123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132 |
- # -*- coding: ascii -*-
- #
- # FortunaGenerator.py : Fortuna's internal PRNG
- #
- # Written in 2008 by Dwayne C. Litzenberger <dlitz@dlitz.net>
- #
- # ===================================================================
- # The contents of this file are dedicated to the public domain. To
- # the extent that dedication to the public domain is not available,
- # everyone is granted a worldwide, perpetual, royalty-free,
- # non-exclusive license to exercise all rights associated with the
- # contents of this file for any purpose whatsoever.
- # No rights are reserved.
- #
- # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
- # EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
- # MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
- # NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
- # BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
- # ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
- # CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
- # SOFTWARE.
- # ===================================================================
- __revision__ = "$Id$"
- import sys
- if sys.version_info[0] is 2 and sys.version_info[1] is 1:
- from Crypto.Util.py21compat import *
- from Crypto.Util.py3compat import *
- import struct
- from Crypto.Util.number import ceil_shift, exact_log2, exact_div
- from Crypto.Util import Counter
- from Crypto.Cipher import AES
- import SHAd256
- class AESGenerator(object):
- """The Fortuna "generator"
- This is used internally by the Fortuna PRNG to generate arbitrary amounts
- of pseudorandom data from a smaller amount of seed data.
- The output is generated by running AES-256 in counter mode and re-keying
- after every mebibyte (2**16 blocks) of output.
- """
- block_size = AES.block_size # output block size in octets (128 bits)
- key_size = 32 # key size in octets (256 bits)
- # Because of the birthday paradox, we expect to find approximately one
- # collision for every 2**64 blocks of output from a real random source.
- # However, this code generates pseudorandom data by running AES in
- # counter mode, so there will be no collisions until the counter
- # (theoretically) wraps around at 2**128 blocks. Thus, in order to prevent
- # Fortuna's pseudorandom output from deviating perceptibly from a true
- # random source, Ferguson and Schneier specify a limit of 2**16 blocks
- # without rekeying.
- max_blocks_per_request = 2**16 # Allow no more than this number of blocks per _pseudo_random_data request
- _four_kiblocks_of_zeros = b("\0") * block_size * 4096
- def __init__(self):
- self.counter = Counter.new(nbits=self.block_size*8, initial_value=0, little_endian=True)
- self.key = None
- # Set some helper constants
- self.block_size_shift = exact_log2(self.block_size)
- assert (1 << self.block_size_shift) == self.block_size
- self.blocks_per_key = exact_div(self.key_size, self.block_size)
- assert self.key_size == self.blocks_per_key * self.block_size
- self.max_bytes_per_request = self.max_blocks_per_request * self.block_size
- def reseed(self, seed):
- if self.key is None:
- self.key = b("\0") * self.key_size
- self._set_key(SHAd256.new(self.key + seed).digest())
- self.counter() # increment counter
- assert len(self.key) == self.key_size
- def pseudo_random_data(self, bytes):
- assert bytes >= 0
- num_full_blocks = bytes >> 20
- remainder = bytes & ((1<<20)-1)
- retval = []
- for i in xrange(num_full_blocks):
- retval.append(self._pseudo_random_data(1<<20))
- retval.append(self._pseudo_random_data(remainder))
-
- return b("").join(retval)
- def _set_key(self, key):
- self.key = key
- self._cipher = AES.new(key, AES.MODE_CTR, counter=self.counter)
- def _pseudo_random_data(self, bytes):
- if not (0 <= bytes <= self.max_bytes_per_request):
- raise AssertionError("You cannot ask for more than 1 MiB of data per request")
- num_blocks = ceil_shift(bytes, self.block_size_shift) # num_blocks = ceil(bytes / self.block_size)
- # Compute the output
- retval = self._generate_blocks(num_blocks)[:bytes]
- # Switch to a new key to avoid later compromises of this output (i.e.
- # state compromise extension attacks)
- self._set_key(self._generate_blocks(self.blocks_per_key))
- assert len(retval) == bytes
- assert len(self.key) == self.key_size
- return retval
- def _generate_blocks(self, num_blocks):
- if self.key is None:
- raise AssertionError("generator must be seeded before use")
- assert 0 <= num_blocks <= self.max_blocks_per_request
- retval = []
- for i in xrange(num_blocks >> 12): # xrange(num_blocks / 4096)
- retval.append(self._cipher.encrypt(self._four_kiblocks_of_zeros))
- remaining_bytes = (num_blocks & 4095) << self.block_size_shift # (num_blocks % 4095) * self.block_size
- retval.append(self._cipher.encrypt(self._four_kiblocks_of_zeros[:remaining_bytes]))
- return b("").join(retval)
- # vim:set ts=4 sw=4 sts=4 expandtab:
|