.py : DSA signature primitive
- #
- # Written in 2008 by Dwayne C. Litzenberger <dlitz@dlitz.net>
- #
- # ===================================================================
- # The contents of this file are dedicated to the public domain. To
- # the extent that dedication to the public domain is not available,
- # everyone is granted a worldwide, perpetual, royalty-free,
- # non-exclusive license to exercise all rights associated with the
- # contents of this file for any purpose whatsoever.
- # No rights are reserved.
- #
- # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
- # EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
- # MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
- # NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
- # BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
- # ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
- # CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
- # SOFTWARE.
- # ===================================================================
- """DSA public-key signature algorithm.
- DSA_ is a widespread public-key signature algorithm. Its security is
- based on the discrete logarithm problem (DLP_). Given a cyclic
- group, a generator *g*, and an element *h*, it is hard
- to find an integer *x* such that *g^x = h*. The problem is believed
- to be difficult, and it has been proved such (and therefore secure) for
- more than 30 years.
- The group is actually a sub-group over the integers modulo *p*, with *p* prime.
- The sub-group order is *q*, which is prime too; it always holds that *(p-1)* is a multiple of *q*.
- The cryptographic strength is linked to the magnitude of *p* and *q*.
- The signer holds a value *x* (*0<x<q-1*) as private key, and its public
- key (*y* where *y=g^x mod p*) is distributed.
- In 2012, a sufficient size is deemed to be 2048 bits for *p* and 256 bits for *q*.
- For more information, see the most recent ECRYPT_ report.
- DSA is reasonably secure for new designs.
- The algorithm can only be used for authentication (digital signature).
- DSA cannot be used for confidentiality (encryption).
- The values *(p,q,g)* are called *domain parameters*;
- they are not sensitive but must be shared by both parties (the signer and the verifier).
- Different signers can share the same domain parameters with no security
- concerns.
- The DSA signature is twice as big as the size of *q* (64 bytes if *q* is 256 bit
- long).
- This module provides facilities for generating new DSA keys and for constructing
- them from known components. DSA keys allows you to perform basic signing and
- verification.
- >>> from Crypto.Random import random
- >>> from Crypto.PublicKey import DSA
- >>> from Crypto.Hash import SHA
- >>>
- >>> message = "Hello"
- >>> key = DSA.generate(1024)
- >>> h = SHA.new(message).digest()
- >>> k = random.StrongRandom().randint(1,key.q-1)
- >>> sig = key.sign(h,k)
- >>> ...
- >>> if key.verify(h,sig):
- >>> print "OK"
- >>> else:
- >>> print "Incorrect signature"
- .. _DSA: http://en.wikipedia.org/wiki/Digital_Signature_Algorithm
- .. _DLP: http://www.cosic.esat.kuleuven.be/publications/talk-78.pdf
- .. _ECRYPT: http://www.ecrypt.eu.org/documents/D.SPA.17.pdf
- """
- __revision__ = "$Id$"
- __all__ = ['generate', 'construct', 'error', 'DSAImplementation', '_DSAobj']
- import sys
- if sys.version_info[0] == 2 and sys.version_info[1] == 1:
- from Crypto.Util.py21compat import *
- from Crypto.PublicKey import _DSA, _slowmath, pubkey
- from Crypto import Random
- try:
- from Crypto.PublicKey import _fastmath
- except ImportError:
- _fastmath = None
- class _DSAobj(pubkey.pubkey):
- """Class defining an actual DSA key.
- :undocumented: __getstate__, __setstate__, __repr__, __getattr__
- """
- #: Dictionary of DSA parameters.
- #:
- #: A public key will only have the following entries:
- #:
- #: - **y**, the public key.
- #: - **g**, the generator.
- #: - **p**, the modulus.
- #: - **q**, the order of the sub-group.
- #:
- #: A private key will also have:
- #:
- #: - **x**, the private key.
- keydata = ['y', 'g', 'p', 'q', 'x']
- def __init__(self, implementation, key):
- self.implementation = implementation
- self.key = key
- def __getattr__(self, attrname):
- if attrname in self.keydata:
- # For backward compatibility, allow the user to get (not set) the
- # DSA key parameters directly from this object.
- return getattr(self.key, attrname)
- else:
- raise AttributeError("%s object has no %r attribute" % (self.__class__.__name__, attrname,))
- def sign(self, M, K):
- """Sign a piece of data with DSA.
- :Parameter M: The piece of data to sign with DSA. It may
- not be longer in bit size than the sub-group order (*q*).
- :Type M: byte string or long
- :Parameter K: A secret number, chosen randomly in the closed
- range *[1,q-1]*.
- :Type K: long (recommended) or byte string (not recommended)
- :attention: selection of *K* is crucial for security. Generating a
- random number larger than *q* and taking the modulus by *q* is
- **not** secure, since smaller values will occur more frequently.
- Generating a random number systematically smaller than *q-1*
- (e.g. *floor((q-1)/8)* random bytes) is also **not** secure. In general,
- it shall not be possible for an attacker to know the value of `any
- bit of K`__.
- :attention: The number *K* shall not be reused for any other
- operation and shall be discarded immediately.
- :attention: M must be a digest cryptographic hash, otherwise
- an attacker may mount an existential forgery attack.
- :Return: A tuple with 2 longs.
- .. __: http://www.di.ens.fr/~pnguyen/pub_NgSh00.htm
- """
- return pubkey.pubkey.sign(self, M, K)
- def verify(self, M, signature):
- """Verify the validity of a DSA signature.
- :Parameter M: The expected message.
- :Type M: byte string or long
- :Parameter signature: The DSA signature to verify.
- :Type signature: A tuple with 2 longs as return by `sign`
- :Return: True if the signature is correct, False otherwise.
- """
- return pubkey.pubkey.verify(self, M, signature)
- def _encrypt(self, c, K):
- raise TypeError("DSA cannot encrypt")
- def _decrypt(self, c):
- raise TypeError("DSA cannot decrypt")
- def _blind(self, m, r):
- raise TypeError("DSA cannot blind")
- def _unblind(self, m, r):
- raise TypeError("DSA cannot unblind")
- def _sign(self, m, k):
- return self.key._sign(m, k)
- def _verify(self, m, sig):
- (r, s) = sig
- return self.key._verify(m, r, s)
- def has_private(self):
- return self.key.has_private()
- def size(self):
- return self.key.size()
- def can_blind(self):
- return False
- def can_encrypt(self):
- return False
- def can_sign(self):
- return True
- def publickey(self):
- return self.implementation.construct((self.key.y, self.key.g, self.key.p, self.key.q))
- def __getstate__(self):
- d = {}
- for k in self.keydata:
- try:
- d[k] = getattr(self.key, k)
- except AttributeError:
- pass
- return d
- def __setstate__(self, d):
- if not hasattr(self, 'implementation'):
- self.implementation = DSAImplementation()
- t = []
- for k in self.keydata:
- if not d.has_key(k):
- break
- t.append(d[k])
- self.key = self.implementation._math.dsa_construct(*tuple(t))
- def __repr__(self):
- attrs = []
- for k in self.keydata:
- if k == 'p':
- attrs.append("p(%d)" % (self.size()+1,))
- elif hasattr(self.key, k):
- attrs.append(k)
- if self.has_private():
- attrs.append("private")
- # PY3K: This is meant to be text, do not change to bytes (data)
- return "<%s @0x%x %s>" % (self.__class__.__name__, id(self), ",".join(attrs))
- class DSAImplementation(object):
- """
- A DSA key factory.
- This class is only internally used to implement the methods of the
- `Crypto.PublicKey.DSA` module.
- """
-
- def __init__(self, **kwargs):
- """Create a new DSA key factory.
- :Keywords:
- use_fast_math : bool
- Specify which mathematic library to use:
- - *None* (default). Use fastest math available.
- - *True* . Use fast math.
- - *False* . Use slow math.
- default_randfunc : callable
- Specify how to collect random data:
- - *None* (default). Use Random.new().read().
- - not *None* . Use the specified function directly.
- :Raise RuntimeError:
- When **use_fast_math** =True but fast math is not available.
- """
- use_fast_math = kwargs.get('use_fast_math', None)
- if use_fast_math is None: # Automatic
- if _fastmath is not None:
- self._math = _fastmath
- else:
- self._math = _slowmath
- elif use_fast_math: # Explicitly select fast math
- if _fastmath is not None:
- self._math = _fastmath
- else:
- raise RuntimeError("fast math module not available")
- else: # Explicitly select slow math
- self._math = _slowmath
- self.error = self._math.error
- # 'default_randfunc' parameter:
- # None (default) - use Random.new().read
- # not None - use the specified function
- self._default_randfunc = kwargs.get('default_randfunc', None)
- self._current_randfunc = None
- def _get_randfunc(self, randfunc):
- if randfunc is not None:
- return randfunc
- elif self._current_randfunc is None:
- self._current_randfunc = Random.new().read
- return self._current_randfunc
- def generate(self, bits, randfunc=None, progress_func=None):
- """Randomly generate a fresh, new DSA key.
- :Parameters:
- bits : int
- Key length, or size (in bits) of the DSA modulus
- *p*.
- It must be a multiple of 64, in the closed
- interval [512,1024].
- randfunc : callable
- Random number generation function; it should accept
- a single integer N and return a string of random data
- N bytes long.
- If not specified, a new one will be instantiated
- from ``Crypto.Random``.
- progress_func : callable
- Optional function that will be called with a short string
- containing the key parameter currently being generated;
- it's useful for interactive applications where a user is
- waiting for a key to be generated.
- :attention: You should always use a cryptographically secure random number generator,
- such as the one defined in the ``Crypto.Random`` module; **don't** just use the
- current time and the ``random`` module.
- :Return: A DSA key object (`_DSAobj`).
- :Raise ValueError:
- When **bits** is too little, too big, or not a multiple of 64.
- """
-
- # Check against FIPS 186-2, which says that the size of the prime p
- # must be a multiple of 64 bits between 512 and 1024
- for i in (0, 1, 2, 3, 4, 5, 6, 7, 8):
- if bits == 512 + 64*i:
- return self._generate(bits, randfunc, progress_func)
- # The March 2006 draft of FIPS 186-3 also allows 2048 and 3072-bit
- # primes, but only with longer q values. Since the current DSA
- # implementation only supports a 160-bit q, we don't support larger
- # values.
- raise ValueError("Number of bits in p must be a multiple of 64 between 512 and 1024, not %d bits" % (bits,))
- def _generate(self, bits, randfunc=None, progress_func=None):
- rf = self._get_randfunc(randfunc)
- obj = _DSA.generate_py(bits, rf, progress_func) # TODO: Don't use legacy _DSA module
- key = self._math.dsa_construct(obj.y, obj.g, obj.p, obj.q, obj.x)
- return _DSAobj(self, key)
- def construct(self, tup):
- """Construct a DSA key from a tuple of valid DSA components.
- The modulus *p* must be a prime.
- The following equations must apply:
- - p-1 = 0 mod q
- - g^x = y mod p
- - 0 < x < q
- - 1 < g < p
- :Parameters:
- tup : tuple
- A tuple of long integers, with 4 or 5 items
- in the following order:
- 1. Public key (*y*).
- 2. Sub-group generator (*g*).
- 3. Modulus, finite field order (*p*).
- 4. Sub-group order (*q*).
- 5. Private key (*x*). Optional.
- :Return: A DSA key object (`_DSAobj`).
- """
- key = self._math.dsa_construct(*tup)
- return _DSAobj(self, key)
- _impl = DSAImplementation()
- generate = _impl.generate
- construct = _impl.construct
- error = _impl.error
- # vim:set ts=4 sw=4 sts=4 expandtab:
|