123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373 |
- #
- # ElGamal.py : ElGamal encryption/decryption and signatures
- #
- # Part of the Python Cryptography Toolkit
- #
- # Originally written by: A.M. Kuchling
- #
- # ===================================================================
- # The contents of this file are dedicated to the public domain. To
- # the extent that dedication to the public domain is not available,
- # everyone is granted a worldwide, perpetual, royalty-free,
- # non-exclusive license to exercise all rights associated with the
- # contents of this file for any purpose whatsoever.
- # No rights are reserved.
- #
- # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
- # EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
- # MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
- # NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
- # BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
- # ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
- # CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
- # SOFTWARE.
- # ===================================================================
- """ElGamal public-key algorithm (randomized encryption and signature).
- Signature algorithm
- -------------------
- The security of the ElGamal signature scheme is based (like DSA) on the discrete
- logarithm problem (DLP_). Given a cyclic group, a generator *g*,
- and an element *h*, it is hard to find an integer *x* such that *g^x = h*.
- The group is the largest multiplicative sub-group of the integers modulo *p*,
- with *p* prime.
- The signer holds a value *x* (*0<x<p-1*) as private key, and its public
- key (*y* where *y=g^x mod p*) is distributed.
- The ElGamal signature is twice as big as *p*.
- Encryption algorithm
- --------------------
- The security of the ElGamal encryption scheme is based on the computational
- Diffie-Hellman problem (CDH_). Given a cyclic group, a generator *g*,
- and two integers *a* and *b*, it is difficult to find
- the element *g^{ab}* when only *g^a* and *g^b* are known, and not *a* and *b*.
- As before, the group is the largest multiplicative sub-group of the integers
- modulo *p*, with *p* prime.
- The receiver holds a value *a* (*0<a<p-1*) as private key, and its public key
- (*b* where *b*=g^a*) is given to the sender.
- The ElGamal ciphertext is twice as big as *p*.
- Domain parameters
- -----------------
- For both signature and encryption schemes, the values *(p,g)* are called
- *domain parameters*.
- They are not sensitive but must be distributed to all parties (senders and
- receivers).
- Different signers can share the same domain parameters, as can
- different recipients of encrypted messages.
- Security
- --------
- Both DLP and CDH problem are believed to be difficult, and they have been proved
- such (and therefore secure) for more than 30 years.
- The cryptographic strength is linked to the magnitude of *p*.
- In 2012, a sufficient size for *p* is deemed to be 2048 bits.
- For more information, see the most recent ECRYPT_ report.
- Even though ElGamal algorithms are in theory reasonably secure for new designs,
- in practice there are no real good reasons for using them.
- The signature is four times larger than the equivalent DSA, and the ciphertext
- is two times larger than the equivalent RSA.
- Functionality
- -------------
- This module provides facilities for generating new ElGamal keys and for constructing
- them from known components. ElGamal keys allows you to perform basic signing,
- verification, encryption, and decryption.
- >>> from Crypto import Random
- >>> from Crypto.Random import random
- >>> from Crypto.PublicKey import ElGamal
- >>> from Crypto.Util.number import GCD
- >>> from Crypto.Hash import SHA
- >>>
- >>> message = "Hello"
- >>> key = ElGamal.generate(1024, Random.new().read)
- >>> h = SHA.new(message).digest()
- >>> while 1:
- >>> k = random.StrongRandom().randint(1,key.p-1)
- >>> if GCD(k,key.p-1)==1: break
- >>> sig = key.sign(h,k)
- >>> ...
- >>> if key.verify(h,sig):
- >>> print "OK"
- >>> else:
- >>> print "Incorrect signature"
- .. _DLP: http://www.cosic.esat.kuleuven.be/publications/talk-78.pdf
- .. _CDH: http://en.wikipedia.org/wiki/Computational_Diffie%E2%80%93Hellman_assumption
- .. _ECRYPT: http://www.ecrypt.eu.org/documents/D.SPA.17.pdf
- """
- __revision__ = "$Id$"
- __all__ = ['generate', 'construct', 'error', 'ElGamalobj']
- from Crypto.PublicKey.pubkey import *
- from Crypto.Util import number
- class error (Exception):
- pass
- # Generate an ElGamal key with N bits
- def generate(bits, randfunc, progress_func=None):
- """Randomly generate a fresh, new ElGamal key.
- The key will be safe for use for both encryption and signature
- (although it should be used for **only one** purpose).
- :Parameters:
- bits : int
- Key length, or size (in bits) of the modulus *p*.
- Recommended value is 2048.
- randfunc : callable
- Random number generation function; it should accept
- a single integer N and return a string of random data
- N bytes long.
- progress_func : callable
- Optional function that will be called with a short string
- containing the key parameter currently being generated;
- it's useful for interactive applications where a user is
- waiting for a key to be generated.
- :attention: You should always use a cryptographically secure random number generator,
- such as the one defined in the ``Crypto.Random`` module; **don't** just use the
- current time and the ``random`` module.
- :Return: An ElGamal key object (`ElGamalobj`).
- """
- obj=ElGamalobj()
- # Generate a safe prime p
- # See Algorithm 4.86 in Handbook of Applied Cryptography
- if progress_func:
- progress_func('p\n')
- while 1:
- q = bignum(getPrime(bits-1, randfunc))
- obj.p = 2*q+1
- if number.isPrime(obj.p, randfunc=randfunc):
- break
- # Generate generator g
- # See Algorithm 4.80 in Handbook of Applied Cryptography
- # Note that the order of the group is n=p-1=2q, where q is prime
- if progress_func:
- progress_func('g\n')
- while 1:
- # We must avoid g=2 because of Bleichenbacher's attack described
- # in "Generating ElGamal signatures without knowning the secret key",
- # 1996
- #
- obj.g = number.getRandomRange(3, obj.p, randfunc)
- safe = 1
- if pow(obj.g, 2, obj.p)==1:
- safe=0
- if safe and pow(obj.g, q, obj.p)==1:
- safe=0
- # Discard g if it divides p-1 because of the attack described
- # in Note 11.67 (iii) in HAC
- if safe and divmod(obj.p-1, obj.g)[1]==0:
- safe=0
- # g^{-1} must not divide p-1 because of Khadir's attack
- # described in "Conditions of the generator for forging ElGamal
- # signature", 2011
- ginv = number.inverse(obj.g, obj.p)
- if safe and divmod(obj.p-1, ginv)[1]==0:
- safe=0
- if safe:
- break
- # Generate private key x
- if progress_func:
- progress_func('x\n')
- obj.x=number.getRandomRange(2, obj.p-1, randfunc)
- # Generate public key y
- if progress_func:
- progress_func('y\n')
- obj.y = pow(obj.g, obj.x, obj.p)
- return obj
- def construct(tup):
- """Construct an ElGamal key from a tuple of valid ElGamal components.
- The modulus *p* must be a prime.
- The following conditions must apply:
- - 1 < g < p-1
- - g^{p-1} = 1 mod p
- - 1 < x < p-1
- - g^x = y mod p
- :Parameters:
- tup : tuple
- A tuple of long integers, with 3 or 4 items
- in the following order:
- 1. Modulus (*p*).
- 2. Generator (*g*).
- 3. Public key (*y*).
- 4. Private key (*x*). Optional.
- :Return: An ElGamal key object (`ElGamalobj`).
- """
- obj=ElGamalobj()
- if len(tup) not in [3,4]:
- raise ValueError('argument for construct() wrong length')
- for i in range(len(tup)):
- field = obj.keydata[i]
- setattr(obj, field, tup[i])
- return obj
- class ElGamalobj(pubkey):
- """Class defining an ElGamal key.
- :undocumented: __getstate__, __setstate__, __repr__, __getattr__
- """
- #: Dictionary of ElGamal parameters.
- #:
- #: A public key will only have the following entries:
- #:
- #: - **y**, the public key.
- #: - **g**, the generator.
- #: - **p**, the modulus.
- #:
- #: A private key will also have:
- #:
- #: - **x**, the private key.
- keydata=['p', 'g', 'y', 'x']
- def encrypt(self, plaintext, K):
- """Encrypt a piece of data with ElGamal.
- :Parameter plaintext: The piece of data to encrypt with ElGamal.
- It must be numerically smaller than the module (*p*).
- :Type plaintext: byte string or long
- :Parameter K: A secret number, chosen randomly in the closed
- range *[1,p-2]*.
- :Type K: long (recommended) or byte string (not recommended)
- :Return: A tuple with two items. Each item is of the same type as the
- plaintext (string or long).
- :attention: selection of *K* is crucial for security. Generating a
- random number larger than *p-1* and taking the modulus by *p-1* is
- **not** secure, since smaller values will occur more frequently.
- Generating a random number systematically smaller than *p-1*
- (e.g. *floor((p-1)/8)* random bytes) is also **not** secure.
- In general, it shall not be possible for an attacker to know
- the value of any bit of K.
- :attention: The number *K* shall not be reused for any other
- operation and shall be discarded immediately.
- """
- return pubkey.encrypt(self, plaintext, K)
-
- def decrypt(self, ciphertext):
- """Decrypt a piece of data with ElGamal.
- :Parameter ciphertext: The piece of data to decrypt with ElGamal.
- :Type ciphertext: byte string, long or a 2-item tuple as returned
- by `encrypt`
- :Return: A byte string if ciphertext was a byte string or a tuple
- of byte strings. A long otherwise.
- """
- return pubkey.decrypt(self, ciphertext)
- def sign(self, M, K):
- """Sign a piece of data with ElGamal.
- :Parameter M: The piece of data to sign with ElGamal. It may
- not be longer in bit size than *p-1*.
- :Type M: byte string or long
- :Parameter K: A secret number, chosen randomly in the closed
- range *[1,p-2]* and such that *gcd(k,p-1)=1*.
- :Type K: long (recommended) or byte string (not recommended)
- :attention: selection of *K* is crucial for security. Generating a
- random number larger than *p-1* and taking the modulus by *p-1* is
- **not** secure, since smaller values will occur more frequently.
- Generating a random number systematically smaller than *p-1*
- (e.g. *floor((p-1)/8)* random bytes) is also **not** secure.
- In general, it shall not be possible for an attacker to know
- the value of any bit of K.
- :attention: The number *K* shall not be reused for any other
- operation and shall be discarded immediately.
- :attention: M must be be a cryptographic hash, otherwise an
- attacker may mount an existential forgery attack.
- :Return: A tuple with 2 longs.
- """
- return pubkey.sign(self, M, K)
- def verify(self, M, signature):
- """Verify the validity of an ElGamal signature.
- :Parameter M: The expected message.
- :Type M: byte string or long
- :Parameter signature: The ElGamal signature to verify.
- :Type signature: A tuple with 2 longs as return by `sign`
- :Return: True if the signature is correct, False otherwise.
- """
- return pubkey.verify(self, M, signature)
- def _encrypt(self, M, K):
- a=pow(self.g, K, self.p)
- b=( M*pow(self.y, K, self.p) ) % self.p
- return ( a,b )
- def _decrypt(self, M):
- if (not hasattr(self, 'x')):
- raise TypeError('Private key not available in this object')
- ax=pow(M[0], self.x, self.p)
- plaintext=(M[1] * inverse(ax, self.p ) ) % self.p
- return plaintext
- def _sign(self, M, K):
- if (not hasattr(self, 'x')):
- raise TypeError('Private key not available in this object')
- p1=self.p-1
- if (GCD(K, p1)!=1):
- raise ValueError('Bad K value: GCD(K,p-1)!=1')
- a=pow(self.g, K, self.p)
- t=(M-self.x*a) % p1
- while t<0: t=t+p1
- b=(t*inverse(K, p1)) % p1
- return (a, b)
- def _verify(self, M, sig):
- if sig[0]<1 or sig[0]>self.p-1:
- return 0
- v1=pow(self.y, sig[0], self.p)
- v1=(v1*pow(sig[0], sig[1], self.p)) % self.p
- v2=pow(self.g, M, self.p)
- if v1==v2:
- return 1
- return 0
- def size(self):
- return number.size(self.p) - 1
- def has_private(self):
- if hasattr(self, 'x'):
- return 1
- else:
- return 0
- def publickey(self):
- return construct((self.p, self.g, self.y))
- object=ElGamalobj
|