123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355 |
- # -*- coding: utf-8 -*-
- #
- # Signature/PKCS1_PSS.py : PKCS#1 PPS
- #
- # ===================================================================
- # The contents of this file are dedicated to the public domain. To
- # the extent that dedication to the public domain is not available,
- # everyone is granted a worldwide, perpetual, royalty-free,
- # non-exclusive license to exercise all rights associated with the
- # contents of this file for any purpose whatsoever.
- # No rights are reserved.
- #
- # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
- # EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
- # MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
- # NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
- # BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
- # ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
- # CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
- # SOFTWARE.
- # ===================================================================
- """RSA digital signature protocol with appendix according to PKCS#1 PSS.
- See RFC3447__ or the `original RSA Labs specification`__.
- This scheme is more properly called ``RSASSA-PSS``.
- For example, a sender may authenticate a message using SHA-1 and PSS like
- this:
- >>> from Crypto.Signature import PKCS1_PSS
- >>> from Crypto.Hash import SHA
- >>> from Crypto.PublicKey import RSA
- >>> from Crypto import Random
- >>>
- >>> message = 'To be signed'
- >>> key = RSA.importKey(open('privkey.der').read())
- >>> h = SHA.new()
- >>> h.update(message)
- >>> signer = PKCS1_PSS.new(key)
- >>> signature = PKCS1_PSS.sign(key)
- At the receiver side, verification can be done like using the public part of
- the RSA key:
- >>> key = RSA.importKey(open('pubkey.der').read())
- >>> h = SHA.new()
- >>> h.update(message)
- >>> verifier = PKCS1_PSS.new(key)
- >>> if verifier.verify(h, signature):
- >>> print "The signature is authentic."
- >>> else:
- >>> print "The signature is not authentic."
- :undocumented: __revision__, __package__
- .. __: http://www.ietf.org/rfc/rfc3447.txt
- .. __: http://www.rsa.com/rsalabs/node.asp?id=2125
- """
- # Allow nested scopes in Python 2.1
- # See http://oreilly.com/pub/a/python/2001/04/19/pythonnews.html
- from __future__ import nested_scopes
- __revision__ = "$Id$"
- __all__ = [ 'new', 'PSS_SigScheme' ]
- from Crypto.Util.py3compat import *
- if sys.version_info[0] == 2 and sys.version_info[1] == 1:
- from Crypto.Util.py21compat import *
- import Crypto.Util.number
- from Crypto.Util.number import ceil_shift, ceil_div, long_to_bytes
- from Crypto.Util.strxor import strxor
- class PSS_SigScheme:
- """This signature scheme can perform PKCS#1 PSS RSA signature or verification."""
- def __init__(self, key, mgfunc, saltLen):
- """Initialize this PKCS#1 PSS signature scheme object.
-
- :Parameters:
- key : an RSA key object
- If a private half is given, both signature and verification are possible.
- If a public half is given, only verification is possible.
- mgfunc : callable
- A mask generation function that accepts two parameters: a string to
- use as seed, and the lenth of the mask to generate, in bytes.
- saltLen : int
- Length of the salt, in bytes.
- """
- self._key = key
- self._saltLen = saltLen
- self._mgfunc = mgfunc
- def can_sign(self):
- """Return True if this cipher object can be used for signing messages."""
- return self._key.has_private()
-
- def sign(self, mhash):
- """Produce the PKCS#1 PSS signature of a message.
-
- This function is named ``RSASSA-PSS-SIGN``, and is specified in
- section 8.1.1 of RFC3447.
-
- :Parameters:
- mhash : hash object
- The hash that was carried out over the message. This is an object
- belonging to the `Crypto.Hash` module.
-
- :Return: The PSS signature encoded as a string.
- :Raise ValueError:
- If the RSA key length is not sufficiently long to deal with the given
- hash algorithm.
- :Raise TypeError:
- If the RSA key has no private half.
-
- :attention: Modify the salt length and the mask generation function only
- if you know what you are doing.
- The receiver must use the same parameters too.
- """
- # TODO: Verify the key is RSA
-
- randfunc = self._key._randfunc
-
- # Set defaults for salt length and mask generation function
- if self._saltLen == None:
- sLen = mhash.digest_size
- else:
- sLen = self._saltLen
- if self._mgfunc:
- mgf = self._mgfunc
- else:
- mgf = lambda x,y: MGF1(x,y,mhash)
-
- modBits = Crypto.Util.number.size(self._key.n)
-
- # See 8.1.1 in RFC3447
- k = ceil_div(modBits,8) # Convert from bits to bytes
- # Step 1
- em = EMSA_PSS_ENCODE(mhash, modBits-1, randfunc, mgf, sLen)
- # Step 2a (OS2IP) and 2b (RSASP1)
- m = self._key.decrypt(em)
- # Step 2c (I2OSP)
- S = bchr(0x00)*(k-len(m)) + m
- return S
-
- def verify(self, mhash, S):
- """Verify that a certain PKCS#1 PSS signature is authentic.
-
- This function checks if the party holding the private half of the given
- RSA key has really signed the message.
-
- This function is called ``RSASSA-PSS-VERIFY``, and is specified in section
- 8.1.2 of RFC3447.
-
- :Parameters:
- mhash : hash object
- The hash that was carried out over the message. This is an object
- belonging to the `Crypto.Hash` module.
- S : string
- The signature that needs to be validated.
-
- :Return: True if verification is correct. False otherwise.
- """
- # TODO: Verify the key is RSA
-
- # Set defaults for salt length and mask generation function
- if self._saltLen == None:
- sLen = mhash.digest_size
- else:
- sLen = self._saltLen
- if self._mgfunc:
- mgf = self._mgfunc
- else:
- mgf = lambda x,y: MGF1(x,y,mhash)
- modBits = Crypto.Util.number.size(self._key.n)
-
- # See 8.1.2 in RFC3447
- k = ceil_div(modBits,8) # Convert from bits to bytes
- # Step 1
- if len(S) != k:
- return False
- # Step 2a (O2SIP), 2b (RSAVP1), and partially 2c (I2OSP)
- # Note that signature must be smaller than the module
- # but RSA.py won't complain about it.
- # TODO: Fix RSA object; don't do it here.
- em = self._key.encrypt(S, 0)[0]
- # Step 2c
- emLen = ceil_div(modBits-1,8)
- em = bchr(0x00)*(emLen-len(em)) + em
- # Step 3
- try:
- result = EMSA_PSS_VERIFY(mhash, em, modBits-1, mgf, sLen)
- except ValueError:
- return False
- # Step 4
- return result
-
- def MGF1(mgfSeed, maskLen, hash):
- """Mask Generation Function, described in B.2.1"""
- T = b("")
- for counter in xrange(ceil_div(maskLen, hash.digest_size)):
- c = long_to_bytes(counter, 4)
- T = T + hash.new(mgfSeed + c).digest()
- assert(len(T)>=maskLen)
- return T[:maskLen]
- def EMSA_PSS_ENCODE(mhash, emBits, randFunc, mgf, sLen):
- """
- Implement the ``EMSA-PSS-ENCODE`` function, as defined
- in PKCS#1 v2.1 (RFC3447, 9.1.1).
- The original ``EMSA-PSS-ENCODE`` actually accepts the message ``M`` as input,
- and hash it internally. Here, we expect that the message has already
- been hashed instead.
- :Parameters:
- mhash : hash object
- The hash object that holds the digest of the message being signed.
- emBits : int
- Maximum length of the final encoding, in bits.
- randFunc : callable
- An RNG function that accepts as only parameter an int, and returns
- a string of random bytes, to be used as salt.
- mgf : callable
- A mask generation function that accepts two parameters: a string to
- use as seed, and the lenth of the mask to generate, in bytes.
- sLen : int
- Length of the salt, in bytes.
- :Return: An ``emLen`` byte long string that encodes the hash
- (with ``emLen = \ceil(emBits/8)``).
- :Raise ValueError:
- When digest or salt length are too big.
- """
- emLen = ceil_div(emBits,8)
- # Bitmask of digits that fill up
- lmask = 0
- for i in xrange(8*emLen-emBits):
- lmask = lmask>>1 | 0x80
- # Step 1 and 2 have been already done
- # Step 3
- if emLen < mhash.digest_size+sLen+2:
- raise ValueError("Digest or salt length are too long for given key size.")
- # Step 4
- salt = b("")
- if randFunc and sLen>0:
- salt = randFunc(sLen)
- # Step 5 and 6
- h = mhash.new(bchr(0x00)*8 + mhash.digest() + salt)
- # Step 7 and 8
- db = bchr(0x00)*(emLen-sLen-mhash.digest_size-2) + bchr(0x01) + salt
- # Step 9
- dbMask = mgf(h.digest(), emLen-mhash.digest_size-1)
- # Step 10
- maskedDB = strxor(db,dbMask)
- # Step 11
- maskedDB = bchr(bord(maskedDB[0]) & ~lmask) + maskedDB[1:]
- # Step 12
- em = maskedDB + h.digest() + bchr(0xBC)
- return em
- def EMSA_PSS_VERIFY(mhash, em, emBits, mgf, sLen):
- """
- Implement the ``EMSA-PSS-VERIFY`` function, as defined
- in PKCS#1 v2.1 (RFC3447, 9.1.2).
- ``EMSA-PSS-VERIFY`` actually accepts the message ``M`` as input,
- and hash it internally. Here, we expect that the message has already
- been hashed instead.
- :Parameters:
- mhash : hash object
- The hash object that holds the digest of the message to be verified.
- em : string
- The signature to verify, therefore proving that the sender really signed
- the message that was received.
- emBits : int
- Length of the final encoding (em), in bits.
- mgf : callable
- A mask generation function that accepts two parameters: a string to
- use as seed, and the lenth of the mask to generate, in bytes.
- sLen : int
- Length of the salt, in bytes.
- :Return: 0 if the encoding is consistent, 1 if it is inconsistent.
- :Raise ValueError:
- When digest or salt length are too big.
- """
- emLen = ceil_div(emBits,8)
- # Bitmask of digits that fill up
- lmask = 0
- for i in xrange(8*emLen-emBits):
- lmask = lmask>>1 | 0x80
- # Step 1 and 2 have been already done
- # Step 3
- if emLen < mhash.digest_size+sLen+2:
- return False
- # Step 4
- if ord(em[-1:])!=0xBC:
- return False
- # Step 5
- maskedDB = em[:emLen-mhash.digest_size-1]
- h = em[emLen-mhash.digest_size-1:-1]
- # Step 6
- if lmask & bord(em[0]):
- return False
- # Step 7
- dbMask = mgf(h, emLen-mhash.digest_size-1)
- # Step 8
- db = strxor(maskedDB, dbMask)
- # Step 9
- db = bchr(bord(db[0]) & ~lmask) + db[1:]
- # Step 10
- if not db.startswith(bchr(0x00)*(emLen-mhash.digest_size-sLen-2) + bchr(0x01)):
- return False
- # Step 11
- salt = b("")
- if sLen: salt = db[-sLen:]
- # Step 12 and 13
- hp = mhash.new(bchr(0x00)*8 + mhash.digest() + salt).digest()
- # Step 14
- if h!=hp:
- return False
- return True
- def new(key, mgfunc=None, saltLen=None):
- """Return a signature scheme object `PSS_SigScheme` that
- can be used to perform PKCS#1 PSS signature or verification.
- :Parameters:
- key : RSA key object
- The key to use to sign or verify the message. This is a `Crypto.PublicKey.RSA` object.
- Signing is only possible if *key* is a private RSA key.
- mgfunc : callable
- A mask generation function that accepts two parameters: a string to
- use as seed, and the lenth of the mask to generate, in bytes.
- If not specified, the standard MGF1 is used.
- saltLen : int
- Length of the salt, in bytes. If not specified, it matches the output
- size of the hash function.
-
- """
- return PSS_SigScheme(key, mgfunc, saltLen)
|