1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663 |
- from __future__ import division, absolute_import, print_function
- import warnings
- import numpy as np
- from numpy.testing import (
- assert_, assert_raises, assert_equal, assert_warns,
- assert_no_warnings, assert_array_equal, assert_array_almost_equal,
- suppress_warnings
- )
- from numpy import random
- import sys
- class TestSeed(object):
- def test_scalar(self):
- s = np.random.RandomState(0)
- assert_equal(s.randint(1000), 684)
- s = np.random.RandomState(4294967295)
- assert_equal(s.randint(1000), 419)
- def test_array(self):
- s = np.random.RandomState(range(10))
- assert_equal(s.randint(1000), 468)
- s = np.random.RandomState(np.arange(10))
- assert_equal(s.randint(1000), 468)
- s = np.random.RandomState([0])
- assert_equal(s.randint(1000), 973)
- s = np.random.RandomState([4294967295])
- assert_equal(s.randint(1000), 265)
- def test_invalid_scalar(self):
- # seed must be an unsigned 32 bit integer
- assert_raises(TypeError, np.random.RandomState, -0.5)
- assert_raises(ValueError, np.random.RandomState, -1)
- def test_invalid_array(self):
- # seed must be an unsigned 32 bit integer
- assert_raises(TypeError, np.random.RandomState, [-0.5])
- assert_raises(ValueError, np.random.RandomState, [-1])
- assert_raises(ValueError, np.random.RandomState, [4294967296])
- assert_raises(ValueError, np.random.RandomState, [1, 2, 4294967296])
- assert_raises(ValueError, np.random.RandomState, [1, -2, 4294967296])
- def test_invalid_array_shape(self):
- # gh-9832
- assert_raises(ValueError, np.random.RandomState, np.array([], dtype=np.int64))
- assert_raises(ValueError, np.random.RandomState, [[1, 2, 3]])
- assert_raises(ValueError, np.random.RandomState, [[1, 2, 3],
- [4, 5, 6]])
- class TestBinomial(object):
- def test_n_zero(self):
- # Tests the corner case of n == 0 for the binomial distribution.
- # binomial(0, p) should be zero for any p in [0, 1].
- # This test addresses issue #3480.
- zeros = np.zeros(2, dtype='int')
- for p in [0, .5, 1]:
- assert_(random.binomial(0, p) == 0)
- assert_array_equal(random.binomial(zeros, p), zeros)
- def test_p_is_nan(self):
- # Issue #4571.
- assert_raises(ValueError, random.binomial, 1, np.nan)
- class TestMultinomial(object):
- def test_basic(self):
- random.multinomial(100, [0.2, 0.8])
- def test_zero_probability(self):
- random.multinomial(100, [0.2, 0.8, 0.0, 0.0, 0.0])
- def test_int_negative_interval(self):
- assert_(-5 <= random.randint(-5, -1) < -1)
- x = random.randint(-5, -1, 5)
- assert_(np.all(-5 <= x))
- assert_(np.all(x < -1))
- def test_size(self):
- # gh-3173
- p = [0.5, 0.5]
- assert_equal(np.random.multinomial(1, p, np.uint32(1)).shape, (1, 2))
- assert_equal(np.random.multinomial(1, p, np.uint32(1)).shape, (1, 2))
- assert_equal(np.random.multinomial(1, p, np.uint32(1)).shape, (1, 2))
- assert_equal(np.random.multinomial(1, p, [2, 2]).shape, (2, 2, 2))
- assert_equal(np.random.multinomial(1, p, (2, 2)).shape, (2, 2, 2))
- assert_equal(np.random.multinomial(1, p, np.array((2, 2))).shape,
- (2, 2, 2))
- assert_raises(TypeError, np.random.multinomial, 1, p,
- float(1))
- class TestSetState(object):
- def setup(self):
- self.seed = 1234567890
- self.prng = random.RandomState(self.seed)
- self.state = self.prng.get_state()
- def test_basic(self):
- old = self.prng.tomaxint(16)
- self.prng.set_state(self.state)
- new = self.prng.tomaxint(16)
- assert_(np.all(old == new))
- def test_gaussian_reset(self):
- # Make sure the cached every-other-Gaussian is reset.
- old = self.prng.standard_normal(size=3)
- self.prng.set_state(self.state)
- new = self.prng.standard_normal(size=3)
- assert_(np.all(old == new))
- def test_gaussian_reset_in_media_res(self):
- # When the state is saved with a cached Gaussian, make sure the
- # cached Gaussian is restored.
- self.prng.standard_normal()
- state = self.prng.get_state()
- old = self.prng.standard_normal(size=3)
- self.prng.set_state(state)
- new = self.prng.standard_normal(size=3)
- assert_(np.all(old == new))
- def test_backwards_compatibility(self):
- # Make sure we can accept old state tuples that do not have the
- # cached Gaussian value.
- old_state = self.state[:-2]
- x1 = self.prng.standard_normal(size=16)
- self.prng.set_state(old_state)
- x2 = self.prng.standard_normal(size=16)
- self.prng.set_state(self.state)
- x3 = self.prng.standard_normal(size=16)
- assert_(np.all(x1 == x2))
- assert_(np.all(x1 == x3))
- def test_negative_binomial(self):
- # Ensure that the negative binomial results take floating point
- # arguments without truncation.
- self.prng.negative_binomial(0.5, 0.5)
- class TestRandint(object):
- rfunc = np.random.randint
- # valid integer/boolean types
- itype = [np.bool_, np.int8, np.uint8, np.int16, np.uint16,
- np.int32, np.uint32, np.int64, np.uint64]
- def test_unsupported_type(self):
- assert_raises(TypeError, self.rfunc, 1, dtype=float)
- def test_bounds_checking(self):
- for dt in self.itype:
- lbnd = 0 if dt is np.bool_ else np.iinfo(dt).min
- ubnd = 2 if dt is np.bool_ else np.iinfo(dt).max + 1
- assert_raises(ValueError, self.rfunc, lbnd - 1, ubnd, dtype=dt)
- assert_raises(ValueError, self.rfunc, lbnd, ubnd + 1, dtype=dt)
- assert_raises(ValueError, self.rfunc, ubnd, lbnd, dtype=dt)
- assert_raises(ValueError, self.rfunc, 1, 0, dtype=dt)
- def test_rng_zero_and_extremes(self):
- for dt in self.itype:
- lbnd = 0 if dt is np.bool_ else np.iinfo(dt).min
- ubnd = 2 if dt is np.bool_ else np.iinfo(dt).max + 1
- tgt = ubnd - 1
- assert_equal(self.rfunc(tgt, tgt + 1, size=1000, dtype=dt), tgt)
- tgt = lbnd
- assert_equal(self.rfunc(tgt, tgt + 1, size=1000, dtype=dt), tgt)
- tgt = (lbnd + ubnd)//2
- assert_equal(self.rfunc(tgt, tgt + 1, size=1000, dtype=dt), tgt)
- def test_full_range(self):
- # Test for ticket #1690
- for dt in self.itype:
- lbnd = 0 if dt is np.bool_ else np.iinfo(dt).min
- ubnd = 2 if dt is np.bool_ else np.iinfo(dt).max + 1
- try:
- self.rfunc(lbnd, ubnd, dtype=dt)
- except Exception as e:
- raise AssertionError("No error should have been raised, "
- "but one was with the following "
- "message:\n\n%s" % str(e))
- def test_in_bounds_fuzz(self):
- # Don't use fixed seed
- np.random.seed()
- for dt in self.itype[1:]:
- for ubnd in [4, 8, 16]:
- vals = self.rfunc(2, ubnd, size=2**16, dtype=dt)
- assert_(vals.max() < ubnd)
- assert_(vals.min() >= 2)
- vals = self.rfunc(0, 2, size=2**16, dtype=np.bool_)
- assert_(vals.max() < 2)
- assert_(vals.min() >= 0)
- def test_repeatability(self):
- import hashlib
- # We use a md5 hash of generated sequences of 1000 samples
- # in the range [0, 6) for all but bool, where the range
- # is [0, 2). Hashes are for little endian numbers.
- tgt = {'bool': '7dd3170d7aa461d201a65f8bcf3944b0',
- 'int16': '1b7741b80964bb190c50d541dca1cac1',
- 'int32': '4dc9fcc2b395577ebb51793e58ed1a05',
- 'int64': '17db902806f448331b5a758d7d2ee672',
- 'int8': '27dd30c4e08a797063dffac2490b0be6',
- 'uint16': '1b7741b80964bb190c50d541dca1cac1',
- 'uint32': '4dc9fcc2b395577ebb51793e58ed1a05',
- 'uint64': '17db902806f448331b5a758d7d2ee672',
- 'uint8': '27dd30c4e08a797063dffac2490b0be6'}
- for dt in self.itype[1:]:
- np.random.seed(1234)
- # view as little endian for hash
- if sys.byteorder == 'little':
- val = self.rfunc(0, 6, size=1000, dtype=dt)
- else:
- val = self.rfunc(0, 6, size=1000, dtype=dt).byteswap()
- res = hashlib.md5(val.view(np.int8)).hexdigest()
- assert_(tgt[np.dtype(dt).name] == res)
- # bools do not depend on endianness
- np.random.seed(1234)
- val = self.rfunc(0, 2, size=1000, dtype=bool).view(np.int8)
- res = hashlib.md5(val).hexdigest()
- assert_(tgt[np.dtype(bool).name] == res)
- def test_int64_uint64_corner_case(self):
- # When stored in Numpy arrays, `lbnd` is casted
- # as np.int64, and `ubnd` is casted as np.uint64.
- # Checking whether `lbnd` >= `ubnd` used to be
- # done solely via direct comparison, which is incorrect
- # because when Numpy tries to compare both numbers,
- # it casts both to np.float64 because there is
- # no integer superset of np.int64 and np.uint64. However,
- # `ubnd` is too large to be represented in np.float64,
- # causing it be round down to np.iinfo(np.int64).max,
- # leading to a ValueError because `lbnd` now equals
- # the new `ubnd`.
- dt = np.int64
- tgt = np.iinfo(np.int64).max
- lbnd = np.int64(np.iinfo(np.int64).max)
- ubnd = np.uint64(np.iinfo(np.int64).max + 1)
- # None of these function calls should
- # generate a ValueError now.
- actual = np.random.randint(lbnd, ubnd, dtype=dt)
- assert_equal(actual, tgt)
- def test_respect_dtype_singleton(self):
- # See gh-7203
- for dt in self.itype:
- lbnd = 0 if dt is np.bool_ else np.iinfo(dt).min
- ubnd = 2 if dt is np.bool_ else np.iinfo(dt).max + 1
- sample = self.rfunc(lbnd, ubnd, dtype=dt)
- assert_equal(sample.dtype, np.dtype(dt))
- for dt in (bool, int, np.long):
- lbnd = 0 if dt is bool else np.iinfo(dt).min
- ubnd = 2 if dt is bool else np.iinfo(dt).max + 1
- # gh-7284: Ensure that we get Python data types
- sample = self.rfunc(lbnd, ubnd, dtype=dt)
- assert_(not hasattr(sample, 'dtype'))
- assert_equal(type(sample), dt)
- class TestRandomDist(object):
- # Make sure the random distribution returns the correct value for a
- # given seed
- def setup(self):
- self.seed = 1234567890
- def test_rand(self):
- np.random.seed(self.seed)
- actual = np.random.rand(3, 2)
- desired = np.array([[0.61879477158567997, 0.59162362775974664],
- [0.88868358904449662, 0.89165480011560816],
- [0.4575674820298663, 0.7781880808593471]])
- assert_array_almost_equal(actual, desired, decimal=15)
- def test_randn(self):
- np.random.seed(self.seed)
- actual = np.random.randn(3, 2)
- desired = np.array([[1.34016345771863121, 1.73759122771936081],
- [1.498988344300628, -0.2286433324536169],
- [2.031033998682787, 2.17032494605655257]])
- assert_array_almost_equal(actual, desired, decimal=15)
- def test_randint(self):
- np.random.seed(self.seed)
- actual = np.random.randint(-99, 99, size=(3, 2))
- desired = np.array([[31, 3],
- [-52, 41],
- [-48, -66]])
- assert_array_equal(actual, desired)
- def test_random_integers(self):
- np.random.seed(self.seed)
- with suppress_warnings() as sup:
- w = sup.record(DeprecationWarning)
- actual = np.random.random_integers(-99, 99, size=(3, 2))
- assert_(len(w) == 1)
- desired = np.array([[31, 3],
- [-52, 41],
- [-48, -66]])
- assert_array_equal(actual, desired)
- def test_random_integers_max_int(self):
- # Tests whether random_integers can generate the
- # maximum allowed Python int that can be converted
- # into a C long. Previous implementations of this
- # method have thrown an OverflowError when attempting
- # to generate this integer.
- with suppress_warnings() as sup:
- w = sup.record(DeprecationWarning)
- actual = np.random.random_integers(np.iinfo('l').max,
- np.iinfo('l').max)
- assert_(len(w) == 1)
- desired = np.iinfo('l').max
- assert_equal(actual, desired)
- def test_random_integers_deprecated(self):
- with warnings.catch_warnings():
- warnings.simplefilter("error", DeprecationWarning)
- # DeprecationWarning raised with high == None
- assert_raises(DeprecationWarning,
- np.random.random_integers,
- np.iinfo('l').max)
- # DeprecationWarning raised with high != None
- assert_raises(DeprecationWarning,
- np.random.random_integers,
- np.iinfo('l').max, np.iinfo('l').max)
- def test_random_sample(self):
- np.random.seed(self.seed)
- actual = np.random.random_sample((3, 2))
- desired = np.array([[0.61879477158567997, 0.59162362775974664],
- [0.88868358904449662, 0.89165480011560816],
- [0.4575674820298663, 0.7781880808593471]])
- assert_array_almost_equal(actual, desired, decimal=15)
- def test_choice_uniform_replace(self):
- np.random.seed(self.seed)
- actual = np.random.choice(4, 4)
- desired = np.array([2, 3, 2, 3])
- assert_array_equal(actual, desired)
- def test_choice_nonuniform_replace(self):
- np.random.seed(self.seed)
- actual = np.random.choice(4, 4, p=[0.4, 0.4, 0.1, 0.1])
- desired = np.array([1, 1, 2, 2])
- assert_array_equal(actual, desired)
- def test_choice_uniform_noreplace(self):
- np.random.seed(self.seed)
- actual = np.random.choice(4, 3, replace=False)
- desired = np.array([0, 1, 3])
- assert_array_equal(actual, desired)
- def test_choice_nonuniform_noreplace(self):
- np.random.seed(self.seed)
- actual = np.random.choice(4, 3, replace=False,
- p=[0.1, 0.3, 0.5, 0.1])
- desired = np.array([2, 3, 1])
- assert_array_equal(actual, desired)
- def test_choice_noninteger(self):
- np.random.seed(self.seed)
- actual = np.random.choice(['a', 'b', 'c', 'd'], 4)
- desired = np.array(['c', 'd', 'c', 'd'])
- assert_array_equal(actual, desired)
- def test_choice_exceptions(self):
- sample = np.random.choice
- assert_raises(ValueError, sample, -1, 3)
- assert_raises(ValueError, sample, 3., 3)
- assert_raises(ValueError, sample, [[1, 2], [3, 4]], 3)
- assert_raises(ValueError, sample, [], 3)
- assert_raises(ValueError, sample, [1, 2, 3, 4], 3,
- p=[[0.25, 0.25], [0.25, 0.25]])
- assert_raises(ValueError, sample, [1, 2], 3, p=[0.4, 0.4, 0.2])
- assert_raises(ValueError, sample, [1, 2], 3, p=[1.1, -0.1])
- assert_raises(ValueError, sample, [1, 2], 3, p=[0.4, 0.4])
- assert_raises(ValueError, sample, [1, 2, 3], 4, replace=False)
- # gh-13087
- assert_raises(ValueError, sample, [1, 2, 3], -2, replace=False)
- assert_raises(ValueError, sample, [1, 2, 3], (-1,), replace=False)
- assert_raises(ValueError, sample, [1, 2, 3], (-1, 1), replace=False)
- assert_raises(ValueError, sample, [1, 2, 3], 2,
- replace=False, p=[1, 0, 0])
- def test_choice_return_shape(self):
- p = [0.1, 0.9]
- # Check scalar
- assert_(np.isscalar(np.random.choice(2, replace=True)))
- assert_(np.isscalar(np.random.choice(2, replace=False)))
- assert_(np.isscalar(np.random.choice(2, replace=True, p=p)))
- assert_(np.isscalar(np.random.choice(2, replace=False, p=p)))
- assert_(np.isscalar(np.random.choice([1, 2], replace=True)))
- assert_(np.random.choice([None], replace=True) is None)
- a = np.array([1, 2])
- arr = np.empty(1, dtype=object)
- arr[0] = a
- assert_(np.random.choice(arr, replace=True) is a)
- # Check 0-d array
- s = tuple()
- assert_(not np.isscalar(np.random.choice(2, s, replace=True)))
- assert_(not np.isscalar(np.random.choice(2, s, replace=False)))
- assert_(not np.isscalar(np.random.choice(2, s, replace=True, p=p)))
- assert_(not np.isscalar(np.random.choice(2, s, replace=False, p=p)))
- assert_(not np.isscalar(np.random.choice([1, 2], s, replace=True)))
- assert_(np.random.choice([None], s, replace=True).ndim == 0)
- a = np.array([1, 2])
- arr = np.empty(1, dtype=object)
- arr[0] = a
- assert_(np.random.choice(arr, s, replace=True).item() is a)
- # Check multi dimensional array
- s = (2, 3)
- p = [0.1, 0.1, 0.1, 0.1, 0.4, 0.2]
- assert_equal(np.random.choice(6, s, replace=True).shape, s)
- assert_equal(np.random.choice(6, s, replace=False).shape, s)
- assert_equal(np.random.choice(6, s, replace=True, p=p).shape, s)
- assert_equal(np.random.choice(6, s, replace=False, p=p).shape, s)
- assert_equal(np.random.choice(np.arange(6), s, replace=True).shape, s)
- # Check zero-size
- assert_equal(np.random.randint(0, 0, size=(3, 0, 4)).shape, (3, 0, 4))
- assert_equal(np.random.randint(0, -10, size=0).shape, (0,))
- assert_equal(np.random.randint(10, 10, size=0).shape, (0,))
- assert_equal(np.random.choice(0, size=0).shape, (0,))
- assert_equal(np.random.choice([], size=(0,)).shape, (0,))
- assert_equal(np.random.choice(['a', 'b'], size=(3, 0, 4)).shape, (3, 0, 4))
- assert_raises(ValueError, np.random.choice, [], 10)
- def test_choice_nan_probabilities(self):
- a = np.array([42, 1, 2])
- p = [None, None, None]
- assert_raises(ValueError, np.random.choice, a, p=p)
- def test_bytes(self):
- np.random.seed(self.seed)
- actual = np.random.bytes(10)
- desired = b'\x82Ui\x9e\xff\x97+Wf\xa5'
- assert_equal(actual, desired)
- def test_shuffle(self):
- # Test lists, arrays (of various dtypes), and multidimensional versions
- # of both, c-contiguous or not:
- for conv in [lambda x: np.array([]),
- lambda x: x,
- lambda x: np.asarray(x).astype(np.int8),
- lambda x: np.asarray(x).astype(np.float32),
- lambda x: np.asarray(x).astype(np.complex64),
- lambda x: np.asarray(x).astype(object),
- lambda x: [(i, i) for i in x],
- lambda x: np.asarray([[i, i] for i in x]),
- lambda x: np.vstack([x, x]).T,
- # gh-11442
- lambda x: (np.asarray([(i, i) for i in x],
- [("a", int), ("b", int)])
- .view(np.recarray)),
- # gh-4270
- lambda x: np.asarray([(i, i) for i in x],
- [("a", object, 1),
- ("b", np.int32, 1)])]:
- np.random.seed(self.seed)
- alist = conv([1, 2, 3, 4, 5, 6, 7, 8, 9, 0])
- np.random.shuffle(alist)
- actual = alist
- desired = conv([0, 1, 9, 6, 2, 4, 5, 8, 7, 3])
- assert_array_equal(actual, desired)
- def test_shuffle_masked(self):
- # gh-3263
- a = np.ma.masked_values(np.reshape(range(20), (5, 4)) % 3 - 1, -1)
- b = np.ma.masked_values(np.arange(20) % 3 - 1, -1)
- a_orig = a.copy()
- b_orig = b.copy()
- for i in range(50):
- np.random.shuffle(a)
- assert_equal(
- sorted(a.data[~a.mask]), sorted(a_orig.data[~a_orig.mask]))
- np.random.shuffle(b)
- assert_equal(
- sorted(b.data[~b.mask]), sorted(b_orig.data[~b_orig.mask]))
- def test_beta(self):
- np.random.seed(self.seed)
- actual = np.random.beta(.1, .9, size=(3, 2))
- desired = np.array(
- [[1.45341850513746058e-02, 5.31297615662868145e-04],
- [1.85366619058432324e-06, 4.19214516800110563e-03],
- [1.58405155108498093e-04, 1.26252891949397652e-04]])
- assert_array_almost_equal(actual, desired, decimal=15)
- def test_binomial(self):
- np.random.seed(self.seed)
- actual = np.random.binomial(100.123, .456, size=(3, 2))
- desired = np.array([[37, 43],
- [42, 48],
- [46, 45]])
- assert_array_equal(actual, desired)
- def test_chisquare(self):
- np.random.seed(self.seed)
- actual = np.random.chisquare(50, size=(3, 2))
- desired = np.array([[63.87858175501090585, 68.68407748911370447],
- [65.77116116901505904, 47.09686762438974483],
- [72.3828403199695174, 74.18408615260374006]])
- assert_array_almost_equal(actual, desired, decimal=13)
- def test_dirichlet(self):
- np.random.seed(self.seed)
- alpha = np.array([51.72840233779265162, 39.74494232180943953])
- actual = np.random.mtrand.dirichlet(alpha, size=(3, 2))
- desired = np.array([[[0.54539444573611562, 0.45460555426388438],
- [0.62345816822039413, 0.37654183177960598]],
- [[0.55206000085785778, 0.44793999914214233],
- [0.58964023305154301, 0.41035976694845688]],
- [[0.59266909280647828, 0.40733090719352177],
- [0.56974431743975207, 0.43025568256024799]]])
- assert_array_almost_equal(actual, desired, decimal=15)
- def test_dirichlet_size(self):
- # gh-3173
- p = np.array([51.72840233779265162, 39.74494232180943953])
- assert_equal(np.random.dirichlet(p, np.uint32(1)).shape, (1, 2))
- assert_equal(np.random.dirichlet(p, np.uint32(1)).shape, (1, 2))
- assert_equal(np.random.dirichlet(p, np.uint32(1)).shape, (1, 2))
- assert_equal(np.random.dirichlet(p, [2, 2]).shape, (2, 2, 2))
- assert_equal(np.random.dirichlet(p, (2, 2)).shape, (2, 2, 2))
- assert_equal(np.random.dirichlet(p, np.array((2, 2))).shape, (2, 2, 2))
- assert_raises(TypeError, np.random.dirichlet, p, float(1))
- def test_dirichlet_bad_alpha(self):
- # gh-2089
- alpha = np.array([5.4e-01, -1.0e-16])
- assert_raises(ValueError, np.random.mtrand.dirichlet, alpha)
- def test_exponential(self):
- np.random.seed(self.seed)
- actual = np.random.exponential(1.1234, size=(3, 2))
- desired = np.array([[1.08342649775011624, 1.00607889924557314],
- [2.46628830085216721, 2.49668106809923884],
- [0.68717433461363442, 1.69175666993575979]])
- assert_array_almost_equal(actual, desired, decimal=15)
- def test_exponential_0(self):
- assert_equal(np.random.exponential(scale=0), 0)
- assert_raises(ValueError, np.random.exponential, scale=-0.)
- def test_f(self):
- np.random.seed(self.seed)
- actual = np.random.f(12, 77, size=(3, 2))
- desired = np.array([[1.21975394418575878, 1.75135759791559775],
- [1.44803115017146489, 1.22108959480396262],
- [1.02176975757740629, 1.34431827623300415]])
- assert_array_almost_equal(actual, desired, decimal=15)
- def test_gamma(self):
- np.random.seed(self.seed)
- actual = np.random.gamma(5, 3, size=(3, 2))
- desired = np.array([[24.60509188649287182, 28.54993563207210627],
- [26.13476110204064184, 12.56988482927716078],
- [31.71863275789960568, 33.30143302795922011]])
- assert_array_almost_equal(actual, desired, decimal=14)
- def test_gamma_0(self):
- assert_equal(np.random.gamma(shape=0, scale=0), 0)
- assert_raises(ValueError, np.random.gamma, shape=-0., scale=-0.)
- def test_geometric(self):
- np.random.seed(self.seed)
- actual = np.random.geometric(.123456789, size=(3, 2))
- desired = np.array([[8, 7],
- [17, 17],
- [5, 12]])
- assert_array_equal(actual, desired)
- def test_gumbel(self):
- np.random.seed(self.seed)
- actual = np.random.gumbel(loc=.123456789, scale=2.0, size=(3, 2))
- desired = np.array([[0.19591898743416816, 0.34405539668096674],
- [-1.4492522252274278, -1.47374816298446865],
- [1.10651090478803416, -0.69535848626236174]])
- assert_array_almost_equal(actual, desired, decimal=15)
- def test_gumbel_0(self):
- assert_equal(np.random.gumbel(scale=0), 0)
- assert_raises(ValueError, np.random.gumbel, scale=-0.)
- def test_hypergeometric(self):
- np.random.seed(self.seed)
- actual = np.random.hypergeometric(10.1, 5.5, 14, size=(3, 2))
- desired = np.array([[10, 10],
- [10, 10],
- [9, 9]])
- assert_array_equal(actual, desired)
- # Test nbad = 0
- actual = np.random.hypergeometric(5, 0, 3, size=4)
- desired = np.array([3, 3, 3, 3])
- assert_array_equal(actual, desired)
- actual = np.random.hypergeometric(15, 0, 12, size=4)
- desired = np.array([12, 12, 12, 12])
- assert_array_equal(actual, desired)
- # Test ngood = 0
- actual = np.random.hypergeometric(0, 5, 3, size=4)
- desired = np.array([0, 0, 0, 0])
- assert_array_equal(actual, desired)
- actual = np.random.hypergeometric(0, 15, 12, size=4)
- desired = np.array([0, 0, 0, 0])
- assert_array_equal(actual, desired)
- def test_laplace(self):
- np.random.seed(self.seed)
- actual = np.random.laplace(loc=.123456789, scale=2.0, size=(3, 2))
- desired = np.array([[0.66599721112760157, 0.52829452552221945],
- [3.12791959514407125, 3.18202813572992005],
- [-0.05391065675859356, 1.74901336242837324]])
- assert_array_almost_equal(actual, desired, decimal=15)
- def test_laplace_0(self):
- assert_equal(np.random.laplace(scale=0), 0)
- assert_raises(ValueError, np.random.laplace, scale=-0.)
- def test_logistic(self):
- np.random.seed(self.seed)
- actual = np.random.logistic(loc=.123456789, scale=2.0, size=(3, 2))
- desired = np.array([[1.09232835305011444, 0.8648196662399954],
- [4.27818590694950185, 4.33897006346929714],
- [-0.21682183359214885, 2.63373365386060332]])
- assert_array_almost_equal(actual, desired, decimal=15)
- def test_lognormal(self):
- np.random.seed(self.seed)
- actual = np.random.lognormal(mean=.123456789, sigma=2.0, size=(3, 2))
- desired = np.array([[16.50698631688883822, 36.54846706092654784],
- [22.67886599981281748, 0.71617561058995771],
- [65.72798501792723869, 86.84341601437161273]])
- assert_array_almost_equal(actual, desired, decimal=13)
- def test_lognormal_0(self):
- assert_equal(np.random.lognormal(sigma=0), 1)
- assert_raises(ValueError, np.random.lognormal, sigma=-0.)
- def test_logseries(self):
- np.random.seed(self.seed)
- actual = np.random.logseries(p=.923456789, size=(3, 2))
- desired = np.array([[2, 2],
- [6, 17],
- [3, 6]])
- assert_array_equal(actual, desired)
- def test_multinomial(self):
- np.random.seed(self.seed)
- actual = np.random.multinomial(20, [1/6.]*6, size=(3, 2))
- desired = np.array([[[4, 3, 5, 4, 2, 2],
- [5, 2, 8, 2, 2, 1]],
- [[3, 4, 3, 6, 0, 4],
- [2, 1, 4, 3, 6, 4]],
- [[4, 4, 2, 5, 2, 3],
- [4, 3, 4, 2, 3, 4]]])
- assert_array_equal(actual, desired)
- def test_multivariate_normal(self):
- np.random.seed(self.seed)
- mean = (.123456789, 10)
- cov = [[1, 0], [0, 1]]
- size = (3, 2)
- actual = np.random.multivariate_normal(mean, cov, size)
- desired = np.array([[[1.463620246718631, 11.73759122771936 ],
- [1.622445133300628, 9.771356667546383]],
- [[2.154490787682787, 12.170324946056553],
- [1.719909438201865, 9.230548443648306]],
- [[0.689515026297799, 9.880729819607714],
- [-0.023054015651998, 9.201096623542879]]])
- assert_array_almost_equal(actual, desired, decimal=15)
- # Check for default size, was raising deprecation warning
- actual = np.random.multivariate_normal(mean, cov)
- desired = np.array([0.895289569463708, 9.17180864067987])
- assert_array_almost_equal(actual, desired, decimal=15)
- # Check that non positive-semidefinite covariance warns with
- # RuntimeWarning
- mean = [0, 0]
- cov = [[1, 2], [2, 1]]
- assert_warns(RuntimeWarning, np.random.multivariate_normal, mean, cov)
- # and that it doesn't warn with RuntimeWarning check_valid='ignore'
- assert_no_warnings(np.random.multivariate_normal, mean, cov,
- check_valid='ignore')
- # and that it raises with RuntimeWarning check_valid='raises'
- assert_raises(ValueError, np.random.multivariate_normal, mean, cov,
- check_valid='raise')
- cov = np.array([[1, 0.1],[0.1, 1]], dtype=np.float32)
- with suppress_warnings() as sup:
- np.random.multivariate_normal(mean, cov)
- w = sup.record(RuntimeWarning)
- assert len(w) == 0
- def test_negative_binomial(self):
- np.random.seed(self.seed)
- actual = np.random.negative_binomial(n=100, p=.12345, size=(3, 2))
- desired = np.array([[848, 841],
- [892, 611],
- [779, 647]])
- assert_array_equal(actual, desired)
- def test_noncentral_chisquare(self):
- np.random.seed(self.seed)
- actual = np.random.noncentral_chisquare(df=5, nonc=5, size=(3, 2))
- desired = np.array([[23.91905354498517511, 13.35324692733826346],
- [31.22452661329736401, 16.60047399466177254],
- [5.03461598262724586, 17.94973089023519464]])
- assert_array_almost_equal(actual, desired, decimal=14)
- actual = np.random.noncentral_chisquare(df=.5, nonc=.2, size=(3, 2))
- desired = np.array([[1.47145377828516666, 0.15052899268012659],
- [0.00943803056963588, 1.02647251615666169],
- [0.332334982684171, 0.15451287602753125]])
- assert_array_almost_equal(actual, desired, decimal=14)
- np.random.seed(self.seed)
- actual = np.random.noncentral_chisquare(df=5, nonc=0, size=(3, 2))
- desired = np.array([[9.597154162763948, 11.725484450296079],
- [10.413711048138335, 3.694475922923986],
- [13.484222138963087, 14.377255424602957]])
- assert_array_almost_equal(actual, desired, decimal=14)
- def test_noncentral_f(self):
- np.random.seed(self.seed)
- actual = np.random.noncentral_f(dfnum=5, dfden=2, nonc=1,
- size=(3, 2))
- desired = np.array([[1.40598099674926669, 0.34207973179285761],
- [3.57715069265772545, 7.92632662577829805],
- [0.43741599463544162, 1.1774208752428319]])
- assert_array_almost_equal(actual, desired, decimal=14)
- def test_normal(self):
- np.random.seed(self.seed)
- actual = np.random.normal(loc=.123456789, scale=2.0, size=(3, 2))
- desired = np.array([[2.80378370443726244, 3.59863924443872163],
- [3.121433477601256, -0.33382987590723379],
- [4.18552478636557357, 4.46410668111310471]])
- assert_array_almost_equal(actual, desired, decimal=15)
- def test_normal_0(self):
- assert_equal(np.random.normal(scale=0), 0)
- assert_raises(ValueError, np.random.normal, scale=-0.)
- def test_pareto(self):
- np.random.seed(self.seed)
- actual = np.random.pareto(a=.123456789, size=(3, 2))
- desired = np.array(
- [[2.46852460439034849e+03, 1.41286880810518346e+03],
- [5.28287797029485181e+07, 6.57720981047328785e+07],
- [1.40840323350391515e+02, 1.98390255135251704e+05]])
- # For some reason on 32-bit x86 Ubuntu 12.10 the [1, 0] entry in this
- # matrix differs by 24 nulps. Discussion:
- # https://mail.python.org/pipermail/numpy-discussion/2012-September/063801.html
- # Consensus is that this is probably some gcc quirk that affects
- # rounding but not in any important way, so we just use a looser
- # tolerance on this test:
- np.testing.assert_array_almost_equal_nulp(actual, desired, nulp=30)
- def test_poisson(self):
- np.random.seed(self.seed)
- actual = np.random.poisson(lam=.123456789, size=(3, 2))
- desired = np.array([[0, 0],
- [1, 0],
- [0, 0]])
- assert_array_equal(actual, desired)
- def test_poisson_exceptions(self):
- lambig = np.iinfo('l').max
- lamneg = -1
- assert_raises(ValueError, np.random.poisson, lamneg)
- assert_raises(ValueError, np.random.poisson, [lamneg]*10)
- assert_raises(ValueError, np.random.poisson, lambig)
- assert_raises(ValueError, np.random.poisson, [lambig]*10)
- def test_power(self):
- np.random.seed(self.seed)
- actual = np.random.power(a=.123456789, size=(3, 2))
- desired = np.array([[0.02048932883240791, 0.01424192241128213],
- [0.38446073748535298, 0.39499689943484395],
- [0.00177699707563439, 0.13115505880863756]])
- assert_array_almost_equal(actual, desired, decimal=15)
- def test_rayleigh(self):
- np.random.seed(self.seed)
- actual = np.random.rayleigh(scale=10, size=(3, 2))
- desired = np.array([[13.8882496494248393, 13.383318339044731],
- [20.95413364294492098, 21.08285015800712614],
- [11.06066537006854311, 17.35468505778271009]])
- assert_array_almost_equal(actual, desired, decimal=14)
- def test_rayleigh_0(self):
- assert_equal(np.random.rayleigh(scale=0), 0)
- assert_raises(ValueError, np.random.rayleigh, scale=-0.)
- def test_standard_cauchy(self):
- np.random.seed(self.seed)
- actual = np.random.standard_cauchy(size=(3, 2))
- desired = np.array([[0.77127660196445336, -6.55601161955910605],
- [0.93582023391158309, -2.07479293013759447],
- [-4.74601644297011926, 0.18338989290760804]])
- assert_array_almost_equal(actual, desired, decimal=15)
- def test_standard_exponential(self):
- np.random.seed(self.seed)
- actual = np.random.standard_exponential(size=(3, 2))
- desired = np.array([[0.96441739162374596, 0.89556604882105506],
- [2.1953785836319808, 2.22243285392490542],
- [0.6116915921431676, 1.50592546727413201]])
- assert_array_almost_equal(actual, desired, decimal=15)
- def test_standard_gamma(self):
- np.random.seed(self.seed)
- actual = np.random.standard_gamma(shape=3, size=(3, 2))
- desired = np.array([[5.50841531318455058, 6.62953470301903103],
- [5.93988484943779227, 2.31044849402133989],
- [7.54838614231317084, 8.012756093271868]])
- assert_array_almost_equal(actual, desired, decimal=14)
- def test_standard_gamma_0(self):
- assert_equal(np.random.standard_gamma(shape=0), 0)
- assert_raises(ValueError, np.random.standard_gamma, shape=-0.)
- def test_standard_normal(self):
- np.random.seed(self.seed)
- actual = np.random.standard_normal(size=(3, 2))
- desired = np.array([[1.34016345771863121, 1.73759122771936081],
- [1.498988344300628, -0.2286433324536169],
- [2.031033998682787, 2.17032494605655257]])
- assert_array_almost_equal(actual, desired, decimal=15)
- def test_standard_t(self):
- np.random.seed(self.seed)
- actual = np.random.standard_t(df=10, size=(3, 2))
- desired = np.array([[0.97140611862659965, -0.08830486548450577],
- [1.36311143689505321, -0.55317463909867071],
- [-0.18473749069684214, 0.61181537341755321]])
- assert_array_almost_equal(actual, desired, decimal=15)
- def test_triangular(self):
- np.random.seed(self.seed)
- actual = np.random.triangular(left=5.12, mode=10.23, right=20.34,
- size=(3, 2))
- desired = np.array([[12.68117178949215784, 12.4129206149193152],
- [16.20131377335158263, 16.25692138747600524],
- [11.20400690911820263, 14.4978144835829923]])
- assert_array_almost_equal(actual, desired, decimal=14)
- def test_uniform(self):
- np.random.seed(self.seed)
- actual = np.random.uniform(low=1.23, high=10.54, size=(3, 2))
- desired = np.array([[6.99097932346268003, 6.73801597444323974],
- [9.50364421400426274, 9.53130618907631089],
- [5.48995325769805476, 8.47493103280052118]])
- assert_array_almost_equal(actual, desired, decimal=15)
- def test_uniform_range_bounds(self):
- fmin = np.finfo('float').min
- fmax = np.finfo('float').max
- func = np.random.uniform
- assert_raises(OverflowError, func, -np.inf, 0)
- assert_raises(OverflowError, func, 0, np.inf)
- assert_raises(OverflowError, func, fmin, fmax)
- assert_raises(OverflowError, func, [-np.inf], [0])
- assert_raises(OverflowError, func, [0], [np.inf])
- # (fmax / 1e17) - fmin is within range, so this should not throw
- # account for i386 extended precision DBL_MAX / 1e17 + DBL_MAX >
- # DBL_MAX by increasing fmin a bit
- np.random.uniform(low=np.nextafter(fmin, 1), high=fmax / 1e17)
- def test_scalar_exception_propagation(self):
- # Tests that exceptions are correctly propagated in distributions
- # when called with objects that throw exceptions when converted to
- # scalars.
- #
- # Regression test for gh: 8865
- class ThrowingFloat(np.ndarray):
- def __float__(self):
- raise TypeError
- throwing_float = np.array(1.0).view(ThrowingFloat)
- assert_raises(TypeError, np.random.uniform, throwing_float, throwing_float)
- class ThrowingInteger(np.ndarray):
- def __int__(self):
- raise TypeError
- throwing_int = np.array(1).view(ThrowingInteger)
- assert_raises(TypeError, np.random.hypergeometric, throwing_int, 1, 1)
- def test_vonmises(self):
- np.random.seed(self.seed)
- actual = np.random.vonmises(mu=1.23, kappa=1.54, size=(3, 2))
- desired = np.array([[2.28567572673902042, 2.89163838442285037],
- [0.38198375564286025, 2.57638023113890746],
- [1.19153771588353052, 1.83509849681825354]])
- assert_array_almost_equal(actual, desired, decimal=15)
- def test_vonmises_small(self):
- # check infinite loop, gh-4720
- np.random.seed(self.seed)
- r = np.random.vonmises(mu=0., kappa=1.1e-8, size=10**6)
- np.testing.assert_(np.isfinite(r).all())
- def test_wald(self):
- np.random.seed(self.seed)
- actual = np.random.wald(mean=1.23, scale=1.54, size=(3, 2))
- desired = np.array([[3.82935265715889983, 5.13125249184285526],
- [0.35045403618358717, 1.50832396872003538],
- [0.24124319895843183, 0.22031101461955038]])
- assert_array_almost_equal(actual, desired, decimal=14)
- def test_weibull(self):
- np.random.seed(self.seed)
- actual = np.random.weibull(a=1.23, size=(3, 2))
- desired = np.array([[0.97097342648766727, 0.91422896443565516],
- [1.89517770034962929, 1.91414357960479564],
- [0.67057783752390987, 1.39494046635066793]])
- assert_array_almost_equal(actual, desired, decimal=15)
- def test_weibull_0(self):
- np.random.seed(self.seed)
- assert_equal(np.random.weibull(a=0, size=12), np.zeros(12))
- assert_raises(ValueError, np.random.weibull, a=-0.)
- def test_zipf(self):
- np.random.seed(self.seed)
- actual = np.random.zipf(a=1.23, size=(3, 2))
- desired = np.array([[66, 29],
- [1, 1],
- [3, 13]])
- assert_array_equal(actual, desired)
- class TestBroadcast(object):
- # tests that functions that broadcast behave
- # correctly when presented with non-scalar arguments
- def setup(self):
- self.seed = 123456789
- def setSeed(self):
- np.random.seed(self.seed)
- # TODO: Include test for randint once it can broadcast
- # Can steal the test written in PR #6938
- def test_uniform(self):
- low = [0]
- high = [1]
- uniform = np.random.uniform
- desired = np.array([0.53283302478975902,
- 0.53413660089041659,
- 0.50955303552646702])
- self.setSeed()
- actual = uniform(low * 3, high)
- assert_array_almost_equal(actual, desired, decimal=14)
- self.setSeed()
- actual = uniform(low, high * 3)
- assert_array_almost_equal(actual, desired, decimal=14)
- def test_normal(self):
- loc = [0]
- scale = [1]
- bad_scale = [-1]
- normal = np.random.normal
- desired = np.array([2.2129019979039612,
- 2.1283977976520019,
- 1.8417114045748335])
- self.setSeed()
- actual = normal(loc * 3, scale)
- assert_array_almost_equal(actual, desired, decimal=14)
- assert_raises(ValueError, normal, loc * 3, bad_scale)
- self.setSeed()
- actual = normal(loc, scale * 3)
- assert_array_almost_equal(actual, desired, decimal=14)
- assert_raises(ValueError, normal, loc, bad_scale * 3)
- def test_beta(self):
- a = [1]
- b = [2]
- bad_a = [-1]
- bad_b = [-2]
- beta = np.random.beta
- desired = np.array([0.19843558305989056,
- 0.075230336409423643,
- 0.24976865978980844])
- self.setSeed()
- actual = beta(a * 3, b)
- assert_array_almost_equal(actual, desired, decimal=14)
- assert_raises(ValueError, beta, bad_a * 3, b)
- assert_raises(ValueError, beta, a * 3, bad_b)
- self.setSeed()
- actual = beta(a, b * 3)
- assert_array_almost_equal(actual, desired, decimal=14)
- assert_raises(ValueError, beta, bad_a, b * 3)
- assert_raises(ValueError, beta, a, bad_b * 3)
- def test_exponential(self):
- scale = [1]
- bad_scale = [-1]
- exponential = np.random.exponential
- desired = np.array([0.76106853658845242,
- 0.76386282278691653,
- 0.71243813125891797])
- self.setSeed()
- actual = exponential(scale * 3)
- assert_array_almost_equal(actual, desired, decimal=14)
- assert_raises(ValueError, exponential, bad_scale * 3)
- def test_standard_gamma(self):
- shape = [1]
- bad_shape = [-1]
- std_gamma = np.random.standard_gamma
- desired = np.array([0.76106853658845242,
- 0.76386282278691653,
- 0.71243813125891797])
- self.setSeed()
- actual = std_gamma(shape * 3)
- assert_array_almost_equal(actual, desired, decimal=14)
- assert_raises(ValueError, std_gamma, bad_shape * 3)
- def test_gamma(self):
- shape = [1]
- scale = [2]
- bad_shape = [-1]
- bad_scale = [-2]
- gamma = np.random.gamma
- desired = np.array([1.5221370731769048,
- 1.5277256455738331,
- 1.4248762625178359])
- self.setSeed()
- actual = gamma(shape * 3, scale)
- assert_array_almost_equal(actual, desired, decimal=14)
- assert_raises(ValueError, gamma, bad_shape * 3, scale)
- assert_raises(ValueError, gamma, shape * 3, bad_scale)
- self.setSeed()
- actual = gamma(shape, scale * 3)
- assert_array_almost_equal(actual, desired, decimal=14)
- assert_raises(ValueError, gamma, bad_shape, scale * 3)
- assert_raises(ValueError, gamma, shape, bad_scale * 3)
- def test_f(self):
- dfnum = [1]
- dfden = [2]
- bad_dfnum = [-1]
- bad_dfden = [-2]
- f = np.random.f
- desired = np.array([0.80038951638264799,
- 0.86768719635363512,
- 2.7251095168386801])
- self.setSeed()
- actual = f(dfnum * 3, dfden)
- assert_array_almost_equal(actual, desired, decimal=14)
- assert_raises(ValueError, f, bad_dfnum * 3, dfden)
- assert_raises(ValueError, f, dfnum * 3, bad_dfden)
- self.setSeed()
- actual = f(dfnum, dfden * 3)
- assert_array_almost_equal(actual, desired, decimal=14)
- assert_raises(ValueError, f, bad_dfnum, dfden * 3)
- assert_raises(ValueError, f, dfnum, bad_dfden * 3)
- def test_noncentral_f(self):
- dfnum = [2]
- dfden = [3]
- nonc = [4]
- bad_dfnum = [0]
- bad_dfden = [-1]
- bad_nonc = [-2]
- nonc_f = np.random.noncentral_f
- desired = np.array([9.1393943263705211,
- 13.025456344595602,
- 8.8018098359100545])
- self.setSeed()
- actual = nonc_f(dfnum * 3, dfden, nonc)
- assert_array_almost_equal(actual, desired, decimal=14)
- assert_raises(ValueError, nonc_f, bad_dfnum * 3, dfden, nonc)
- assert_raises(ValueError, nonc_f, dfnum * 3, bad_dfden, nonc)
- assert_raises(ValueError, nonc_f, dfnum * 3, dfden, bad_nonc)
- self.setSeed()
- actual = nonc_f(dfnum, dfden * 3, nonc)
- assert_array_almost_equal(actual, desired, decimal=14)
- assert_raises(ValueError, nonc_f, bad_dfnum, dfden * 3, nonc)
- assert_raises(ValueError, nonc_f, dfnum, bad_dfden * 3, nonc)
- assert_raises(ValueError, nonc_f, dfnum, dfden * 3, bad_nonc)
- self.setSeed()
- actual = nonc_f(dfnum, dfden, nonc * 3)
- assert_array_almost_equal(actual, desired, decimal=14)
- assert_raises(ValueError, nonc_f, bad_dfnum, dfden, nonc * 3)
- assert_raises(ValueError, nonc_f, dfnum, bad_dfden, nonc * 3)
- assert_raises(ValueError, nonc_f, dfnum, dfden, bad_nonc * 3)
- def test_noncentral_f_small_df(self):
- self.setSeed()
- desired = np.array([6.869638627492048, 0.785880199263955])
- actual = np.random.noncentral_f(0.9, 0.9, 2, size=2)
- assert_array_almost_equal(actual, desired, decimal=14)
- def test_chisquare(self):
- df = [1]
- bad_df = [-1]
- chisquare = np.random.chisquare
- desired = np.array([0.57022801133088286,
- 0.51947702108840776,
- 0.1320969254923558])
- self.setSeed()
- actual = chisquare(df * 3)
- assert_array_almost_equal(actual, desired, decimal=14)
- assert_raises(ValueError, chisquare, bad_df * 3)
- def test_noncentral_chisquare(self):
- df = [1]
- nonc = [2]
- bad_df = [-1]
- bad_nonc = [-2]
- nonc_chi = np.random.noncentral_chisquare
- desired = np.array([9.0015599467913763,
- 4.5804135049718742,
- 6.0872302432834564])
- self.setSeed()
- actual = nonc_chi(df * 3, nonc)
- assert_array_almost_equal(actual, desired, decimal=14)
- assert_raises(ValueError, nonc_chi, bad_df * 3, nonc)
- assert_raises(ValueError, nonc_chi, df * 3, bad_nonc)
- self.setSeed()
- actual = nonc_chi(df, nonc * 3)
- assert_array_almost_equal(actual, desired, decimal=14)
- assert_raises(ValueError, nonc_chi, bad_df, nonc * 3)
- assert_raises(ValueError, nonc_chi, df, bad_nonc * 3)
- def test_standard_t(self):
- df = [1]
- bad_df = [-1]
- t = np.random.standard_t
- desired = np.array([3.0702872575217643,
- 5.8560725167361607,
- 1.0274791436474273])
- self.setSeed()
- actual = t(df * 3)
- assert_array_almost_equal(actual, desired, decimal=14)
- assert_raises(ValueError, t, bad_df * 3)
- def test_vonmises(self):
- mu = [2]
- kappa = [1]
- bad_kappa = [-1]
- vonmises = np.random.vonmises
- desired = np.array([2.9883443664201312,
- -2.7064099483995943,
- -1.8672476700665914])
- self.setSeed()
- actual = vonmises(mu * 3, kappa)
- assert_array_almost_equal(actual, desired, decimal=14)
- assert_raises(ValueError, vonmises, mu * 3, bad_kappa)
- self.setSeed()
- actual = vonmises(mu, kappa * 3)
- assert_array_almost_equal(actual, desired, decimal=14)
- assert_raises(ValueError, vonmises, mu, bad_kappa * 3)
- def test_pareto(self):
- a = [1]
- bad_a = [-1]
- pareto = np.random.pareto
- desired = np.array([1.1405622680198362,
- 1.1465519762044529,
- 1.0389564467453547])
- self.setSeed()
- actual = pareto(a * 3)
- assert_array_almost_equal(actual, desired, decimal=14)
- assert_raises(ValueError, pareto, bad_a * 3)
- def test_weibull(self):
- a = [1]
- bad_a = [-1]
- weibull = np.random.weibull
- desired = np.array([0.76106853658845242,
- 0.76386282278691653,
- 0.71243813125891797])
- self.setSeed()
- actual = weibull(a * 3)
- assert_array_almost_equal(actual, desired, decimal=14)
- assert_raises(ValueError, weibull, bad_a * 3)
- def test_power(self):
- a = [1]
- bad_a = [-1]
- power = np.random.power
- desired = np.array([0.53283302478975902,
- 0.53413660089041659,
- 0.50955303552646702])
- self.setSeed()
- actual = power(a * 3)
- assert_array_almost_equal(actual, desired, decimal=14)
- assert_raises(ValueError, power, bad_a * 3)
- def test_laplace(self):
- loc = [0]
- scale = [1]
- bad_scale = [-1]
- laplace = np.random.laplace
- desired = np.array([0.067921356028507157,
- 0.070715642226971326,
- 0.019290950698972624])
- self.setSeed()
- actual = laplace(loc * 3, scale)
- assert_array_almost_equal(actual, desired, decimal=14)
- assert_raises(ValueError, laplace, loc * 3, bad_scale)
- self.setSeed()
- actual = laplace(loc, scale * 3)
- assert_array_almost_equal(actual, desired, decimal=14)
- assert_raises(ValueError, laplace, loc, bad_scale * 3)
- def test_gumbel(self):
- loc = [0]
- scale = [1]
- bad_scale = [-1]
- gumbel = np.random.gumbel
- desired = np.array([0.2730318639556768,
- 0.26936705726291116,
- 0.33906220393037939])
- self.setSeed()
- actual = gumbel(loc * 3, scale)
- assert_array_almost_equal(actual, desired, decimal=14)
- assert_raises(ValueError, gumbel, loc * 3, bad_scale)
- self.setSeed()
- actual = gumbel(loc, scale * 3)
- assert_array_almost_equal(actual, desired, decimal=14)
- assert_raises(ValueError, gumbel, loc, bad_scale * 3)
- def test_logistic(self):
- loc = [0]
- scale = [1]
- bad_scale = [-1]
- logistic = np.random.logistic
- desired = np.array([0.13152135837586171,
- 0.13675915696285773,
- 0.038216792802833396])
- self.setSeed()
- actual = logistic(loc * 3, scale)
- assert_array_almost_equal(actual, desired, decimal=14)
- assert_raises(ValueError, logistic, loc * 3, bad_scale)
- self.setSeed()
- actual = logistic(loc, scale * 3)
- assert_array_almost_equal(actual, desired, decimal=14)
- assert_raises(ValueError, logistic, loc, bad_scale * 3)
- def test_lognormal(self):
- mean = [0]
- sigma = [1]
- bad_sigma = [-1]
- lognormal = np.random.lognormal
- desired = np.array([9.1422086044848427,
- 8.4013952870126261,
- 6.3073234116578671])
- self.setSeed()
- actual = lognormal(mean * 3, sigma)
- assert_array_almost_equal(actual, desired, decimal=14)
- assert_raises(ValueError, lognormal, mean * 3, bad_sigma)
- self.setSeed()
- actual = lognormal(mean, sigma * 3)
- assert_array_almost_equal(actual, desired, decimal=14)
- assert_raises(ValueError, lognormal, mean, bad_sigma * 3)
- def test_rayleigh(self):
- scale = [1]
- bad_scale = [-1]
- rayleigh = np.random.rayleigh
- desired = np.array([1.2337491937897689,
- 1.2360119924878694,
- 1.1936818095781789])
- self.setSeed()
- actual = rayleigh(scale * 3)
- assert_array_almost_equal(actual, desired, decimal=14)
- assert_raises(ValueError, rayleigh, bad_scale * 3)
- def test_wald(self):
- mean = [0.5]
- scale = [1]
- bad_mean = [0]
- bad_scale = [-2]
- wald = np.random.wald
- desired = np.array([0.11873681120271318,
- 0.12450084820795027,
- 0.9096122728408238])
- self.setSeed()
- actual = wald(mean * 3, scale)
- assert_array_almost_equal(actual, desired, decimal=14)
- assert_raises(ValueError, wald, bad_mean * 3, scale)
- assert_raises(ValueError, wald, mean * 3, bad_scale)
- self.setSeed()
- actual = wald(mean, scale * 3)
- assert_array_almost_equal(actual, desired, decimal=14)
- assert_raises(ValueError, wald, bad_mean, scale * 3)
- assert_raises(ValueError, wald, mean, bad_scale * 3)
- def test_triangular(self):
- left = [1]
- right = [3]
- mode = [2]
- bad_left_one = [3]
- bad_mode_one = [4]
- bad_left_two, bad_mode_two = right * 2
- triangular = np.random.triangular
- desired = np.array([2.03339048710429,
- 2.0347400359389356,
- 2.0095991069536208])
- self.setSeed()
- actual = triangular(left * 3, mode, right)
- assert_array_almost_equal(actual, desired, decimal=14)
- assert_raises(ValueError, triangular, bad_left_one * 3, mode, right)
- assert_raises(ValueError, triangular, left * 3, bad_mode_one, right)
- assert_raises(ValueError, triangular, bad_left_two * 3, bad_mode_two, right)
- self.setSeed()
- actual = triangular(left, mode * 3, right)
- assert_array_almost_equal(actual, desired, decimal=14)
- assert_raises(ValueError, triangular, bad_left_one, mode * 3, right)
- assert_raises(ValueError, triangular, left, bad_mode_one * 3, right)
- assert_raises(ValueError, triangular, bad_left_two, bad_mode_two * 3, right)
- self.setSeed()
- actual = triangular(left, mode, right * 3)
- assert_array_almost_equal(actual, desired, decimal=14)
- assert_raises(ValueError, triangular, bad_left_one, mode, right * 3)
- assert_raises(ValueError, triangular, left, bad_mode_one, right * 3)
- assert_raises(ValueError, triangular, bad_left_two, bad_mode_two, right * 3)
- def test_binomial(self):
- n = [1]
- p = [0.5]
- bad_n = [-1]
- bad_p_one = [-1]
- bad_p_two = [1.5]
- binom = np.random.binomial
- desired = np.array([1, 1, 1])
- self.setSeed()
- actual = binom(n * 3, p)
- assert_array_equal(actual, desired)
- assert_raises(ValueError, binom, bad_n * 3, p)
- assert_raises(ValueError, binom, n * 3, bad_p_one)
- assert_raises(ValueError, binom, n * 3, bad_p_two)
- self.setSeed()
- actual = binom(n, p * 3)
- assert_array_equal(actual, desired)
- assert_raises(ValueError, binom, bad_n, p * 3)
- assert_raises(ValueError, binom, n, bad_p_one * 3)
- assert_raises(ValueError, binom, n, bad_p_two * 3)
- def test_negative_binomial(self):
- n = [1]
- p = [0.5]
- bad_n = [-1]
- bad_p_one = [-1]
- bad_p_two = [1.5]
- neg_binom = np.random.negative_binomial
- desired = np.array([1, 0, 1])
- self.setSeed()
- actual = neg_binom(n * 3, p)
- assert_array_equal(actual, desired)
- assert_raises(ValueError, neg_binom, bad_n * 3, p)
- assert_raises(ValueError, neg_binom, n * 3, bad_p_one)
- assert_raises(ValueError, neg_binom, n * 3, bad_p_two)
- self.setSeed()
- actual = neg_binom(n, p * 3)
- assert_array_equal(actual, desired)
- assert_raises(ValueError, neg_binom, bad_n, p * 3)
- assert_raises(ValueError, neg_binom, n, bad_p_one * 3)
- assert_raises(ValueError, neg_binom, n, bad_p_two * 3)
- def test_poisson(self):
- max_lam = np.random.RandomState().poisson_lam_max
- lam = [1]
- bad_lam_one = [-1]
- bad_lam_two = [max_lam * 2]
- poisson = np.random.poisson
- desired = np.array([1, 1, 0])
- self.setSeed()
- actual = poisson(lam * 3)
- assert_array_equal(actual, desired)
- assert_raises(ValueError, poisson, bad_lam_one * 3)
- assert_raises(ValueError, poisson, bad_lam_two * 3)
- def test_zipf(self):
- a = [2]
- bad_a = [0]
- zipf = np.random.zipf
- desired = np.array([2, 2, 1])
- self.setSeed()
- actual = zipf(a * 3)
- assert_array_equal(actual, desired)
- assert_raises(ValueError, zipf, bad_a * 3)
- with np.errstate(invalid='ignore'):
- assert_raises(ValueError, zipf, np.nan)
- assert_raises(ValueError, zipf, [0, 0, np.nan])
- def test_geometric(self):
- p = [0.5]
- bad_p_one = [-1]
- bad_p_two = [1.5]
- geom = np.random.geometric
- desired = np.array([2, 2, 2])
- self.setSeed()
- actual = geom(p * 3)
- assert_array_equal(actual, desired)
- assert_raises(ValueError, geom, bad_p_one * 3)
- assert_raises(ValueError, geom, bad_p_two * 3)
- def test_hypergeometric(self):
- ngood = [1]
- nbad = [2]
- nsample = [2]
- bad_ngood = [-1]
- bad_nbad = [-2]
- bad_nsample_one = [0]
- bad_nsample_two = [4]
- hypergeom = np.random.hypergeometric
- desired = np.array([1, 1, 1])
- self.setSeed()
- actual = hypergeom(ngood * 3, nbad, nsample)
- assert_array_equal(actual, desired)
- assert_raises(ValueError, hypergeom, bad_ngood * 3, nbad, nsample)
- assert_raises(ValueError, hypergeom, ngood * 3, bad_nbad, nsample)
- assert_raises(ValueError, hypergeom, ngood * 3, nbad, bad_nsample_one)
- assert_raises(ValueError, hypergeom, ngood * 3, nbad, bad_nsample_two)
- self.setSeed()
- actual = hypergeom(ngood, nbad * 3, nsample)
- assert_array_equal(actual, desired)
- assert_raises(ValueError, hypergeom, bad_ngood, nbad * 3, nsample)
- assert_raises(ValueError, hypergeom, ngood, bad_nbad * 3, nsample)
- assert_raises(ValueError, hypergeom, ngood, nbad * 3, bad_nsample_one)
- assert_raises(ValueError, hypergeom, ngood, nbad * 3, bad_nsample_two)
- self.setSeed()
- actual = hypergeom(ngood, nbad, nsample * 3)
- assert_array_equal(actual, desired)
- assert_raises(ValueError, hypergeom, bad_ngood, nbad, nsample * 3)
- assert_raises(ValueError, hypergeom, ngood, bad_nbad, nsample * 3)
- assert_raises(ValueError, hypergeom, ngood, nbad, bad_nsample_one * 3)
- assert_raises(ValueError, hypergeom, ngood, nbad, bad_nsample_two * 3)
- def test_logseries(self):
- p = [0.5]
- bad_p_one = [2]
- bad_p_two = [-1]
- logseries = np.random.logseries
- desired = np.array([1, 1, 1])
- self.setSeed()
- actual = logseries(p * 3)
- assert_array_equal(actual, desired)
- assert_raises(ValueError, logseries, bad_p_one * 3)
- assert_raises(ValueError, logseries, bad_p_two * 3)
- class TestThread(object):
- # make sure each state produces the same sequence even in threads
- def setup(self):
- self.seeds = range(4)
- def check_function(self, function, sz):
- from threading import Thread
- out1 = np.empty((len(self.seeds),) + sz)
- out2 = np.empty((len(self.seeds),) + sz)
- # threaded generation
- t = [Thread(target=function, args=(np.random.RandomState(s), o))
- for s, o in zip(self.seeds, out1)]
- [x.start() for x in t]
- [x.join() for x in t]
- # the same serial
- for s, o in zip(self.seeds, out2):
- function(np.random.RandomState(s), o)
- # these platforms change x87 fpu precision mode in threads
- if np.intp().dtype.itemsize == 4 and sys.platform == "win32":
- assert_array_almost_equal(out1, out2)
- else:
- assert_array_equal(out1, out2)
- def test_normal(self):
- def gen_random(state, out):
- out[...] = state.normal(size=10000)
- self.check_function(gen_random, sz=(10000,))
- def test_exp(self):
- def gen_random(state, out):
- out[...] = state.exponential(scale=np.ones((100, 1000)))
- self.check_function(gen_random, sz=(100, 1000))
- def test_multinomial(self):
- def gen_random(state, out):
- out[...] = state.multinomial(10, [1/6.]*6, size=10000)
- self.check_function(gen_random, sz=(10000, 6))
- # See Issue #4263
- class TestSingleEltArrayInput(object):
- def setup(self):
- self.argOne = np.array([2])
- self.argTwo = np.array([3])
- self.argThree = np.array([4])
- self.tgtShape = (1,)
- def test_one_arg_funcs(self):
- funcs = (np.random.exponential, np.random.standard_gamma,
- np.random.chisquare, np.random.standard_t,
- np.random.pareto, np.random.weibull,
- np.random.power, np.random.rayleigh,
- np.random.poisson, np.random.zipf,
- np.random.geometric, np.random.logseries)
- probfuncs = (np.random.geometric, np.random.logseries)
- for func in funcs:
- if func in probfuncs: # p < 1.0
- out = func(np.array([0.5]))
- else:
- out = func(self.argOne)
- assert_equal(out.shape, self.tgtShape)
- def test_two_arg_funcs(self):
- funcs = (np.random.uniform, np.random.normal,
- np.random.beta, np.random.gamma,
- np.random.f, np.random.noncentral_chisquare,
- np.random.vonmises, np.random.laplace,
- np.random.gumbel, np.random.logistic,
- np.random.lognormal, np.random.wald,
- np.random.binomial, np.random.negative_binomial)
- probfuncs = (np.random.binomial, np.random.negative_binomial)
- for func in funcs:
- if func in probfuncs: # p <= 1
- argTwo = np.array([0.5])
- else:
- argTwo = self.argTwo
- out = func(self.argOne, argTwo)
- assert_equal(out.shape, self.tgtShape)
- out = func(self.argOne[0], argTwo)
- assert_equal(out.shape, self.tgtShape)
- out = func(self.argOne, argTwo[0])
- assert_equal(out.shape, self.tgtShape)
- # TODO: Uncomment once randint can broadcast arguments
- # def test_randint(self):
- # itype = [bool, np.int8, np.uint8, np.int16, np.uint16,
- # np.int32, np.uint32, np.int64, np.uint64]
- # func = np.random.randint
- # high = np.array([1])
- # low = np.array([0])
- #
- # for dt in itype:
- # out = func(low, high, dtype=dt)
- # self.assert_equal(out.shape, self.tgtShape)
- #
- # out = func(low[0], high, dtype=dt)
- # self.assert_equal(out.shape, self.tgtShape)
- #
- # out = func(low, high[0], dtype=dt)
- # self.assert_equal(out.shape, self.tgtShape)
- def test_three_arg_funcs(self):
- funcs = [np.random.noncentral_f, np.random.triangular,
- np.random.hypergeometric]
- for func in funcs:
- out = func(self.argOne, self.argTwo, self.argThree)
- assert_equal(out.shape, self.tgtShape)
- out = func(self.argOne[0], self.argTwo, self.argThree)
- assert_equal(out.shape, self.tgtShape)
- out = func(self.argOne, self.argTwo[0], self.argThree)
- assert_equal(out.shape, self.tgtShape)
|