123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302 |
- """
- Discrete Fourier Transforms
- Routines in this module:
- fft(a, n=None, axis=-1)
- ifft(a, n=None, axis=-1)
- rfft(a, n=None, axis=-1)
- irfft(a, n=None, axis=-1)
- hfft(a, n=None, axis=-1)
- ihfft(a, n=None, axis=-1)
- fftn(a, s=None, axes=None)
- ifftn(a, s=None, axes=None)
- rfftn(a, s=None, axes=None)
- irfftn(a, s=None, axes=None)
- fft2(a, s=None, axes=(-2,-1))
- ifft2(a, s=None, axes=(-2, -1))
- rfft2(a, s=None, axes=(-2,-1))
- irfft2(a, s=None, axes=(-2, -1))
- i = inverse transform
- r = transform of purely real data
- h = Hermite transform
- n = n-dimensional transform
- 2 = 2-dimensional transform
- (Note: 2D routines are just nD routines with different default
- behavior.)
- The underlying code for these functions is an f2c-translated and modified
- version of the FFTPACK routines.
- """
- from __future__ import division, absolute_import, print_function
- __all__ = ['fft', 'ifft', 'rfft', 'irfft', 'hfft', 'ihfft', 'rfftn',
- 'irfftn', 'rfft2', 'irfft2', 'fft2', 'ifft2', 'fftn', 'ifftn']
- import functools
- from numpy.core import (array, asarray, zeros, swapaxes, shape, conjugate,
- take, sqrt)
- from numpy.core.multiarray import normalize_axis_index
- from numpy.core import overrides
- from . import fftpack_lite as fftpack
- from .helper import _FFTCache
- _fft_cache = _FFTCache(max_size_in_mb=100, max_item_count=32)
- _real_fft_cache = _FFTCache(max_size_in_mb=100, max_item_count=32)
- array_function_dispatch = functools.partial(
- overrides.array_function_dispatch, module='numpy.fft')
- def _raw_fft(a, n=None, axis=-1, init_function=fftpack.cffti,
- work_function=fftpack.cfftf, fft_cache=_fft_cache):
- a = asarray(a)
- axis = normalize_axis_index(axis, a.ndim)
- if n is None:
- n = a.shape[axis]
- if n < 1:
- raise ValueError("Invalid number of FFT data points (%d) specified."
- % n)
- # We have to ensure that only a single thread can access a wsave array
- # at any given time. Thus we remove it from the cache and insert it
- # again after it has been used. Multiple threads might create multiple
- # copies of the wsave array. This is intentional and a limitation of
- # the current C code.
- wsave = fft_cache.pop_twiddle_factors(n)
- if wsave is None:
- wsave = init_function(n)
- if a.shape[axis] != n:
- s = list(a.shape)
- if s[axis] > n:
- index = [slice(None)]*len(s)
- index[axis] = slice(0, n)
- a = a[tuple(index)]
- else:
- index = [slice(None)]*len(s)
- index[axis] = slice(0, s[axis])
- s[axis] = n
- z = zeros(s, a.dtype.char)
- z[tuple(index)] = a
- a = z
- if axis != a.ndim - 1:
- a = swapaxes(a, axis, -1)
- r = work_function(a, wsave)
- if axis != a.ndim - 1:
- r = swapaxes(r, axis, -1)
- # As soon as we put wsave back into the cache, another thread could pick it
- # up and start using it, so we must not do this until after we're
- # completely done using it ourselves.
- fft_cache.put_twiddle_factors(n, wsave)
- return r
- def _unitary(norm):
- if norm not in (None, "ortho"):
- raise ValueError("Invalid norm value %s, should be None or \"ortho\"."
- % norm)
- return norm is not None
- def _fft_dispatcher(a, n=None, axis=None, norm=None):
- return (a,)
- @array_function_dispatch(_fft_dispatcher)
- def fft(a, n=None, axis=-1, norm=None):
- """
- Compute the one-dimensional discrete Fourier Transform.
- This function computes the one-dimensional *n*-point discrete Fourier
- Transform (DFT) with the efficient Fast Fourier Transform (FFT)
- algorithm [CT].
- Parameters
- ----------
- a : array_like
- Input array, can be complex.
- n : int, optional
- Length of the transformed axis of the output.
- If `n` is smaller than the length of the input, the input is cropped.
- If it is larger, the input is padded with zeros. If `n` is not given,
- the length of the input along the axis specified by `axis` is used.
- axis : int, optional
- Axis over which to compute the FFT. If not given, the last axis is
- used.
- norm : {None, "ortho"}, optional
- .. versionadded:: 1.10.0
- Normalization mode (see `numpy.fft`). Default is None.
- Returns
- -------
- out : complex ndarray
- The truncated or zero-padded input, transformed along the axis
- indicated by `axis`, or the last one if `axis` is not specified.
- Raises
- ------
- IndexError
- if `axes` is larger than the last axis of `a`.
- See Also
- --------
- numpy.fft : for definition of the DFT and conventions used.
- ifft : The inverse of `fft`.
- fft2 : The two-dimensional FFT.
- fftn : The *n*-dimensional FFT.
- rfftn : The *n*-dimensional FFT of real input.
- fftfreq : Frequency bins for given FFT parameters.
- Notes
- -----
- FFT (Fast Fourier Transform) refers to a way the discrete Fourier
- Transform (DFT) can be calculated efficiently, by using symmetries in the
- calculated terms. The symmetry is highest when `n` is a power of 2, and
- the transform is therefore most efficient for these sizes.
- The DFT is defined, with the conventions used in this implementation, in
- the documentation for the `numpy.fft` module.
- References
- ----------
- .. [CT] Cooley, James W., and John W. Tukey, 1965, "An algorithm for the
- machine calculation of complex Fourier series," *Math. Comput.*
- 19: 297-301.
- Examples
- --------
- >>> np.fft.fft(np.exp(2j * np.pi * np.arange(8) / 8))
- array([ -3.44505240e-16 +1.14383329e-17j,
- 8.00000000e+00 -5.71092652e-15j,
- 2.33482938e-16 +1.22460635e-16j,
- 1.64863782e-15 +1.77635684e-15j,
- 9.95839695e-17 +2.33482938e-16j,
- 0.00000000e+00 +1.66837030e-15j,
- 1.14383329e-17 +1.22460635e-16j,
- -1.64863782e-15 +1.77635684e-15j])
- In this example, real input has an FFT which is Hermitian, i.e., symmetric
- in the real part and anti-symmetric in the imaginary part, as described in
- the `numpy.fft` documentation:
- >>> import matplotlib.pyplot as plt
- >>> t = np.arange(256)
- >>> sp = np.fft.fft(np.sin(t))
- >>> freq = np.fft.fftfreq(t.shape[-1])
- >>> plt.plot(freq, sp.real, freq, sp.imag)
- [<matplotlib.lines.Line2D object at 0x...>, <matplotlib.lines.Line2D object at 0x...>]
- >>> plt.show()
- """
- a = asarray(a).astype(complex, copy=False)
- if n is None:
- n = a.shape[axis]
- output = _raw_fft(a, n, axis, fftpack.cffti, fftpack.cfftf, _fft_cache)
- if _unitary(norm):
- output *= 1 / sqrt(n)
- return output
- @array_function_dispatch(_fft_dispatcher)
- def ifft(a, n=None, axis=-1, norm=None):
- """
- Compute the one-dimensional inverse discrete Fourier Transform.
- This function computes the inverse of the one-dimensional *n*-point
- discrete Fourier transform computed by `fft`. In other words,
- ``ifft(fft(a)) == a`` to within numerical accuracy.
- For a general description of the algorithm and definitions,
- see `numpy.fft`.
- The input should be ordered in the same way as is returned by `fft`,
- i.e.,
- * ``a[0]`` should contain the zero frequency term,
- * ``a[1:n//2]`` should contain the positive-frequency terms,
- * ``a[n//2 + 1:]`` should contain the negative-frequency terms, in
- increasing order starting from the most negative frequency.
- For an even number of input points, ``A[n//2]`` represents the sum of
- the values at the positive and negative Nyquist frequencies, as the two
- are aliased together. See `numpy.fft` for details.
- Parameters
- ----------
- a : array_like
- Input array, can be complex.
- n : int, optional
- Length of the transformed axis of the output.
- If `n` is smaller than the length of the input, the input is cropped.
- If it is larger, the input is padded with zeros. If `n` is not given,
- the length of the input along the axis specified by `axis` is used.
- See notes about padding issues.
- axis : int, optional
- Axis over which to compute the inverse DFT. If not given, the last
- axis is used.
- norm : {None, "ortho"}, optional
- .. versionadded:: 1.10.0
- Normalization mode (see `numpy.fft`). Default is None.
- Returns
- -------
- out : complex ndarray
- The truncated or zero-padded input, transformed along the axis
- indicated by `axis`, or the last one if `axis` is not specified.
- Raises
- ------
- IndexError
- If `axes` is larger than the last axis of `a`.
- See Also
- --------
- numpy.fft : An introduction, with definitions and general explanations.
- fft : The one-dimensional (forward) FFT, of which `ifft` is the inverse
- ifft2 : The two-dimensional inverse FFT.
- ifftn : The n-dimensional inverse FFT.
- Notes
- -----
- If the input parameter `n` is larger than the size of the input, the input
- is padded by appending zeros at the end. Even though this is the common
- approach, it might lead to surprising results. If a different padding is
- desired, it must be performed before calling `ifft`.
- Examples
- --------
- >>> np.fft.ifft([0, 4, 0, 0])
- array([ 1.+0.j, 0.+1.j, -1.+0.j, 0.-1.j])
- Create and plot a band-limited signal with random phases:
- >>> import matplotlib.pyplot as plt
- >>> t = np.arange(400)
- >>> n = np.zeros((400,), dtype=complex)
- >>> n[40:60] = np.exp(1j*np.random.uniform(0, 2*np.pi, (20,)))
- >>> s = np.fft.ifft(n)
- >>> plt.plot(t, s.real, 'b-', t, s.imag, 'r--')
- ...
- >>> plt.legend(('real', 'imaginary'))
- ...
- >>> plt.show()
- """
- # The copy may be required for multithreading.
- a = array(a, copy=True, dtype=complex)
- if n is None:
- n = a.shape[axis]
- unitary = _unitary(norm)
- output = _raw_fft(a, n, axis, fftpack.cffti, fftpack.cfftb, _fft_cache)
- return output * (1 / (sqrt(n) if unitary else n))
- @array_function_dispatch(_fft_dispatcher)
- def rfft(a, n=None, axis=-1, norm=None):
- """
- Compute the one-dimensional discrete Fourier Transform for real input.
- This function computes the one-dimensional *n*-point discrete Fourier
- Transform (DFT) of a real-valued array by means of an efficient algorithm
- called the Fast Fourier Transform (FFT).
- Parameters
- ----------
- a : array_like
- Input array
- n : int, optional
- Number of points along transformation axis in the input to use.
- If `n` is smaller than the length of the input, the input is cropped.
- If it is larger, the input is padded with zeros. If `n` is not given,
- the length of the input along the axis specified by `axis` is used.
- axis : int, optional
- Axis over which to compute the FFT. If not given, the last axis is
- used.
- norm : {None, "ortho"}, optional
- .. versionadded:: 1.10.0
- Normalization mode (see `numpy.fft`). Default is None.
- Returns
- -------
- out : complex ndarray
- The truncated or zero-padded input, transformed along the axis
- indicated by `axis`, or the last one if `axis` is not specified.
- If `n` is even, the length of the transformed axis is ``(n/2)+1``.
- If `n` is odd, the length is ``(n+1)/2``.
- Raises
- ------
- IndexError
- If `axis` is larger than the last axis of `a`.
- See Also
- --------
- numpy.fft : For definition of the DFT and conventions used.
- irfft : The inverse of `rfft`.
- fft : The one-dimensional FFT of general (complex) input.
- fftn : The *n*-dimensional FFT.
- rfftn : The *n*-dimensional FFT of real input.
- Notes
- -----
- When the DFT is computed for purely real input, the output is
- Hermitian-symmetric, i.e. the negative frequency terms are just the complex
- conjugates of the corresponding positive-frequency terms, and the
- negative-frequency terms are therefore redundant. This function does not
- compute the negative frequency terms, and the length of the transformed
- axis of the output is therefore ``n//2 + 1``.
- When ``A = rfft(a)`` and fs is the sampling frequency, ``A[0]`` contains
- the zero-frequency term 0*fs, which is real due to Hermitian symmetry.
- If `n` is even, ``A[-1]`` contains the term representing both positive
- and negative Nyquist frequency (+fs/2 and -fs/2), and must also be purely
- real. If `n` is odd, there is no term at fs/2; ``A[-1]`` contains
- the largest positive frequency (fs/2*(n-1)/n), and is complex in the
- general case.
- If the input `a` contains an imaginary part, it is silently discarded.
- Examples
- --------
- >>> np.fft.fft([0, 1, 0, 0])
- array([ 1.+0.j, 0.-1.j, -1.+0.j, 0.+1.j])
- >>> np.fft.rfft([0, 1, 0, 0])
- array([ 1.+0.j, 0.-1.j, -1.+0.j])
- Notice how the final element of the `fft` output is the complex conjugate
- of the second element, for real input. For `rfft`, this symmetry is
- exploited to compute only the non-negative frequency terms.
- """
- # The copy may be required for multithreading.
- a = array(a, copy=True, dtype=float)
- output = _raw_fft(a, n, axis, fftpack.rffti, fftpack.rfftf,
- _real_fft_cache)
- if _unitary(norm):
- if n is None:
- n = a.shape[axis]
- output *= 1 / sqrt(n)
- return output
- @array_function_dispatch(_fft_dispatcher)
- def irfft(a, n=None, axis=-1, norm=None):
- """
- Compute the inverse of the n-point DFT for real input.
- This function computes the inverse of the one-dimensional *n*-point
- discrete Fourier Transform of real input computed by `rfft`.
- In other words, ``irfft(rfft(a), len(a)) == a`` to within numerical
- accuracy. (See Notes below for why ``len(a)`` is necessary here.)
- The input is expected to be in the form returned by `rfft`, i.e. the
- real zero-frequency term followed by the complex positive frequency terms
- in order of increasing frequency. Since the discrete Fourier Transform of
- real input is Hermitian-symmetric, the negative frequency terms are taken
- to be the complex conjugates of the corresponding positive frequency terms.
- Parameters
- ----------
- a : array_like
- The input array.
- n : int, optional
- Length of the transformed axis of the output.
- For `n` output points, ``n//2+1`` input points are necessary. If the
- input is longer than this, it is cropped. If it is shorter than this,
- it is padded with zeros. If `n` is not given, it is determined from
- the length of the input along the axis specified by `axis`.
- axis : int, optional
- Axis over which to compute the inverse FFT. If not given, the last
- axis is used.
- norm : {None, "ortho"}, optional
- .. versionadded:: 1.10.0
- Normalization mode (see `numpy.fft`). Default is None.
- Returns
- -------
- out : ndarray
- The truncated or zero-padded input, transformed along the axis
- indicated by `axis`, or the last one if `axis` is not specified.
- The length of the transformed axis is `n`, or, if `n` is not given,
- ``2*(m-1)`` where ``m`` is the length of the transformed axis of the
- input. To get an odd number of output points, `n` must be specified.
- Raises
- ------
- IndexError
- If `axis` is larger than the last axis of `a`.
- See Also
- --------
- numpy.fft : For definition of the DFT and conventions used.
- rfft : The one-dimensional FFT of real input, of which `irfft` is inverse.
- fft : The one-dimensional FFT.
- irfft2 : The inverse of the two-dimensional FFT of real input.
- irfftn : The inverse of the *n*-dimensional FFT of real input.
- Notes
- -----
- Returns the real valued `n`-point inverse discrete Fourier transform
- of `a`, where `a` contains the non-negative frequency terms of a
- Hermitian-symmetric sequence. `n` is the length of the result, not the
- input.
- If you specify an `n` such that `a` must be zero-padded or truncated, the
- extra/removed values will be added/removed at high frequencies. One can
- thus resample a series to `m` points via Fourier interpolation by:
- ``a_resamp = irfft(rfft(a), m)``.
- Examples
- --------
- >>> np.fft.ifft([1, -1j, -1, 1j])
- array([ 0.+0.j, 1.+0.j, 0.+0.j, 0.+0.j])
- >>> np.fft.irfft([1, -1j, -1])
- array([ 0., 1., 0., 0.])
- Notice how the last term in the input to the ordinary `ifft` is the
- complex conjugate of the second term, and the output has zero imaginary
- part everywhere. When calling `irfft`, the negative frequencies are not
- specified, and the output array is purely real.
- """
- # The copy may be required for multithreading.
- a = array(a, copy=True, dtype=complex)
- if n is None:
- n = (a.shape[axis] - 1) * 2
- unitary = _unitary(norm)
- output = _raw_fft(a, n, axis, fftpack.rffti, fftpack.rfftb,
- _real_fft_cache)
- return output * (1 / (sqrt(n) if unitary else n))
- @array_function_dispatch(_fft_dispatcher)
- def hfft(a, n=None, axis=-1, norm=None):
- """
- Compute the FFT of a signal that has Hermitian symmetry, i.e., a real
- spectrum.
- Parameters
- ----------
- a : array_like
- The input array.
- n : int, optional
- Length of the transformed axis of the output. For `n` output
- points, ``n//2 + 1`` input points are necessary. If the input is
- longer than this, it is cropped. If it is shorter than this, it is
- padded with zeros. If `n` is not given, it is determined from the
- length of the input along the axis specified by `axis`.
- axis : int, optional
- Axis over which to compute the FFT. If not given, the last
- axis is used.
- norm : {None, "ortho"}, optional
- Normalization mode (see `numpy.fft`). Default is None.
- .. versionadded:: 1.10.0
- Returns
- -------
- out : ndarray
- The truncated or zero-padded input, transformed along the axis
- indicated by `axis`, or the last one if `axis` is not specified.
- The length of the transformed axis is `n`, or, if `n` is not given,
- ``2*m - 2`` where ``m`` is the length of the transformed axis of
- the input. To get an odd number of output points, `n` must be
- specified, for instance as ``2*m - 1`` in the typical case,
- Raises
- ------
- IndexError
- If `axis` is larger than the last axis of `a`.
- See also
- --------
- rfft : Compute the one-dimensional FFT for real input.
- ihfft : The inverse of `hfft`.
- Notes
- -----
- `hfft`/`ihfft` are a pair analogous to `rfft`/`irfft`, but for the
- opposite case: here the signal has Hermitian symmetry in the time
- domain and is real in the frequency domain. So here it's `hfft` for
- which you must supply the length of the result if it is to be odd.
- * even: ``ihfft(hfft(a, 2*len(a) - 2) == a``, within roundoff error,
- * odd: ``ihfft(hfft(a, 2*len(a) - 1) == a``, within roundoff error.
- Examples
- --------
- >>> signal = np.array([1, 2, 3, 4, 3, 2])
- >>> np.fft.fft(signal)
- array([ 15.+0.j, -4.+0.j, 0.+0.j, -1.-0.j, 0.+0.j, -4.+0.j])
- >>> np.fft.hfft(signal[:4]) # Input first half of signal
- array([ 15., -4., 0., -1., 0., -4.])
- >>> np.fft.hfft(signal, 6) # Input entire signal and truncate
- array([ 15., -4., 0., -1., 0., -4.])
- >>> signal = np.array([[1, 1.j], [-1.j, 2]])
- >>> np.conj(signal.T) - signal # check Hermitian symmetry
- array([[ 0.-0.j, 0.+0.j],
- [ 0.+0.j, 0.-0.j]])
- >>> freq_spectrum = np.fft.hfft(signal)
- >>> freq_spectrum
- array([[ 1., 1.],
- [ 2., -2.]])
- """
- # The copy may be required for multithreading.
- a = array(a, copy=True, dtype=complex)
- if n is None:
- n = (a.shape[axis] - 1) * 2
- unitary = _unitary(norm)
- return irfft(conjugate(a), n, axis) * (sqrt(n) if unitary else n)
- @array_function_dispatch(_fft_dispatcher)
- def ihfft(a, n=None, axis=-1, norm=None):
- """
- Compute the inverse FFT of a signal that has Hermitian symmetry.
- Parameters
- ----------
- a : array_like
- Input array.
- n : int, optional
- Length of the inverse FFT, the number of points along
- transformation axis in the input to use. If `n` is smaller than
- the length of the input, the input is cropped. If it is larger,
- the input is padded with zeros. If `n` is not given, the length of
- the input along the axis specified by `axis` is used.
- axis : int, optional
- Axis over which to compute the inverse FFT. If not given, the last
- axis is used.
- norm : {None, "ortho"}, optional
- Normalization mode (see `numpy.fft`). Default is None.
- .. versionadded:: 1.10.0
- Returns
- -------
- out : complex ndarray
- The truncated or zero-padded input, transformed along the axis
- indicated by `axis`, or the last one if `axis` is not specified.
- The length of the transformed axis is ``n//2 + 1``.
- See also
- --------
- hfft, irfft
- Notes
- -----
- `hfft`/`ihfft` are a pair analogous to `rfft`/`irfft`, but for the
- opposite case: here the signal has Hermitian symmetry in the time
- domain and is real in the frequency domain. So here it's `hfft` for
- which you must supply the length of the result if it is to be odd:
- * even: ``ihfft(hfft(a, 2*len(a) - 2) == a``, within roundoff error,
- * odd: ``ihfft(hfft(a, 2*len(a) - 1) == a``, within roundoff error.
- Examples
- --------
- >>> spectrum = np.array([ 15, -4, 0, -1, 0, -4])
- >>> np.fft.ifft(spectrum)
- array([ 1.+0.j, 2.-0.j, 3.+0.j, 4.+0.j, 3.+0.j, 2.-0.j])
- >>> np.fft.ihfft(spectrum)
- array([ 1.-0.j, 2.-0.j, 3.-0.j, 4.-0.j])
- """
- # The copy may be required for multithreading.
- a = array(a, copy=True, dtype=float)
- if n is None:
- n = a.shape[axis]
- unitary = _unitary(norm)
- output = conjugate(rfft(a, n, axis))
- return output * (1 / (sqrt(n) if unitary else n))
- def _cook_nd_args(a, s=None, axes=None, invreal=0):
- if s is None:
- shapeless = 1
- if axes is None:
- s = list(a.shape)
- else:
- s = take(a.shape, axes)
- else:
- shapeless = 0
- s = list(s)
- if axes is None:
- axes = list(range(-len(s), 0))
- if len(s) != len(axes):
- raise ValueError("Shape and axes have different lengths.")
- if invreal and shapeless:
- s[-1] = (a.shape[axes[-1]] - 1) * 2
- return s, axes
- def _raw_fftnd(a, s=None, axes=None, function=fft, norm=None):
- a = asarray(a)
- s, axes = _cook_nd_args(a, s, axes)
- itl = list(range(len(axes)))
- itl.reverse()
- for ii in itl:
- a = function(a, n=s[ii], axis=axes[ii], norm=norm)
- return a
- def _fftn_dispatcher(a, s=None, axes=None, norm=None):
- return (a,)
- @array_function_dispatch(_fftn_dispatcher)
- def fftn(a, s=None, axes=None, norm=None):
- """
- Compute the N-dimensional discrete Fourier Transform.
- This function computes the *N*-dimensional discrete Fourier Transform over
- any number of axes in an *M*-dimensional array by means of the Fast Fourier
- Transform (FFT).
- Parameters
- ----------
- a : array_like
- Input array, can be complex.
- s : sequence of ints, optional
- Shape (length of each transformed axis) of the output
- (``s[0]`` refers to axis 0, ``s[1]`` to axis 1, etc.).
- This corresponds to ``n`` for ``fft(x, n)``.
- Along any axis, if the given shape is smaller than that of the input,
- the input is cropped. If it is larger, the input is padded with zeros.
- if `s` is not given, the shape of the input along the axes specified
- by `axes` is used.
- axes : sequence of ints, optional
- Axes over which to compute the FFT. If not given, the last ``len(s)``
- axes are used, or all axes if `s` is also not specified.
- Repeated indices in `axes` means that the transform over that axis is
- performed multiple times.
- norm : {None, "ortho"}, optional
- .. versionadded:: 1.10.0
- Normalization mode (see `numpy.fft`). Default is None.
- Returns
- -------
- out : complex ndarray
- The truncated or zero-padded input, transformed along the axes
- indicated by `axes`, or by a combination of `s` and `a`,
- as explained in the parameters section above.
- Raises
- ------
- ValueError
- If `s` and `axes` have different length.
- IndexError
- If an element of `axes` is larger than than the number of axes of `a`.
- See Also
- --------
- numpy.fft : Overall view of discrete Fourier transforms, with definitions
- and conventions used.
- ifftn : The inverse of `fftn`, the inverse *n*-dimensional FFT.
- fft : The one-dimensional FFT, with definitions and conventions used.
- rfftn : The *n*-dimensional FFT of real input.
- fft2 : The two-dimensional FFT.
- fftshift : Shifts zero-frequency terms to centre of array
- Notes
- -----
- The output, analogously to `fft`, contains the term for zero frequency in
- the low-order corner of all axes, the positive frequency terms in the
- first half of all axes, the term for the Nyquist frequency in the middle
- of all axes and the negative frequency terms in the second half of all
- axes, in order of decreasingly negative frequency.
- See `numpy.fft` for details, definitions and conventions used.
- Examples
- --------
- >>> a = np.mgrid[:3, :3, :3][0]
- >>> np.fft.fftn(a, axes=(1, 2))
- array([[[ 0.+0.j, 0.+0.j, 0.+0.j],
- [ 0.+0.j, 0.+0.j, 0.+0.j],
- [ 0.+0.j, 0.+0.j, 0.+0.j]],
- [[ 9.+0.j, 0.+0.j, 0.+0.j],
- [ 0.+0.j, 0.+0.j, 0.+0.j],
- [ 0.+0.j, 0.+0.j, 0.+0.j]],
- [[ 18.+0.j, 0.+0.j, 0.+0.j],
- [ 0.+0.j, 0.+0.j, 0.+0.j],
- [ 0.+0.j, 0.+0.j, 0.+0.j]]])
- >>> np.fft.fftn(a, (2, 2), axes=(0, 1))
- array([[[ 2.+0.j, 2.+0.j, 2.+0.j],
- [ 0.+0.j, 0.+0.j, 0.+0.j]],
- [[-2.+0.j, -2.+0.j, -2.+0.j],
- [ 0.+0.j, 0.+0.j, 0.+0.j]]])
- >>> import matplotlib.pyplot as plt
- >>> [X, Y] = np.meshgrid(2 * np.pi * np.arange(200) / 12,
- ... 2 * np.pi * np.arange(200) / 34)
- >>> S = np.sin(X) + np.cos(Y) + np.random.uniform(0, 1, X.shape)
- >>> FS = np.fft.fftn(S)
- >>> plt.imshow(np.log(np.abs(np.fft.fftshift(FS))**2))
- <matplotlib.image.AxesImage object at 0x...>
- >>> plt.show()
- """
- return _raw_fftnd(a, s, axes, fft, norm)
- @array_function_dispatch(_fftn_dispatcher)
- def ifftn(a, s=None, axes=None, norm=None):
- """
- Compute the N-dimensional inverse discrete Fourier Transform.
- This function computes the inverse of the N-dimensional discrete
- Fourier Transform over any number of axes in an M-dimensional array by
- means of the Fast Fourier Transform (FFT). In other words,
- ``ifftn(fftn(a)) == a`` to within numerical accuracy.
- For a description of the definitions and conventions used, see `numpy.fft`.
- The input, analogously to `ifft`, should be ordered in the same way as is
- returned by `fftn`, i.e. it should have the term for zero frequency
- in all axes in the low-order corner, the positive frequency terms in the
- first half of all axes, the term for the Nyquist frequency in the middle
- of all axes and the negative frequency terms in the second half of all
- axes, in order of decreasingly negative frequency.
- Parameters
- ----------
- a : array_like
- Input array, can be complex.
- s : sequence of ints, optional
- Shape (length of each transformed axis) of the output
- (``s[0]`` refers to axis 0, ``s[1]`` to axis 1, etc.).
- This corresponds to ``n`` for ``ifft(x, n)``.
- Along any axis, if the given shape is smaller than that of the input,
- the input is cropped. If it is larger, the input is padded with zeros.
- if `s` is not given, the shape of the input along the axes specified
- by `axes` is used. See notes for issue on `ifft` zero padding.
- axes : sequence of ints, optional
- Axes over which to compute the IFFT. If not given, the last ``len(s)``
- axes are used, or all axes if `s` is also not specified.
- Repeated indices in `axes` means that the inverse transform over that
- axis is performed multiple times.
- norm : {None, "ortho"}, optional
- .. versionadded:: 1.10.0
- Normalization mode (see `numpy.fft`). Default is None.
- Returns
- -------
- out : complex ndarray
- The truncated or zero-padded input, transformed along the axes
- indicated by `axes`, or by a combination of `s` or `a`,
- as explained in the parameters section above.
- Raises
- ------
- ValueError
- If `s` and `axes` have different length.
- IndexError
- If an element of `axes` is larger than than the number of axes of `a`.
- See Also
- --------
- numpy.fft : Overall view of discrete Fourier transforms, with definitions
- and conventions used.
- fftn : The forward *n*-dimensional FFT, of which `ifftn` is the inverse.
- ifft : The one-dimensional inverse FFT.
- ifft2 : The two-dimensional inverse FFT.
- ifftshift : Undoes `fftshift`, shifts zero-frequency terms to beginning
- of array.
- Notes
- -----
- See `numpy.fft` for definitions and conventions used.
- Zero-padding, analogously with `ifft`, is performed by appending zeros to
- the input along the specified dimension. Although this is the common
- approach, it might lead to surprising results. If another form of zero
- padding is desired, it must be performed before `ifftn` is called.
- Examples
- --------
- >>> a = np.eye(4)
- >>> np.fft.ifftn(np.fft.fftn(a, axes=(0,)), axes=(1,))
- array([[ 1.+0.j, 0.+0.j, 0.+0.j, 0.+0.j],
- [ 0.+0.j, 1.+0.j, 0.+0.j, 0.+0.j],
- [ 0.+0.j, 0.+0.j, 1.+0.j, 0.+0.j],
- [ 0.+0.j, 0.+0.j, 0.+0.j, 1.+0.j]])
- Create and plot an image with band-limited frequency content:
- >>> import matplotlib.pyplot as plt
- >>> n = np.zeros((200,200), dtype=complex)
- >>> n[60:80, 20:40] = np.exp(1j*np.random.uniform(0, 2*np.pi, (20, 20)))
- >>> im = np.fft.ifftn(n).real
- >>> plt.imshow(im)
- <matplotlib.image.AxesImage object at 0x...>
- >>> plt.show()
- """
- return _raw_fftnd(a, s, axes, ifft, norm)
- @array_function_dispatch(_fftn_dispatcher)
- def fft2(a, s=None, axes=(-2, -1), norm=None):
- """
- Compute the 2-dimensional discrete Fourier Transform
- This function computes the *n*-dimensional discrete Fourier Transform
- over any axes in an *M*-dimensional array by means of the
- Fast Fourier Transform (FFT). By default, the transform is computed over
- the last two axes of the input array, i.e., a 2-dimensional FFT.
- Parameters
- ----------
- a : array_like
- Input array, can be complex
- s : sequence of ints, optional
- Shape (length of each transformed axis) of the output
- (``s[0]`` refers to axis 0, ``s[1]`` to axis 1, etc.).
- This corresponds to ``n`` for ``fft(x, n)``.
- Along each axis, if the given shape is smaller than that of the input,
- the input is cropped. If it is larger, the input is padded with zeros.
- if `s` is not given, the shape of the input along the axes specified
- by `axes` is used.
- axes : sequence of ints, optional
- Axes over which to compute the FFT. If not given, the last two
- axes are used. A repeated index in `axes` means the transform over
- that axis is performed multiple times. A one-element sequence means
- that a one-dimensional FFT is performed.
- norm : {None, "ortho"}, optional
- .. versionadded:: 1.10.0
- Normalization mode (see `numpy.fft`). Default is None.
- Returns
- -------
- out : complex ndarray
- The truncated or zero-padded input, transformed along the axes
- indicated by `axes`, or the last two axes if `axes` is not given.
- Raises
- ------
- ValueError
- If `s` and `axes` have different length, or `axes` not given and
- ``len(s) != 2``.
- IndexError
- If an element of `axes` is larger than than the number of axes of `a`.
- See Also
- --------
- numpy.fft : Overall view of discrete Fourier transforms, with definitions
- and conventions used.
- ifft2 : The inverse two-dimensional FFT.
- fft : The one-dimensional FFT.
- fftn : The *n*-dimensional FFT.
- fftshift : Shifts zero-frequency terms to the center of the array.
- For two-dimensional input, swaps first and third quadrants, and second
- and fourth quadrants.
- Notes
- -----
- `fft2` is just `fftn` with a different default for `axes`.
- The output, analogously to `fft`, contains the term for zero frequency in
- the low-order corner of the transformed axes, the positive frequency terms
- in the first half of these axes, the term for the Nyquist frequency in the
- middle of the axes and the negative frequency terms in the second half of
- the axes, in order of decreasingly negative frequency.
- See `fftn` for details and a plotting example, and `numpy.fft` for
- definitions and conventions used.
- Examples
- --------
- >>> a = np.mgrid[:5, :5][0]
- >>> np.fft.fft2(a)
- array([[ 50.0 +0.j , 0.0 +0.j , 0.0 +0.j ,
- 0.0 +0.j , 0.0 +0.j ],
- [-12.5+17.20477401j, 0.0 +0.j , 0.0 +0.j ,
- 0.0 +0.j , 0.0 +0.j ],
- [-12.5 +4.0614962j , 0.0 +0.j , 0.0 +0.j ,
- 0.0 +0.j , 0.0 +0.j ],
- [-12.5 -4.0614962j , 0.0 +0.j , 0.0 +0.j ,
- 0.0 +0.j , 0.0 +0.j ],
- [-12.5-17.20477401j, 0.0 +0.j , 0.0 +0.j ,
- 0.0 +0.j , 0.0 +0.j ]])
- """
- return _raw_fftnd(a, s, axes, fft, norm)
- @array_function_dispatch(_fftn_dispatcher)
- def ifft2(a, s=None, axes=(-2, -1), norm=None):
- """
- Compute the 2-dimensional inverse discrete Fourier Transform.
- This function computes the inverse of the 2-dimensional discrete Fourier
- Transform over any number of axes in an M-dimensional array by means of
- the Fast Fourier Transform (FFT). In other words, ``ifft2(fft2(a)) == a``
- to within numerical accuracy. By default, the inverse transform is
- computed over the last two axes of the input array.
- The input, analogously to `ifft`, should be ordered in the same way as is
- returned by `fft2`, i.e. it should have the term for zero frequency
- in the low-order corner of the two axes, the positive frequency terms in
- the first half of these axes, the term for the Nyquist frequency in the
- middle of the axes and the negative frequency terms in the second half of
- both axes, in order of decreasingly negative frequency.
- Parameters
- ----------
- a : array_like
- Input array, can be complex.
- s : sequence of ints, optional
- Shape (length of each axis) of the output (``s[0]`` refers to axis 0,
- ``s[1]`` to axis 1, etc.). This corresponds to `n` for ``ifft(x, n)``.
- Along each axis, if the given shape is smaller than that of the input,
- the input is cropped. If it is larger, the input is padded with zeros.
- if `s` is not given, the shape of the input along the axes specified
- by `axes` is used. See notes for issue on `ifft` zero padding.
- axes : sequence of ints, optional
- Axes over which to compute the FFT. If not given, the last two
- axes are used. A repeated index in `axes` means the transform over
- that axis is performed multiple times. A one-element sequence means
- that a one-dimensional FFT is performed.
- norm : {None, "ortho"}, optional
- .. versionadded:: 1.10.0
- Normalization mode (see `numpy.fft`). Default is None.
- Returns
- -------
- out : complex ndarray
- The truncated or zero-padded input, transformed along the axes
- indicated by `axes`, or the last two axes if `axes` is not given.
- Raises
- ------
- ValueError
- If `s` and `axes` have different length, or `axes` not given and
- ``len(s) != 2``.
- IndexError
- If an element of `axes` is larger than than the number of axes of `a`.
- See Also
- --------
- numpy.fft : Overall view of discrete Fourier transforms, with definitions
- and conventions used.
- fft2 : The forward 2-dimensional FFT, of which `ifft2` is the inverse.
- ifftn : The inverse of the *n*-dimensional FFT.
- fft : The one-dimensional FFT.
- ifft : The one-dimensional inverse FFT.
- Notes
- -----
- `ifft2` is just `ifftn` with a different default for `axes`.
- See `ifftn` for details and a plotting example, and `numpy.fft` for
- definition and conventions used.
- Zero-padding, analogously with `ifft`, is performed by appending zeros to
- the input along the specified dimension. Although this is the common
- approach, it might lead to surprising results. If another form of zero
- padding is desired, it must be performed before `ifft2` is called.
- Examples
- --------
- >>> a = 4 * np.eye(4)
- >>> np.fft.ifft2(a)
- array([[ 1.+0.j, 0.+0.j, 0.+0.j, 0.+0.j],
- [ 0.+0.j, 0.+0.j, 0.+0.j, 1.+0.j],
- [ 0.+0.j, 0.+0.j, 1.+0.j, 0.+0.j],
- [ 0.+0.j, 1.+0.j, 0.+0.j, 0.+0.j]])
- """
- return _raw_fftnd(a, s, axes, ifft, norm)
- @array_function_dispatch(_fftn_dispatcher)
- def rfftn(a, s=None, axes=None, norm=None):
- """
- Compute the N-dimensional discrete Fourier Transform for real input.
- This function computes the N-dimensional discrete Fourier Transform over
- any number of axes in an M-dimensional real array by means of the Fast
- Fourier Transform (FFT). By default, all axes are transformed, with the
- real transform performed over the last axis, while the remaining
- transforms are complex.
- Parameters
- ----------
- a : array_like
- Input array, taken to be real.
- s : sequence of ints, optional
- Shape (length along each transformed axis) to use from the input.
- (``s[0]`` refers to axis 0, ``s[1]`` to axis 1, etc.).
- The final element of `s` corresponds to `n` for ``rfft(x, n)``, while
- for the remaining axes, it corresponds to `n` for ``fft(x, n)``.
- Along any axis, if the given shape is smaller than that of the input,
- the input is cropped. If it is larger, the input is padded with zeros.
- if `s` is not given, the shape of the input along the axes specified
- by `axes` is used.
- axes : sequence of ints, optional
- Axes over which to compute the FFT. If not given, the last ``len(s)``
- axes are used, or all axes if `s` is also not specified.
- norm : {None, "ortho"}, optional
- .. versionadded:: 1.10.0
- Normalization mode (see `numpy.fft`). Default is None.
- Returns
- -------
- out : complex ndarray
- The truncated or zero-padded input, transformed along the axes
- indicated by `axes`, or by a combination of `s` and `a`,
- as explained in the parameters section above.
- The length of the last axis transformed will be ``s[-1]//2+1``,
- while the remaining transformed axes will have lengths according to
- `s`, or unchanged from the input.
- Raises
- ------
- ValueError
- If `s` and `axes` have different length.
- IndexError
- If an element of `axes` is larger than than the number of axes of `a`.
- See Also
- --------
- irfftn : The inverse of `rfftn`, i.e. the inverse of the n-dimensional FFT
- of real input.
- fft : The one-dimensional FFT, with definitions and conventions used.
- rfft : The one-dimensional FFT of real input.
- fftn : The n-dimensional FFT.
- rfft2 : The two-dimensional FFT of real input.
- Notes
- -----
- The transform for real input is performed over the last transformation
- axis, as by `rfft`, then the transform over the remaining axes is
- performed as by `fftn`. The order of the output is as for `rfft` for the
- final transformation axis, and as for `fftn` for the remaining
- transformation axes.
- See `fft` for details, definitions and conventions used.
- Examples
- --------
- >>> a = np.ones((2, 2, 2))
- >>> np.fft.rfftn(a)
- array([[[ 8.+0.j, 0.+0.j],
- [ 0.+0.j, 0.+0.j]],
- [[ 0.+0.j, 0.+0.j],
- [ 0.+0.j, 0.+0.j]]])
- >>> np.fft.rfftn(a, axes=(2, 0))
- array([[[ 4.+0.j, 0.+0.j],
- [ 4.+0.j, 0.+0.j]],
- [[ 0.+0.j, 0.+0.j],
- [ 0.+0.j, 0.+0.j]]])
- """
- # The copy may be required for multithreading.
- a = array(a, copy=True, dtype=float)
- s, axes = _cook_nd_args(a, s, axes)
- a = rfft(a, s[-1], axes[-1], norm)
- for ii in range(len(axes)-1):
- a = fft(a, s[ii], axes[ii], norm)
- return a
- @array_function_dispatch(_fftn_dispatcher)
- def rfft2(a, s=None, axes=(-2, -1), norm=None):
- """
- Compute the 2-dimensional FFT of a real array.
- Parameters
- ----------
- a : array
- Input array, taken to be real.
- s : sequence of ints, optional
- Shape of the FFT.
- axes : sequence of ints, optional
- Axes over which to compute the FFT.
- norm : {None, "ortho"}, optional
- .. versionadded:: 1.10.0
- Normalization mode (see `numpy.fft`). Default is None.
- Returns
- -------
- out : ndarray
- The result of the real 2-D FFT.
- See Also
- --------
- rfftn : Compute the N-dimensional discrete Fourier Transform for real
- input.
- Notes
- -----
- This is really just `rfftn` with different default behavior.
- For more details see `rfftn`.
- """
- return rfftn(a, s, axes, norm)
- @array_function_dispatch(_fftn_dispatcher)
- def irfftn(a, s=None, axes=None, norm=None):
- """
- Compute the inverse of the N-dimensional FFT of real input.
- This function computes the inverse of the N-dimensional discrete
- Fourier Transform for real input over any number of axes in an
- M-dimensional array by means of the Fast Fourier Transform (FFT). In
- other words, ``irfftn(rfftn(a), a.shape) == a`` to within numerical
- accuracy. (The ``a.shape`` is necessary like ``len(a)`` is for `irfft`,
- and for the same reason.)
- The input should be ordered in the same way as is returned by `rfftn`,
- i.e. as for `irfft` for the final transformation axis, and as for `ifftn`
- along all the other axes.
- Parameters
- ----------
- a : array_like
- Input array.
- s : sequence of ints, optional
- Shape (length of each transformed axis) of the output
- (``s[0]`` refers to axis 0, ``s[1]`` to axis 1, etc.). `s` is also the
- number of input points used along this axis, except for the last axis,
- where ``s[-1]//2+1`` points of the input are used.
- Along any axis, if the shape indicated by `s` is smaller than that of
- the input, the input is cropped. If it is larger, the input is padded
- with zeros. If `s` is not given, the shape of the input along the
- axes specified by `axes` is used.
- axes : sequence of ints, optional
- Axes over which to compute the inverse FFT. If not given, the last
- `len(s)` axes are used, or all axes if `s` is also not specified.
- Repeated indices in `axes` means that the inverse transform over that
- axis is performed multiple times.
- norm : {None, "ortho"}, optional
- .. versionadded:: 1.10.0
- Normalization mode (see `numpy.fft`). Default is None.
- Returns
- -------
- out : ndarray
- The truncated or zero-padded input, transformed along the axes
- indicated by `axes`, or by a combination of `s` or `a`,
- as explained in the parameters section above.
- The length of each transformed axis is as given by the corresponding
- element of `s`, or the length of the input in every axis except for the
- last one if `s` is not given. In the final transformed axis the length
- of the output when `s` is not given is ``2*(m-1)`` where ``m`` is the
- length of the final transformed axis of the input. To get an odd
- number of output points in the final axis, `s` must be specified.
- Raises
- ------
- ValueError
- If `s` and `axes` have different length.
- IndexError
- If an element of `axes` is larger than than the number of axes of `a`.
- See Also
- --------
- rfftn : The forward n-dimensional FFT of real input,
- of which `ifftn` is the inverse.
- fft : The one-dimensional FFT, with definitions and conventions used.
- irfft : The inverse of the one-dimensional FFT of real input.
- irfft2 : The inverse of the two-dimensional FFT of real input.
- Notes
- -----
- See `fft` for definitions and conventions used.
- See `rfft` for definitions and conventions used for real input.
- Examples
- --------
- >>> a = np.zeros((3, 2, 2))
- >>> a[0, 0, 0] = 3 * 2 * 2
- >>> np.fft.irfftn(a)
- array([[[ 1., 1.],
- [ 1., 1.]],
- [[ 1., 1.],
- [ 1., 1.]],
- [[ 1., 1.],
- [ 1., 1.]]])
- """
- # The copy may be required for multithreading.
- a = array(a, copy=True, dtype=complex)
- s, axes = _cook_nd_args(a, s, axes, invreal=1)
- for ii in range(len(axes)-1):
- a = ifft(a, s[ii], axes[ii], norm)
- a = irfft(a, s[-1], axes[-1], norm)
- return a
- @array_function_dispatch(_fftn_dispatcher)
- def irfft2(a, s=None, axes=(-2, -1), norm=None):
- """
- Compute the 2-dimensional inverse FFT of a real array.
- Parameters
- ----------
- a : array_like
- The input array
- s : sequence of ints, optional
- Shape of the inverse FFT.
- axes : sequence of ints, optional
- The axes over which to compute the inverse fft.
- Default is the last two axes.
- norm : {None, "ortho"}, optional
- .. versionadded:: 1.10.0
- Normalization mode (see `numpy.fft`). Default is None.
- Returns
- -------
- out : ndarray
- The result of the inverse real 2-D FFT.
- See Also
- --------
- irfftn : Compute the inverse of the N-dimensional FFT of real input.
- Notes
- -----
- This is really `irfftn` with different defaults.
- For more details see `irfftn`.
- """
- return irfftn(a, s, axes, norm)
|