123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399 |
- # -*- coding: utf-8 -*-
- #
- # SelfTest/Hash/common.py: Common code for Crypto.SelfTest.Hash
- #
- # Written in 2008 by Dwayne C. Litzenberger <dlitz@dlitz.net>
- #
- # ===================================================================
- # The contents of this file are dedicated to the public domain. To
- # the extent that dedication to the public domain is not available,
- # everyone is granted a worldwide, perpetual, royalty-free,
- # non-exclusive license to exercise all rights associated with the
- # contents of this file for any purpose whatsoever.
- # No rights are reserved.
- #
- # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
- # EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
- # MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
- # NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
- # BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
- # ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
- # CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
- # SOFTWARE.
- # ===================================================================
- """Self-testing for PyCrypto hash modules"""
- __revision__ = "$Id$"
- import sys
- import unittest
- from binascii import a2b_hex, b2a_hex
- from Crypto.Util.py3compat import *
- # For compatibility with Python 2.1 and Python 2.2
- if sys.hexversion < 0x02030000:
- # Python 2.1 doesn't have a dict() function
- # Python 2.2 dict() function raises TypeError if you do dict(MD5='blah')
- def dict(**kwargs):
- return kwargs.copy()
- else:
- dict = dict
- class _NoDefault: pass # sentinel object
- def _extract(d, k, default=_NoDefault):
- """Get an item from a dictionary, and remove it from the dictionary."""
- try:
- retval = d[k]
- except KeyError:
- if default is _NoDefault:
- raise
- return default
- del d[k]
- return retval
- # Generic cipher test case
- class CipherSelfTest(unittest.TestCase):
- def __init__(self, module, params):
- unittest.TestCase.__init__(self)
- self.module = module
- # Extract the parameters
- params = params.copy()
- self.description = _extract(params, 'description')
- self.key = b(_extract(params, 'key'))
- self.plaintext = b(_extract(params, 'plaintext'))
- self.ciphertext = b(_extract(params, 'ciphertext'))
- self.module_name = _extract(params, 'module_name', None)
- mode = _extract(params, 'mode', None)
- self.mode_name = str(mode)
- if mode is not None:
- # Block cipher
- self.mode = getattr(self.module, "MODE_" + mode)
- self.iv = _extract(params, 'iv', None)
- if self.iv is not None: self.iv = b(self.iv)
- # Only relevant for OPENPGP mode
- self.encrypted_iv = _extract(params, 'encrypted_iv', None)
- if self.encrypted_iv is not None:
- self.encrypted_iv = b(self.encrypted_iv)
- else:
- # Stream cipher
- self.mode = None
- self.iv = None
- self.extra_params = params
- def shortDescription(self):
- return self.description
- def _new(self, do_decryption=0):
- params = self.extra_params.copy()
- # Handle CTR mode parameters. By default, we use Counter.new(self.module.block_size)
- if hasattr(self.module, "MODE_CTR") and self.mode == self.module.MODE_CTR:
- from Crypto.Util import Counter
- ctr_class = _extract(params, 'ctr_class', Counter.new)
- ctr_params = _extract(params, 'ctr_params', {}).copy()
- if ctr_params.has_key('prefix'): ctr_params['prefix'] = a2b_hex(b(ctr_params['prefix']))
- if ctr_params.has_key('suffix'): ctr_params['suffix'] = a2b_hex(b(ctr_params['suffix']))
- if not ctr_params.has_key('nbits'):
- ctr_params['nbits'] = 8*(self.module.block_size - len(ctr_params.get('prefix', '')) - len(ctr_params.get('suffix', '')))
- params['counter'] = ctr_class(**ctr_params)
- if self.mode is None:
- # Stream cipher
- return self.module.new(a2b_hex(self.key), **params)
- elif self.iv is None:
- # Block cipher without iv
- return self.module.new(a2b_hex(self.key), self.mode, **params)
- else:
- # Block cipher with iv
- if do_decryption and self.mode == self.module.MODE_OPENPGP:
- # In PGP mode, the IV to feed for decryption is the *encrypted* one
- return self.module.new(a2b_hex(self.key), self.mode, a2b_hex(self.encrypted_iv), **params)
- else:
- return self.module.new(a2b_hex(self.key), self.mode, a2b_hex(self.iv), **params)
- def runTest(self):
- plaintext = a2b_hex(self.plaintext)
- ciphertext = a2b_hex(self.ciphertext)
- ct1 = b2a_hex(self._new().encrypt(plaintext))
- pt1 = b2a_hex(self._new(1).decrypt(ciphertext))
- ct2 = b2a_hex(self._new().encrypt(plaintext))
- pt2 = b2a_hex(self._new(1).decrypt(ciphertext))
- if hasattr(self.module, "MODE_OPENPGP") and self.mode == self.module.MODE_OPENPGP:
- # In PGP mode, data returned by the first encrypt()
- # is prefixed with the encrypted IV.
- # Here we check it and then remove it from the ciphertexts.
- eilen = len(self.encrypted_iv)
- self.assertEqual(self.encrypted_iv, ct1[:eilen])
- self.assertEqual(self.encrypted_iv, ct2[:eilen])
- ct1 = ct1[eilen:]
- ct2 = ct2[eilen:]
- self.assertEqual(self.ciphertext, ct1) # encrypt
- self.assertEqual(self.ciphertext, ct2) # encrypt (second time)
- self.assertEqual(self.plaintext, pt1) # decrypt
- self.assertEqual(self.plaintext, pt2) # decrypt (second time)
- class CipherStreamingSelfTest(CipherSelfTest):
- def shortDescription(self):
- desc = self.module_name
- if self.mode is not None:
- desc += " in %s mode" % (self.mode_name,)
- return "%s should behave like a stream cipher" % (desc,)
- def runTest(self):
- plaintext = a2b_hex(self.plaintext)
- ciphertext = a2b_hex(self.ciphertext)
- # The cipher should work like a stream cipher
- # Test counter mode encryption, 3 bytes at a time
- ct3 = []
- cipher = self._new()
- for i in range(0, len(plaintext), 3):
- ct3.append(cipher.encrypt(plaintext[i:i+3]))
- ct3 = b2a_hex(b("").join(ct3))
- self.assertEqual(self.ciphertext, ct3) # encryption (3 bytes at a time)
- # Test counter mode decryption, 3 bytes at a time
- pt3 = []
- cipher = self._new()
- for i in range(0, len(ciphertext), 3):
- pt3.append(cipher.encrypt(ciphertext[i:i+3]))
- # PY3K: This is meant to be text, do not change to bytes (data)
- pt3 = b2a_hex(b("").join(pt3))
- self.assertEqual(self.plaintext, pt3) # decryption (3 bytes at a time)
- class CTRSegfaultTest(unittest.TestCase):
- def __init__(self, module, params):
- unittest.TestCase.__init__(self)
- self.module = module
- self.key = b(params['key'])
- self.module_name = params.get('module_name', None)
- def shortDescription(self):
- return """Regression test: %s.new(key, %s.MODE_CTR) should raise TypeError, not segfault""" % (self.module_name, self.module_name)
- def runTest(self):
- self.assertRaises(TypeError, self.module.new, a2b_hex(self.key), self.module.MODE_CTR)
- class CTRWraparoundTest(unittest.TestCase):
- def __init__(self, module, params):
- unittest.TestCase.__init__(self)
- self.module = module
- self.key = b(params['key'])
- self.module_name = params.get('module_name', None)
- def shortDescription(self):
- return """Regression test: %s with MODE_CTR should raise OverflowError on wraparound when shortcut used""" % (self.module_name,)
- def runTest(self):
- from Crypto.Util import Counter
- for disable_shortcut in (0, 1): # (False, True) Test CTR-mode shortcut and PyObject_CallObject code paths
- for little_endian in (0, 1): # (False, True) Test both endiannesses
- ctr = Counter.new(8*self.module.block_size, initial_value=2L**(8*self.module.block_size)-1, little_endian=little_endian, disable_shortcut=disable_shortcut)
- cipher = self.module.new(a2b_hex(self.key), self.module.MODE_CTR, counter=ctr)
- block = b("\x00") * self.module.block_size
- cipher.encrypt(block)
- self.assertRaises(OverflowError, cipher.encrypt, block)
- class CFBSegmentSizeTest(unittest.TestCase):
- def __init__(self, module, params):
- unittest.TestCase.__init__(self)
- self.module = module
- self.key = b(params['key'])
- self.description = params['description']
- def shortDescription(self):
- return self.description
- def runTest(self):
- """Regression test: m.new(key, m.MODE_CFB, segment_size=N) should require segment_size to be a multiple of 8 bits"""
- for i in range(1, 8):
- self.assertRaises(ValueError, self.module.new, a2b_hex(self.key), self.module.MODE_CFB, segment_size=i)
- self.module.new(a2b_hex(self.key), self.module.MODE_CFB, "\0"*self.module.block_size, segment_size=8) # should succeed
- class RoundtripTest(unittest.TestCase):
- def __init__(self, module, params):
- from Crypto import Random
- unittest.TestCase.__init__(self)
- self.module = module
- self.iv = Random.get_random_bytes(module.block_size)
- self.key = b(params['key'])
- self.plaintext = 100 * b(params['plaintext'])
- self.module_name = params.get('module_name', None)
- def shortDescription(self):
- return """%s .decrypt() output of .encrypt() should not be garbled""" % (self.module_name,)
- def runTest(self):
- for mode in (self.module.MODE_ECB, self.module.MODE_CBC, self.module.MODE_CFB, self.module.MODE_OFB, self.module.MODE_OPENPGP):
- encryption_cipher = self.module.new(a2b_hex(self.key), mode, self.iv)
- ciphertext = encryption_cipher.encrypt(self.plaintext)
-
- if mode != self.module.MODE_OPENPGP:
- decryption_cipher = self.module.new(a2b_hex(self.key), mode, self.iv)
- else:
- eiv = ciphertext[:self.module.block_size+2]
- ciphertext = ciphertext[self.module.block_size+2:]
- decryption_cipher = self.module.new(a2b_hex(self.key), mode, eiv)
- decrypted_plaintext = decryption_cipher.decrypt(ciphertext)
- self.assertEqual(self.plaintext, decrypted_plaintext)
- class PGPTest(unittest.TestCase):
- def __init__(self, module, params):
- unittest.TestCase.__init__(self)
- self.module = module
- self.key = b(params['key'])
- def shortDescription(self):
- return "MODE_PGP was implemented incorrectly and insecurely. It's completely banished now."
- def runTest(self):
- self.assertRaises(ValueError, self.module.new, a2b_hex(self.key),
- self.module.MODE_PGP)
- class IVLengthTest(unittest.TestCase):
- def __init__(self, module, params):
- unittest.TestCase.__init__(self)
- self.module = module
- self.key = b(params['key'])
- def shortDescription(self):
- return "Check that all modes except MODE_ECB and MODE_CTR require an IV of the proper length"
- def runTest(self):
- self.assertRaises(ValueError, self.module.new, a2b_hex(self.key),
- self.module.MODE_CBC, "")
- self.assertRaises(ValueError, self.module.new, a2b_hex(self.key),
- self.module.MODE_CFB, "")
- self.assertRaises(ValueError, self.module.new, a2b_hex(self.key),
- self.module.MODE_OFB, "")
- self.assertRaises(ValueError, self.module.new, a2b_hex(self.key),
- self.module.MODE_OPENPGP, "")
- self.module.new(a2b_hex(self.key), self.module.MODE_ECB, "")
- self.module.new(a2b_hex(self.key), self.module.MODE_CTR, "", counter=self._dummy_counter)
- def _dummy_counter(self):
- return "\0" * self.module.block_size
- def make_block_tests(module, module_name, test_data):
- tests = []
- extra_tests_added = 0
- for i in range(len(test_data)):
- row = test_data[i]
- # Build the "params" dictionary
- params = {'mode': 'ECB'}
- if len(row) == 3:
- (params['plaintext'], params['ciphertext'], params['key']) = row
- elif len(row) == 4:
- (params['plaintext'], params['ciphertext'], params['key'], params['description']) = row
- elif len(row) == 5:
- (params['plaintext'], params['ciphertext'], params['key'], params['description'], extra_params) = row
- params.update(extra_params)
- else:
- raise AssertionError("Unsupported tuple size %d" % (len(row),))
- # Build the display-name for the test
- p2 = params.copy()
- p_key = _extract(p2, 'key')
- p_plaintext = _extract(p2, 'plaintext')
- p_ciphertext = _extract(p2, 'ciphertext')
- p_description = _extract(p2, 'description', None)
- p_mode = p2.get('mode', 'ECB')
- if p_mode == 'ECB':
- _extract(p2, 'mode', 'ECB')
- if p_description is not None:
- description = p_description
- elif p_mode == 'ECB' and not p2:
- description = "p=%s, k=%s" % (p_plaintext, p_key)
- else:
- description = "p=%s, k=%s, %r" % (p_plaintext, p_key, p2)
- name = "%s #%d: %s" % (module_name, i+1, description)
- params['description'] = name
- params['module_name'] = module_name
- # Add extra test(s) to the test suite before the current test
- if not extra_tests_added:
- tests += [
- CTRSegfaultTest(module, params),
- CTRWraparoundTest(module, params),
- CFBSegmentSizeTest(module, params),
- RoundtripTest(module, params),
- PGPTest(module, params),
- IVLengthTest(module, params),
- ]
- extra_tests_added = 1
- # Add the current test to the test suite
- tests.append(CipherSelfTest(module, params))
- # When using CTR mode, test that the interface behaves like a stream cipher
- if p_mode == 'CTR':
- tests.append(CipherStreamingSelfTest(module, params))
- # When using CTR mode, test the non-shortcut code path.
- if p_mode == 'CTR' and not params.has_key('ctr_class'):
- params2 = params.copy()
- params2['description'] += " (shortcut disabled)"
- ctr_params2 = params.get('ctr_params', {}).copy()
- params2['ctr_params'] = ctr_params2
- if not params2['ctr_params'].has_key('disable_shortcut'):
- params2['ctr_params']['disable_shortcut'] = 1
- tests.append(CipherSelfTest(module, params2))
- return tests
- def make_stream_tests(module, module_name, test_data):
- tests = []
- for i in range(len(test_data)):
- row = test_data[i]
- # Build the "params" dictionary
- params = {}
- if len(row) == 3:
- (params['plaintext'], params['ciphertext'], params['key']) = row
- elif len(row) == 4:
- (params['plaintext'], params['ciphertext'], params['key'], params['description']) = row
- elif len(row) == 5:
- (params['plaintext'], params['ciphertext'], params['key'], params['description'], extra_params) = row
- params.update(extra_params)
- else:
- raise AssertionError("Unsupported tuple size %d" % (len(row),))
- # Build the display-name for the test
- p2 = params.copy()
- p_key = _extract(p2, 'key')
- p_plaintext = _extract(p2, 'plaintext')
- p_ciphertext = _extract(p2, 'ciphertext')
- p_description = _extract(p2, 'description', None)
- if p_description is not None:
- description = p_description
- elif not p2:
- description = "p=%s, k=%s" % (p_plaintext, p_key)
- else:
- description = "p=%s, k=%s, %r" % (p_plaintext, p_key, p2)
- name = "%s #%d: %s" % (module_name, i+1, description)
- params['description'] = name
- params['module_name'] = module_name
- # Add the test to the test suite
- tests.append(CipherSelfTest(module, params))
- tests.append(CipherStreamingSelfTest(module, params))
- return tests
- # vim:set ts=4 sw=4 sts=4 expandtab:
|