123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719 |
- # -*- coding: utf-8 -*-
- #
- # PublicKey/RSA.py : RSA public key primitive
- #
- # Written in 2008 by Dwayne C. Litzenberger <dlitz@dlitz.net>
- #
- # ===================================================================
- # The contents of this file are dedicated to the public domain. To
- # the extent that dedication to the public domain is not available,
- # everyone is granted a worldwide, perpetual, royalty-free,
- # non-exclusive license to exercise all rights associated with the
- # contents of this file for any purpose whatsoever.
- # No rights are reserved.
- #
- # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
- # EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
- # MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
- # NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
- # BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
- # ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
- # CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
- # SOFTWARE.
- # ===================================================================
- """RSA public-key cryptography algorithm (signature and encryption).
- RSA_ is the most widespread and used public key algorithm. Its security is
- based on the difficulty of factoring large integers. The algorithm has
- withstood attacks for 30 years, and it is therefore considered reasonably
- secure for new designs.
- The algorithm can be used for both confidentiality (encryption) and
- authentication (digital signature). It is worth noting that signing and
- decryption are significantly slower than verification and encryption.
- The cryptograhic strength is primarily linked to the length of the modulus *n*.
- In 2012, a sufficient length is deemed to be 2048 bits. For more information,
- see the most recent ECRYPT_ report.
- Both RSA ciphertext and RSA signature are as big as the modulus *n* (256
- bytes if *n* is 2048 bit long).
- This module provides facilities for generating fresh, new RSA keys, constructing
- them from known components, exporting them, and importing them.
- >>> from Crypto.PublicKey import RSA
- >>>
- >>> key = RSA.generate(2048)
- >>> f = open('mykey.pem','w')
- >>> f.write(RSA.exportKey('PEM'))
- >>> f.close()
- ...
- >>> f = open('mykey.pem','r')
- >>> key = RSA.importKey(f.read())
- Even though you may choose to directly use the methods of an RSA key object
- to perform the primitive cryptographic operations (e.g. `_RSAobj.encrypt`),
- it is recommended to use one of the standardized schemes instead (like
- `Crypto.Cipher.PKCS1_v1_5` or `Crypto.Signature.PKCS1_v1_5`).
- .. _RSA: http://en.wikipedia.org/wiki/RSA_%28algorithm%29
- .. _ECRYPT: http://www.ecrypt.eu.org/documents/D.SPA.17.pdf
- :sort: generate,construct,importKey,error
- """
- __revision__ = "$Id$"
- __all__ = ['generate', 'construct', 'error', 'importKey', 'RSAImplementation', '_RSAobj']
- import sys
- if sys.version_info[0] == 2 and sys.version_info[1] == 1:
- from Crypto.Util.py21compat import *
- from Crypto.Util.py3compat import *
- #from Crypto.Util.python_compat import *
- from Crypto.Util.number import getRandomRange, bytes_to_long, long_to_bytes
- from Crypto.PublicKey import _RSA, _slowmath, pubkey
- from Crypto import Random
- from Crypto.Util.asn1 import DerObject, DerSequence, DerNull
- import binascii
- import struct
- from Crypto.Util.number import inverse
- from Crypto.Util.number import inverse
- try:
- from Crypto.PublicKey import _fastmath
- except ImportError:
- _fastmath = None
- class _RSAobj(pubkey.pubkey):
- """Class defining an actual RSA key.
- :undocumented: __getstate__, __setstate__, __repr__, __getattr__
- """
- #: Dictionary of RSA parameters.
- #:
- #: A public key will only have the following entries:
- #:
- #: - **n**, the modulus.
- #: - **e**, the public exponent.
- #:
- #: A private key will also have:
- #:
- #: - **d**, the private exponent.
- #: - **p**, the first factor of n.
- #: - **q**, the second factor of n.
- #: - **u**, the CRT coefficient (1/p) mod q.
- keydata = ['n', 'e', 'd', 'p', 'q', 'u']
- def __init__(self, implementation, key, randfunc=None):
- self.implementation = implementation
- self.key = key
- if randfunc is None:
- randfunc = Random.new().read
- self._randfunc = randfunc
- def __getattr__(self, attrname):
- if attrname in self.keydata:
- # For backward compatibility, allow the user to get (not set) the
- # RSA key parameters directly from this object.
- return getattr(self.key, attrname)
- else:
- raise AttributeError("%s object has no %r attribute" % (self.__class__.__name__, attrname,))
- def encrypt(self, plaintext, K):
- """Encrypt a piece of data with RSA.
- :Parameter plaintext: The piece of data to encrypt with RSA. It may not
- be numerically larger than the RSA module (**n**).
- :Type plaintext: byte string or long
- :Parameter K: A random parameter (*for compatibility only. This
- value will be ignored*)
- :Type K: byte string or long
- :attention: this function performs the plain, primitive RSA encryption
- (*textbook*). In real applications, you always need to use proper
- cryptographic padding, and you should not directly encrypt data with
- this method. Failure to do so may lead to security vulnerabilities.
- It is recommended to use modules
- `Crypto.Cipher.PKCS1_OAEP` or `Crypto.Cipher.PKCS1_v1_5` instead.
- :Return: A tuple with two items. The first item is the ciphertext
- of the same type as the plaintext (string or long). The second item
- is always None.
- """
- return pubkey.pubkey.encrypt(self, plaintext, K)
-
- def decrypt(self, ciphertext):
- """Decrypt a piece of data with RSA.
- Decryption always takes place with blinding.
- :attention: this function performs the plain, primitive RSA decryption
- (*textbook*). In real applications, you always need to use proper
- cryptographic padding, and you should not directly decrypt data with
- this method. Failure to do so may lead to security vulnerabilities.
- It is recommended to use modules
- `Crypto.Cipher.PKCS1_OAEP` or `Crypto.Cipher.PKCS1_v1_5` instead.
- :Parameter ciphertext: The piece of data to decrypt with RSA. It may
- not be numerically larger than the RSA module (**n**). If a tuple,
- the first item is the actual ciphertext; the second item is ignored.
- :Type ciphertext: byte string, long or a 2-item tuple as returned by
- `encrypt`
- :Return: A byte string if ciphertext was a byte string or a tuple
- of byte strings. A long otherwise.
- """
- return pubkey.pubkey.decrypt(self, ciphertext)
- def sign(self, M, K):
- """Sign a piece of data with RSA.
- Signing always takes place with blinding.
- :attention: this function performs the plain, primitive RSA decryption
- (*textbook*). In real applications, you always need to use proper
- cryptographic padding, and you should not directly sign data with
- this method. Failure to do so may lead to security vulnerabilities.
- It is recommended to use modules
- `Crypto.Signature.PKCS1_PSS` or `Crypto.Signature.PKCS1_v1_5` instead.
- :Parameter M: The piece of data to sign with RSA. It may
- not be numerically larger than the RSA module (**n**).
- :Type M: byte string or long
- :Parameter K: A random parameter (*for compatibility only. This
- value will be ignored*)
- :Type K: byte string or long
- :Return: A 2-item tuple. The first item is the actual signature (a
- long). The second item is always None.
- """
- return pubkey.pubkey.sign(self, M, K)
- def verify(self, M, signature):
- """Verify the validity of an RSA signature.
- :attention: this function performs the plain, primitive RSA encryption
- (*textbook*). In real applications, you always need to use proper
- cryptographic padding, and you should not directly verify data with
- this method. Failure to do so may lead to security vulnerabilities.
- It is recommended to use modules
- `Crypto.Signature.PKCS1_PSS` or `Crypto.Signature.PKCS1_v1_5` instead.
-
- :Parameter M: The expected message.
- :Type M: byte string or long
- :Parameter signature: The RSA signature to verify. The first item of
- the tuple is the actual signature (a long not larger than the modulus
- **n**), whereas the second item is always ignored.
- :Type signature: A 2-item tuple as return by `sign`
- :Return: True if the signature is correct, False otherwise.
- """
- return pubkey.pubkey.verify(self, M, signature)
- def _encrypt(self, c, K):
- return (self.key._encrypt(c),)
- def _decrypt(self, c):
- #(ciphertext,) = c
- (ciphertext,) = c[:1] # HACK - We should use the previous line
- # instead, but this is more compatible and we're
- # going to replace the Crypto.PublicKey API soon
- # anyway.
- # Blinded RSA decryption (to prevent timing attacks):
- # Step 1: Generate random secret blinding factor r, such that 0 < r < n-1
- r = getRandomRange(1, self.key.n-1, randfunc=self._randfunc)
- # Step 2: Compute c' = c * r**e mod n
- cp = self.key._blind(ciphertext, r)
- # Step 3: Compute m' = c'**d mod n (ordinary RSA decryption)
- mp = self.key._decrypt(cp)
- # Step 4: Compute m = m**(r-1) mod n
- return self.key._unblind(mp, r)
- def _blind(self, m, r):
- return self.key._blind(m, r)
- def _unblind(self, m, r):
- return self.key._unblind(m, r)
- def _sign(self, m, K=None):
- return (self.key._sign(m),)
- def _verify(self, m, sig):
- #(s,) = sig
- (s,) = sig[:1] # HACK - We should use the previous line instead, but
- # this is more compatible and we're going to replace
- # the Crypto.PublicKey API soon anyway.
- return self.key._verify(m, s)
- def has_private(self):
- return self.key.has_private()
- def size(self):
- return self.key.size()
- def can_blind(self):
- return True
- def can_encrypt(self):
- return True
- def can_sign(self):
- return True
- def publickey(self):
- return self.implementation.construct((self.key.n, self.key.e))
- def __getstate__(self):
- d = {}
- for k in self.keydata:
- try:
- d[k] = getattr(self.key, k)
- except AttributeError:
- pass
- return d
- def __setstate__(self, d):
- if not hasattr(self, 'implementation'):
- self.implementation = RSAImplementation()
- t = []
- for k in self.keydata:
- if not d.has_key(k):
- break
- t.append(d[k])
- self.key = self.implementation._math.rsa_construct(*tuple(t))
- def __repr__(self):
- attrs = []
- for k in self.keydata:
- if k == 'n':
- attrs.append("n(%d)" % (self.size()+1,))
- elif hasattr(self.key, k):
- attrs.append(k)
- if self.has_private():
- attrs.append("private")
- # PY3K: This is meant to be text, do not change to bytes (data)
- return "<%s @0x%x %s>" % (self.__class__.__name__, id(self), ",".join(attrs))
- def exportKey(self, format='PEM', passphrase=None, pkcs=1):
- """Export this RSA key.
- :Parameter format: The format to use for wrapping the key.
- - *'DER'*. Binary encoding, always unencrypted.
- - *'PEM'*. Textual encoding, done according to `RFC1421`_/`RFC1423`_.
- Unencrypted (default) or encrypted.
- - *'OpenSSH'*. Textual encoding, done according to OpenSSH specification.
- Only suitable for public keys (not private keys).
- :Type format: string
- :Parameter passphrase: In case of PEM, the pass phrase to derive the encryption key from.
- :Type passphrase: string
- :Parameter pkcs: The PKCS standard to follow for assembling the key.
- You have two choices:
- - with **1**, the public key is embedded into an X.509 `SubjectPublicKeyInfo` DER SEQUENCE.
- The private key is embedded into a `PKCS#1`_ `RSAPrivateKey` DER SEQUENCE.
- This mode is the default.
- - with **8**, the private key is embedded into a `PKCS#8`_ `PrivateKeyInfo` DER SEQUENCE.
- This mode is not available for public keys.
- PKCS standards are not relevant for the *OpenSSH* format.
- :Type pkcs: integer
- :Return: A byte string with the encoded public or private half.
- :Raise ValueError:
- When the format is unknown.
- .. _RFC1421: http://www.ietf.org/rfc/rfc1421.txt
- .. _RFC1423: http://www.ietf.org/rfc/rfc1423.txt
- .. _`PKCS#1`: http://www.ietf.org/rfc/rfc3447.txt
- .. _`PKCS#8`: http://www.ietf.org/rfc/rfc5208.txt
- """
- if passphrase is not None:
- passphrase = tobytes(passphrase)
- if format=='OpenSSH':
- eb = long_to_bytes(self.e)
- nb = long_to_bytes(self.n)
- if bord(eb[0]) & 0x80: eb=bchr(0x00)+eb
- if bord(nb[0]) & 0x80: nb=bchr(0x00)+nb
- keyparts = [ 'ssh-rsa', eb, nb ]
- keystring = ''.join([ struct.pack(">I",len(kp))+kp for kp in keyparts])
- return 'ssh-rsa '+binascii.b2a_base64(keystring)[:-1]
- # DER format is always used, even in case of PEM, which simply
- # encodes it into BASE64.
- der = DerSequence()
- if self.has_private():
- keyType= { 1: 'RSA PRIVATE', 8: 'PRIVATE' }[pkcs]
- der[:] = [ 0, self.n, self.e, self.d, self.p, self.q,
- self.d % (self.p-1), self.d % (self.q-1),
- inverse(self.q, self.p) ]
- if pkcs==8:
- derkey = der.encode()
- der = DerSequence([0])
- der.append(algorithmIdentifier)
- der.append(DerObject('OCTET STRING', derkey).encode())
- else:
- keyType = "PUBLIC"
- der.append(algorithmIdentifier)
- bitmap = DerObject('BIT STRING')
- derPK = DerSequence( [ self.n, self.e ] )
- bitmap.payload = bchr(0x00) + derPK.encode()
- der.append(bitmap.encode())
- if format=='DER':
- return der.encode()
- if format=='PEM':
- pem = b("-----BEGIN " + keyType + " KEY-----\n")
- objenc = None
- if passphrase and keyType.endswith('PRIVATE'):
- # We only support 3DES for encryption
- import Crypto.Hash.MD5
- from Crypto.Cipher import DES3
- from Crypto.Protocol.KDF import PBKDF1
- salt = self._randfunc(8)
- key = PBKDF1(passphrase, salt, 16, 1, Crypto.Hash.MD5)
- key += PBKDF1(key+passphrase, salt, 8, 1, Crypto.Hash.MD5)
- objenc = DES3.new(key, Crypto.Cipher.DES3.MODE_CBC, salt)
- pem += b('Proc-Type: 4,ENCRYPTED\n')
- pem += b('DEK-Info: DES-EDE3-CBC,') + binascii.b2a_hex(salt).upper() + b('\n\n')
-
- binaryKey = der.encode()
- if objenc:
- # Add PKCS#7-like padding
- padding = objenc.block_size-len(binaryKey)%objenc.block_size
- binaryKey = objenc.encrypt(binaryKey+bchr(padding)*padding)
- # Each BASE64 line can take up to 64 characters (=48 bytes of data)
- chunks = [ binascii.b2a_base64(binaryKey[i:i+48]) for i in range(0, len(binaryKey), 48) ]
- pem += b('').join(chunks)
- pem += b("-----END " + keyType + " KEY-----")
- return pem
- return ValueError("Unknown key format '%s'. Cannot export the RSA key." % format)
- class RSAImplementation(object):
- """
- An RSA key factory.
- This class is only internally used to implement the methods of the `Crypto.PublicKey.RSA` module.
- :sort: __init__,generate,construct,importKey
- :undocumented: _g*, _i*
- """
- def __init__(self, **kwargs):
- """Create a new RSA key factory.
- :Keywords:
- use_fast_math : bool
- Specify which mathematic library to use:
- - *None* (default). Use fastest math available.
- - *True* . Use fast math.
- - *False* . Use slow math.
- default_randfunc : callable
- Specify how to collect random data:
- - *None* (default). Use Random.new().read().
- - not *None* . Use the specified function directly.
- :Raise RuntimeError:
- When **use_fast_math** =True but fast math is not available.
- """
- use_fast_math = kwargs.get('use_fast_math', None)
- if use_fast_math is None: # Automatic
- if _fastmath is not None:
- self._math = _fastmath
- else:
- self._math = _slowmath
- elif use_fast_math: # Explicitly select fast math
- if _fastmath is not None:
- self._math = _fastmath
- else:
- raise RuntimeError("fast math module not available")
- else: # Explicitly select slow math
- self._math = _slowmath
- self.error = self._math.error
- self._default_randfunc = kwargs.get('default_randfunc', None)
- self._current_randfunc = None
- def _get_randfunc(self, randfunc):
- if randfunc is not None:
- return randfunc
- elif self._current_randfunc is None:
- self._current_randfunc = Random.new().read
- return self._current_randfunc
- def generate(self, bits, randfunc=None, progress_func=None, e=65537):
- """Randomly generate a fresh, new RSA key.
- :Parameters:
- bits : int
- Key length, or size (in bits) of the RSA modulus.
- It must be a multiple of 256, and no smaller than 1024.
- randfunc : callable
- Random number generation function; it should accept
- a single integer N and return a string of random data
- N bytes long.
- If not specified, a new one will be instantiated
- from ``Crypto.Random``.
- progress_func : callable
- Optional function that will be called with a short string
- containing the key parameter currently being generated;
- it's useful for interactive applications where a user is
- waiting for a key to be generated.
- e : int
- Public RSA exponent. It must be an odd positive integer.
- It is typically a small number with very few ones in its
- binary representation.
- The default value 65537 (= ``0b10000000000000001`` ) is a safe
- choice: other common values are 5, 7, 17, and 257.
- :attention: You should always use a cryptographically secure random number generator,
- such as the one defined in the ``Crypto.Random`` module; **don't** just use the
- current time and the ``random`` module.
- :attention: Exponent 3 is also widely used, but it requires very special care when padding
- the message.
- :Return: An RSA key object (`_RSAobj`).
- :Raise ValueError:
- When **bits** is too little or not a multiple of 256, or when
- **e** is not odd or smaller than 2.
- """
- if bits < 1024 or (bits & 0xff) != 0:
- # pubkey.getStrongPrime doesn't like anything that's not a multiple of 256 and >= 1024
- raise ValueError("RSA modulus length must be a multiple of 256 and >= 1024")
- if e%2==0 or e<3:
- raise ValueError("RSA public exponent must be a positive, odd integer larger than 2.")
- rf = self._get_randfunc(randfunc)
- obj = _RSA.generate_py(bits, rf, progress_func, e) # TODO: Don't use legacy _RSA module
- key = self._math.rsa_construct(obj.n, obj.e, obj.d, obj.p, obj.q, obj.u)
- return _RSAobj(self, key)
- def construct(self, tup):
- """Construct an RSA key from a tuple of valid RSA components.
- The modulus **n** must be the product of two primes.
- The public exponent **e** must be odd and larger than 1.
- In case of a private key, the following equations must apply:
- - e != 1
- - p*q = n
- - e*d = 1 mod (p-1)(q-1)
- - p*u = 1 mod q
- :Parameters:
- tup : tuple
- A tuple of long integers, with at least 2 and no
- more than 6 items. The items come in the following order:
- 1. RSA modulus (n).
- 2. Public exponent (e).
- 3. Private exponent (d). Only required if the key is private.
- 4. First factor of n (p). Optional.
- 5. Second factor of n (q). Optional.
- 6. CRT coefficient, (1/p) mod q (u). Optional.
-
- :Return: An RSA key object (`_RSAobj`).
- """
- key = self._math.rsa_construct(*tup)
- return _RSAobj(self, key)
- def _importKeyDER(self, externKey):
- """Import an RSA key (public or private half), encoded in DER form."""
- try:
- der = DerSequence()
- der.decode(externKey, True)
- # Try PKCS#1 first, for a private key
- if len(der)==9 and der.hasOnlyInts() and der[0]==0:
- # ASN.1 RSAPrivateKey element
- del der[6:] # Remove d mod (p-1), d mod (q-1), and q^{-1} mod p
- der.append(inverse(der[4],der[5])) # Add p^{-1} mod q
- del der[0] # Remove version
- return self.construct(der[:])
- # Keep on trying PKCS#1, but now for a public key
- if len(der)==2:
- # The DER object is an RSAPublicKey SEQUENCE with two elements
- if der.hasOnlyInts():
- return self.construct(der[:])
- # The DER object is a SubjectPublicKeyInfo SEQUENCE with two elements:
- # an 'algorithm' (or 'algorithmIdentifier') SEQUENCE and a 'subjectPublicKey' BIT STRING.
- # 'algorithm' takes the value given a few lines above.
- # 'subjectPublicKey' encapsulates the actual ASN.1 RSAPublicKey element.
- if der[0]==algorithmIdentifier:
- bitmap = DerObject()
- bitmap.decode(der[1], True)
- if bitmap.isType('BIT STRING') and bord(bitmap.payload[0])==0x00:
- der.decode(bitmap.payload[1:], True)
- if len(der)==2 and der.hasOnlyInts():
- return self.construct(der[:])
- # Try unencrypted PKCS#8
- if der[0]==0:
- # The second element in the SEQUENCE is algorithmIdentifier.
- # It must say RSA (see above for description).
- if der[1]==algorithmIdentifier:
- privateKey = DerObject()
- privateKey.decode(der[2], True)
- if privateKey.isType('OCTET STRING'):
- return self._importKeyDER(privateKey.payload)
- except ValueError, IndexError:
- pass
- raise ValueError("RSA key format is not supported")
- def importKey(self, externKey, passphrase=None):
- """Import an RSA key (public or private half), encoded in standard form.
- :Parameter externKey:
- The RSA key to import, encoded as a string.
- An RSA public key can be in any of the following formats:
- - X.509 `subjectPublicKeyInfo` DER SEQUENCE (binary or PEM encoding)
- - `PKCS#1`_ `RSAPublicKey` DER SEQUENCE (binary or PEM encoding)
- - OpenSSH (textual public key only)
- An RSA private key can be in any of the following formats:
- - PKCS#1 `RSAPrivateKey` DER SEQUENCE (binary or PEM encoding)
- - `PKCS#8`_ `PrivateKeyInfo` DER SEQUENCE (binary or PEM encoding)
- - OpenSSH (textual public key only)
- For details about the PEM encoding, see `RFC1421`_/`RFC1423`_.
-
- In case of PEM encoding, the private key can be encrypted with DES or 3TDES according to a certain ``pass phrase``.
- Only OpenSSL-compatible pass phrases are supported.
- :Type externKey: string
- :Parameter passphrase:
- In case of an encrypted PEM key, this is the pass phrase from which the encryption key is derived.
- :Type passphrase: string
-
- :Return: An RSA key object (`_RSAobj`).
- :Raise ValueError/IndexError/TypeError:
- When the given key cannot be parsed (possibly because the pass phrase is wrong).
- .. _RFC1421: http://www.ietf.org/rfc/rfc1421.txt
- .. _RFC1423: http://www.ietf.org/rfc/rfc1423.txt
- .. _`PKCS#1`: http://www.ietf.org/rfc/rfc3447.txt
- .. _`PKCS#8`: http://www.ietf.org/rfc/rfc5208.txt
- """
- externKey = tobytes(externKey)
- if passphrase is not None:
- passphrase = tobytes(passphrase)
- if externKey.startswith(b('-----')):
- # This is probably a PEM encoded key
- lines = externKey.replace(b(" "),b('')).split()
- keyobj = None
- # The encrypted PEM format
- if lines[1].startswith(b('Proc-Type:4,ENCRYPTED')):
- DEK = lines[2].split(b(':'))
- if len(DEK)!=2 or DEK[0]!=b('DEK-Info') or not passphrase:
- raise ValueError("PEM encryption format not supported.")
- algo, salt = DEK[1].split(b(','))
- salt = binascii.a2b_hex(salt)
- import Crypto.Hash.MD5
- from Crypto.Cipher import DES, DES3
- from Crypto.Protocol.KDF import PBKDF1
- if algo==b("DES-CBC"):
- # This is EVP_BytesToKey in OpenSSL
- key = PBKDF1(passphrase, salt, 8, 1, Crypto.Hash.MD5)
- keyobj = DES.new(key, Crypto.Cipher.DES.MODE_CBC, salt)
- elif algo==b("DES-EDE3-CBC"):
- # Note that EVP_BytesToKey is note exactly the same as PBKDF1
- key = PBKDF1(passphrase, salt, 16, 1, Crypto.Hash.MD5)
- key += PBKDF1(key+passphrase, salt, 8, 1, Crypto.Hash.MD5)
- keyobj = DES3.new(key, Crypto.Cipher.DES3.MODE_CBC, salt)
- else:
- raise ValueError("Unsupport PEM encryption algorithm.")
- lines = lines[2:]
-
- der = binascii.a2b_base64(b('').join(lines[1:-1]))
- if keyobj:
- der = keyobj.decrypt(der)
- padding = bord(der[-1])
- der = der[:-padding]
- return self._importKeyDER(der)
- if externKey.startswith(b('ssh-rsa ')):
- # This is probably an OpenSSH key
- keystring = binascii.a2b_base64(externKey.split(b(' '))[1])
- keyparts = []
- while len(keystring)>4:
- l = struct.unpack(">I",keystring[:4])[0]
- keyparts.append(keystring[4:4+l])
- keystring = keystring[4+l:]
- e = bytes_to_long(keyparts[1])
- n = bytes_to_long(keyparts[2])
- return self.construct([n, e])
- if bord(externKey[0])==0x30:
- # This is probably a DER encoded key
- return self._importKeyDER(externKey)
-
- raise ValueError("RSA key format is not supported")
- #: This is the ASN.1 DER object that qualifies an algorithm as
- #: compliant to PKCS#1 (that is, the standard RSA).
- # It is found in all 'algorithm' fields (also called 'algorithmIdentifier').
- # It is a SEQUENCE with the oid assigned to RSA and with its parameters (none).
- # 0x06 0x09 OBJECT IDENTIFIER, 9 bytes of payload
- # 0x2A 0x86 0x48 0x86 0xF7 0x0D 0x01 0x01 0x01
- # rsaEncryption (1 2 840 113549 1 1 1) (PKCS #1)
- # 0x05 0x00 NULL
- algorithmIdentifier = DerSequence(
- [ b('\x06\x09\x2A\x86\x48\x86\xF7\x0D\x01\x01\x01'),
- DerNull().encode() ]
- ).encode()
-
- _impl = RSAImplementation()
- #:
- #: Randomly generate a fresh, new RSA key object.
- #:
- #: See `RSAImplementation.generate`.
- #:
- generate = _impl.generate
- #:
- #: Construct an RSA key object from a tuple of valid RSA components.
- #:
- #: See `RSAImplementation.construct`.
- #:
- construct = _impl.construct
- #:
- #: Import an RSA key (public or private half), encoded in standard form.
- #:
- #: See `RSAImplementation.importKey`.
- #:
- importKey = _impl.importKey
- error = _impl.error
- # vim:set ts=4 sw=4 sts=4 expandtab:
|