123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171 |
- # -*- coding: ascii -*-
- #
- # FortunaAccumulator.py : Fortuna's internal accumulator
- #
- # Written in 2008 by Dwayne C. Litzenberger <dlitz@dlitz.net>
- #
- # ===================================================================
- # The contents of this file are dedicated to the public domain. To
- # the extent that dedication to the public domain is not available,
- # everyone is granted a worldwide, perpetual, royalty-free,
- # non-exclusive license to exercise all rights associated with the
- # contents of this file for any purpose whatsoever.
- # No rights are reserved.
- #
- # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
- # EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
- # MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
- # NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
- # BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
- # ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
- # CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
- # SOFTWARE.
- # ===================================================================
- __revision__ = "$Id$"
- import sys
- if sys.version_info[0] == 2 and sys.version_info[1] == 1:
- from Crypto.Util.py21compat import *
- from Crypto.Util.py3compat import *
-
- from binascii import b2a_hex
- import time
- import warnings
- from Crypto.pct_warnings import ClockRewindWarning
- import SHAd256
- import FortunaGenerator
- class FortunaPool(object):
- """Fortuna pool type
- This object acts like a hash object, with the following differences:
- - It keeps a count (the .length attribute) of the number of bytes that
- have been added to the pool
- - It supports a .reset() method for in-place reinitialization
- - The method to add bytes to the pool is .append(), not .update().
- """
- digest_size = SHAd256.digest_size
- def __init__(self):
- self.reset()
- def append(self, data):
- self._h.update(data)
- self.length += len(data)
- def digest(self):
- return self._h.digest()
- def hexdigest(self):
- if sys.version_info[0] == 2:
- return b2a_hex(self.digest())
- else:
- return b2a_hex(self.digest()).decode()
- def reset(self):
- self._h = SHAd256.new()
- self.length = 0
- def which_pools(r):
- """Return a list of pools indexes (in range(32)) that are to be included during reseed number r.
- According to _Practical Cryptography_, chapter 10.5.2 "Pools":
- "Pool P_i is included if 2**i is a divisor of r. Thus P_0 is used
- every reseed, P_1 every other reseed, P_2 every fourth reseed, etc."
- """
- # This is a separate function so that it can be unit-tested.
- assert r >= 1
- retval = []
- mask = 0
- for i in range(32):
- # "Pool P_i is included if 2**i is a divisor of [reseed_count]"
- if (r & mask) == 0:
- retval.append(i)
- else:
- break # optimization. once this fails, it always fails
- mask = (mask << 1) | 1L
- return retval
- class FortunaAccumulator(object):
- # An estimate of how many bytes we must append to pool 0 before it will
- # contain 128 bits of entropy (with respect to an attack). We reseed the
- # generator only after pool 0 contains `min_pool_size` bytes. Note that
- # unlike with some other PRNGs, Fortuna's security does not rely on the
- # accuracy of this estimate---we can accord to be optimistic here.
- min_pool_size = 64 # size in bytes
- # If an attacker can predict some (but not all) of our entropy sources, the
- # `min_pool_size` check may not be sufficient to prevent a successful state
- # compromise extension attack. To resist this attack, Fortuna spreads the
- # input across 32 pools, which are then consumed (to reseed the output
- # generator) with exponentially decreasing frequency.
- #
- # In order to prevent an attacker from gaining knowledge of all 32 pools
- # before we have a chance to fill them with enough information that the
- # attacker cannot predict, we impose a rate limit of 10 reseeds/second (one
- # per 100 ms). This ensures that a hypothetical 33rd pool would only be
- # needed after a minimum of 13 years of sustained attack.
- reseed_interval = 0.100 # time in seconds
- def __init__(self):
- self.reseed_count = 0
- self.generator = FortunaGenerator.AESGenerator()
- self.last_reseed = None
- # Initialize 32 FortunaPool instances.
- # NB: This is _not_ equivalent to [FortunaPool()]*32, which would give
- # us 32 references to the _same_ FortunaPool instance (and cause the
- # assertion below to fail).
- self.pools = [FortunaPool() for i in range(32)] # 32 pools
- assert(self.pools[0] is not self.pools[1])
- def _forget_last_reseed(self):
- # This is not part of the standard Fortuna definition, and using this
- # function frequently can weaken Fortuna's ability to resist a state
- # compromise extension attack, but we need this in order to properly
- # implement Crypto.Random.atfork(). Otherwise, forked child processes
- # might continue to use their parent's PRNG state for up to 100ms in
- # some cases. (e.g. CVE-2013-1445)
- self.last_reseed = None
- def random_data(self, bytes):
- current_time = time.time()
- if (self.last_reseed is not None and self.last_reseed > current_time): # Avoid float comparison to None to make Py3k happy
- warnings.warn("Clock rewind detected. Resetting last_reseed.", ClockRewindWarning)
- self.last_reseed = None
- if (self.pools[0].length >= self.min_pool_size and
- (self.last_reseed is None or
- current_time > self.last_reseed + self.reseed_interval)):
- self._reseed(current_time)
- # The following should fail if we haven't seeded the pool yet.
- return self.generator.pseudo_random_data(bytes)
- def _reseed(self, current_time=None):
- if current_time is None:
- current_time = time.time()
- seed = []
- self.reseed_count += 1
- self.last_reseed = current_time
- for i in which_pools(self.reseed_count):
- seed.append(self.pools[i].digest())
- self.pools[i].reset()
- seed = b("").join(seed)
- self.generator.reseed(seed)
- def add_random_event(self, source_number, pool_number, data):
- assert 1 <= len(data) <= 32
- assert 0 <= source_number <= 255
- assert 0 <= pool_number <= 31
- self.pools[pool_number].append(bchr(source_number))
- self.pools[pool_number].append(bchr(len(data)))
- self.pools[pool_number].append(data)
- # vim:set ts=4 sw=4 sts=4 expandtab:
|