123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136 |
- # -*- coding: utf-8 -*-
- """
- hpack/huffman_decoder
- ~~~~~~~~~~~~~~~~~~~~~
- An implementation of a bitwise prefix tree specially built for decoding
- Huffman-coded content where we already know the Huffman table.
- """
- from .compat import to_byte, decode_hex
- from .exceptions import HPACKDecodingError
- def _pad_binary(bin_str, req_len=8):
- """
- Given a binary string (returned by bin()), pad it to a full byte length.
- """
- bin_str = bin_str[2:] # Strip the 0b prefix
- return max(0, req_len - len(bin_str)) * '0' + bin_str
- def _hex_to_bin_str(hex_string):
- """
- Given a Python bytestring, returns a string representing those bytes in
- unicode form.
- """
- unpadded_bin_string_list = (bin(to_byte(c)) for c in hex_string)
- padded_bin_string_list = map(_pad_binary, unpadded_bin_string_list)
- bitwise_message = "".join(padded_bin_string_list)
- return bitwise_message
- class HuffmanDecoder(object):
- """
- Decodes a Huffman-coded bytestream according to the Huffman table laid out
- in the HPACK specification.
- """
- class _Node(object):
- def __init__(self, data):
- self.data = data
- self.mapping = {}
- def __init__(self, huffman_code_list, huffman_code_list_lengths):
- self.root = self._Node(None)
- for index, (huffman_code, code_length) in enumerate(zip(huffman_code_list, huffman_code_list_lengths)):
- self._insert(huffman_code, code_length, index)
- def _insert(self, hex_number, hex_length, letter):
- """
- Inserts a Huffman code point into the tree.
- """
- hex_number = _pad_binary(bin(hex_number), hex_length)
- cur_node = self.root
- for digit in hex_number:
- if digit not in cur_node.mapping:
- cur_node.mapping[digit] = self._Node(None)
- cur_node = cur_node.mapping[digit]
- cur_node.data = letter
- def decode(self, encoded_string):
- """
- Decode the given Huffman coded string.
- """
- number = _hex_to_bin_str(encoded_string)
- cur_node = self.root
- decoded_message = bytearray()
- try:
- for digit in number:
- cur_node = cur_node.mapping[digit]
- if cur_node.data is not None:
- # If we get EOS, everything else is padding.
- if cur_node.data == 256:
- break
- decoded_message.append(cur_node.data)
- cur_node = self.root
- except KeyError:
- # We have a Huffman-coded string that doesn't match our trie. This
- # is pretty bad: raise a useful exception.
- raise HPACKDecodingError("Invalid Huffman-coded string received.")
- return bytes(decoded_message)
- class HuffmanEncoder(object):
- """
- Encodes a string according to the Huffman encoding table defined in the
- HPACK specification.
- """
- def __init__(self, huffman_code_list, huffman_code_list_lengths):
- self.huffman_code_list = huffman_code_list
- self.huffman_code_list_lengths = huffman_code_list_lengths
- def encode(self, bytes_to_encode):
- """
- Given a string of bytes, encodes them according to the HPACK Huffman
- specification.
- """
- # If handed the empty string, just immediately return.
- if not bytes_to_encode:
- return b''
- final_num = 0
- final_int_len = 0
- # Turn each byte into its huffman code. These codes aren't necessarily
- # octet aligned, so keep track of how far through an octet we are. To
- # handle this cleanly, just use a single giant integer.
- for char in bytes_to_encode:
- byte = to_byte(char)
- bin_int_len = self.huffman_code_list_lengths[byte]
- bin_int = self.huffman_code_list[byte] & (2 ** (bin_int_len + 1) - 1)
- final_num <<= bin_int_len
- final_num |= bin_int
- final_int_len += bin_int_len
- # Pad out to an octet with ones.
- bits_to_be_padded = (8 - (final_int_len % 8)) % 8
- final_num <<= bits_to_be_padded
- final_num |= (1 << (bits_to_be_padded)) - 1
- # Convert the number to hex and strip off the leading '0x' and the
- # trailing 'L', if present.
- final_num = hex(final_num)[2:].rstrip('L')
- # If this is odd, prepend a zero.
- final_num = '0' + final_num if len(final_num) % 2 != 0 else final_num
- # This number should have twice as many digits as bytes. If not, we're
- # missing some leading zeroes. Work out how many bytes we want and how
- # many digits we have, then add the missing zero digits to the front.
- total_bytes = (final_int_len + bits_to_be_padded) // 8
- expected_digits = total_bytes * 2
- if len(final_num) != expected_digits:
- missing_digits = expected_digits - len(final_num)
- final_num = ('0' * missing_digits) + final_num
- return decode_hex(final_num)
|