123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362 |
- # -*- test-case-name: automat._test.test_methodical -*-
- from functools import wraps
- from itertools import count
- try:
- # Python 3
- from inspect import getfullargspec as getArgsSpec
- except ImportError:
- # Python 2
- from inspect import getargspec as getArgsSpec
- import attr
- from ._core import Transitioner, Automaton
- from ._introspection import preserveName
- def _keywords_only(f):
- """
- Decorate a function so all its arguments must be passed by keyword.
- A useful utility for decorators that take arguments so that they don't
- accidentally get passed the thing they're decorating as their first
- argument.
- Only works for methods right now.
- """
- @wraps(f)
- def g(self, **kw):
- return f(self, **kw)
- return g
- @attr.s(frozen=True)
- class MethodicalState(object):
- """
- A state for a L{MethodicalMachine}.
- """
- machine = attr.ib(repr=False)
- method = attr.ib()
- serialized = attr.ib(repr=False)
- def upon(self, input, enter, outputs, collector=list):
- """
- Declare a state transition within the L{MethodicalMachine} associated
- with this L{MethodicalState}: upon the receipt of the input C{input},
- enter the state C{enter}, emitting each output in C{outputs}.
- """
- inputSpec = getArgsSpec(input.method)
- for output in outputs:
- outputSpec = getArgsSpec(output.method)
- if inputSpec != outputSpec:
- raise TypeError(
- "method {input} signature {inputSignature} "
- "does not match output {output} "
- "signature {outputSignature}".format(
- input=input.method.__name__,
- output=output.method.__name__,
- inputSignature=inputSpec,
- outputSignature=outputSpec,
- ))
- self.machine._oneTransition(self, input, enter, outputs, collector)
- def _name(self):
- return self.method.__name__
- def _transitionerFromInstance(oself, symbol, automaton):
- """
- Get a L{Transitioner}
- """
- transitioner = getattr(oself, symbol, None)
- if transitioner is None:
- transitioner = Transitioner(
- automaton,
- automaton.initialState,
- )
- setattr(oself, symbol, transitioner)
- return transitioner
- def _empty():
- pass
- def _docstring():
- """docstring"""
- def assertNoCode(inst, attribute, f):
- # The function body must be empty, i.e. "pass" or "return None", which
- # both yield the same bytecode: LOAD_CONST (None), RETURN_VALUE. We also
- # accept functions with only a docstring, which yields slightly different
- # bytecode, because the "None" is put in a different constant slot.
- # Unfortunately, this does not catch function bodies that return a
- # constant value, e.g. "return 1", because their code is identical to a
- # "return None". They differ in the contents of their constant table, but
- # checking that would require us to parse the bytecode, find the index
- # being returned, then making sure the table has a None at that index.
- if f.__code__.co_code not in (_empty.__code__.co_code,
- _docstring.__code__.co_code):
- raise ValueError("function body must be empty")
- @attr.s(cmp=False, hash=False)
- class MethodicalInput(object):
- """
- An input for a L{MethodicalMachine}.
- """
- automaton = attr.ib(repr=False)
- method = attr.ib(validator=assertNoCode)
- symbol = attr.ib(repr=False)
- collectors = attr.ib(default=attr.Factory(dict), repr=False)
- def __get__(self, oself, type=None):
- """
- Return a function that takes no arguments and returns values returned
- by output functions produced by the given L{MethodicalInput} in
- C{oself}'s current state.
- """
- transitioner = _transitionerFromInstance(oself, self.symbol,
- self.automaton)
- @preserveName(self.method)
- @wraps(self.method)
- def doInput(*args, **kwargs):
- self.method(oself, *args, **kwargs)
- previousState = transitioner._state
- (outputs, outTracer) = transitioner.transition(self)
- collector = self.collectors[previousState]
- values = []
- for output in outputs:
- if outTracer:
- outTracer(output._name())
- value = output(oself, *args, **kwargs)
- values.append(value)
- return collector(values)
- return doInput
- def _name(self):
- return self.method.__name__
- @attr.s(frozen=True)
- class MethodicalOutput(object):
- """
- An output for a L{MethodicalMachine}.
- """
- machine = attr.ib(repr=False)
- method = attr.ib()
- def __get__(self, oself, type=None):
- """
- Outputs are private, so raise an exception when we attempt to get one.
- """
- raise AttributeError(
- "{cls}.{method} is a state-machine output method; "
- "to produce this output, call an input method instead.".format(
- cls=type.__name__,
- method=self.method.__name__
- )
- )
- def __call__(self, oself, *args, **kwargs):
- """
- Call the underlying method.
- """
- return self.method(oself, *args, **kwargs)
- def _name(self):
- return self.method.__name__
- @attr.s(cmp=False, hash=False)
- class MethodicalTracer(object):
- automaton = attr.ib(repr=False)
- symbol = attr.ib(repr=False)
- def __get__(self, oself, type=None):
- transitioner = _transitionerFromInstance(oself, self.symbol,
- self.automaton)
- def setTrace(tracer):
- transitioner.setTrace(tracer)
- return setTrace
- counter = count()
- def gensym():
- """
- Create a unique Python identifier.
- """
- return "_symbol_" + str(next(counter))
- class MethodicalMachine(object):
- """
- A L{MethodicalMachine} is an interface to an L{Automaton} that uses methods
- on a class.
- """
- def __init__(self):
- self._automaton = Automaton()
- self._reducers = {}
- self._symbol = gensym()
- def __get__(self, oself, type=None):
- """
- L{MethodicalMachine} is an implementation detail for setting up
- class-level state; applications should never need to access it on an
- instance.
- """
- if oself is not None:
- raise AttributeError(
- "MethodicalMachine is an implementation detail.")
- return self
- @_keywords_only
- def state(self, initial=False, terminal=False,
- serialized=None):
- """
- Declare a state, possibly an initial state or a terminal state.
- This is a decorator for methods, but it will modify the method so as
- not to be callable any more.
- @param initial: is this state the initial state? Only one state on
- this L{MethodicalMachine} may be an initial state; more than one is
- an error.
- @type initial: L{bool}
- @param terminal: Is this state a terminal state, i.e. a state that the
- machine can end up in? (This is purely informational at this
- point.)
- @type terminal: L{bool}
- @param serialized: a serializable value to be used to represent this
- state to external systems. This value should be hashable;
- L{unicode} is a good type to use.
- @type serialized: a hashable (comparable) value
- """
- def decorator(stateMethod):
- state = MethodicalState(machine=self,
- method=stateMethod,
- serialized=serialized)
- if initial:
- self._automaton.initialState = state
- return state
- return decorator
- @_keywords_only
- def input(self):
- """
- Declare an input.
- This is a decorator for methods.
- """
- def decorator(inputMethod):
- return MethodicalInput(automaton=self._automaton,
- method=inputMethod,
- symbol=self._symbol)
- return decorator
- @_keywords_only
- def output(self):
- """
- Declare an output.
- This is a decorator for methods.
- This method will be called when the state machine transitions to this
- state as specified in the L{MethodicalMachine.output} method.
- """
- def decorator(outputMethod):
- return MethodicalOutput(machine=self, method=outputMethod)
- return decorator
- def _oneTransition(self, startState, inputToken, endState, outputTokens,
- collector):
- """
- See L{MethodicalState.upon}.
- """
- # FIXME: tests for all of this (some of it is wrong)
- # if not isinstance(startState, MethodicalState):
- # raise NotImplementedError("start state {} isn't a state"
- # .format(startState))
- # if not isinstance(inputToken, MethodicalInput):
- # raise NotImplementedError("start state {} isn't an input"
- # .format(inputToken))
- # if not isinstance(endState, MethodicalState):
- # raise NotImplementedError("end state {} isn't a state"
- # .format(startState))
- # for output in outputTokens:
- # if not isinstance(endState, MethodicalState):
- # raise NotImplementedError("output state {} isn't a state"
- # .format(endState))
- self._automaton.addTransition(startState, inputToken, endState,
- tuple(outputTokens))
- inputToken.collectors[startState] = collector
- @_keywords_only
- def serializer(self):
- """
- """
- def decorator(decoratee):
- @wraps(decoratee)
- def serialize(oself):
- transitioner = _transitionerFromInstance(oself, self._symbol,
- self._automaton)
- return decoratee(oself, transitioner._state.serialized)
- return serialize
- return decorator
- @_keywords_only
- def unserializer(self):
- """
- """
- def decorator(decoratee):
- @wraps(decoratee)
- def unserialize(oself, *args, **kwargs):
- state = decoratee(oself, *args, **kwargs)
- mapping = {}
- for eachState in self._automaton.states():
- mapping[eachState.serialized] = eachState
- transitioner = _transitionerFromInstance(
- oself, self._symbol, self._automaton)
- transitioner._state = mapping[state]
- return None # it's on purpose
- return unserialize
- return decorator
- @property
- def _setTrace(self):
- return MethodicalTracer(self._automaton, self._symbol)
- def asDigraph(self):
- """
- Generate a L{graphviz.Digraph} that represents this machine's
- states and transitions.
- @return: L{graphviz.Digraph} object; for more information, please
- see the documentation for
- U{graphviz<https://graphviz.readthedocs.io/>}
- """
- from ._visualize import makeDigraph
- return makeDigraph(
- self._automaton,
- stateAsString=lambda state: state.method.__name__,
- inputAsString=lambda input: input.method.__name__,
- outputAsString=lambda output: output.method.__name__,
- )
|