123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326 |
- """
- Table Schema builders
- http://specs.frictionlessdata.io/json-table-schema/
- """
- import warnings
- import pandas._libs.json as json
- from pandas.core.dtypes.common import (
- is_bool_dtype, is_categorical_dtype, is_datetime64_dtype,
- is_datetime64tz_dtype, is_integer_dtype, is_numeric_dtype, is_period_dtype,
- is_string_dtype, is_timedelta64_dtype)
- from pandas import DataFrame
- from pandas.api.types import CategoricalDtype
- import pandas.core.common as com
- loads = json.loads
- def as_json_table_type(x):
- """
- Convert a NumPy / pandas type to its corresponding json_table.
- Parameters
- ----------
- x : array or dtype
- Returns
- -------
- t : str
- the Table Schema data types
- Notes
- -----
- This table shows the relationship between NumPy / pandas dtypes,
- and Table Schema dtypes.
- ============== =================
- Pandas type Table Schema type
- ============== =================
- int64 integer
- float64 number
- bool boolean
- datetime64[ns] datetime
- timedelta64[ns] duration
- object str
- categorical any
- =============== =================
- """
- if is_integer_dtype(x):
- return 'integer'
- elif is_bool_dtype(x):
- return 'boolean'
- elif is_numeric_dtype(x):
- return 'number'
- elif (is_datetime64_dtype(x) or is_datetime64tz_dtype(x) or
- is_period_dtype(x)):
- return 'datetime'
- elif is_timedelta64_dtype(x):
- return 'duration'
- elif is_categorical_dtype(x):
- return 'any'
- elif is_string_dtype(x):
- return 'string'
- else:
- return 'any'
- def set_default_names(data):
- """Sets index names to 'index' for regular, or 'level_x' for Multi"""
- if com._all_not_none(*data.index.names):
- nms = data.index.names
- if len(nms) == 1 and data.index.name == 'index':
- warnings.warn("Index name of 'index' is not round-trippable")
- elif len(nms) > 1 and any(x.startswith('level_') for x in nms):
- warnings.warn("Index names beginning with 'level_' are not "
- "round-trippable")
- return data
- data = data.copy()
- if data.index.nlevels > 1:
- names = [name if name is not None else 'level_{}'.format(i)
- for i, name in enumerate(data.index.names)]
- data.index.names = names
- else:
- data.index.name = data.index.name or 'index'
- return data
- def convert_pandas_type_to_json_field(arr, dtype=None):
- dtype = dtype or arr.dtype
- if arr.name is None:
- name = 'values'
- else:
- name = arr.name
- field = {'name': name,
- 'type': as_json_table_type(dtype)}
- if is_categorical_dtype(arr):
- if hasattr(arr, 'categories'):
- cats = arr.categories
- ordered = arr.ordered
- else:
- cats = arr.cat.categories
- ordered = arr.cat.ordered
- field['constraints'] = {"enum": list(cats)}
- field['ordered'] = ordered
- elif is_period_dtype(arr):
- field['freq'] = arr.freqstr
- elif is_datetime64tz_dtype(arr):
- if hasattr(arr, 'dt'):
- field['tz'] = arr.dt.tz.zone
- else:
- field['tz'] = arr.tz.zone
- return field
- def convert_json_field_to_pandas_type(field):
- """
- Converts a JSON field descriptor into its corresponding NumPy / pandas type
- Parameters
- ----------
- field
- A JSON field descriptor
- Returns
- -------
- dtype
- Raises
- -----
- ValueError
- If the type of the provided field is unknown or currently unsupported
- Examples
- --------
- >>> convert_json_field_to_pandas_type({'name': 'an_int',
- 'type': 'integer'})
- 'int64'
- >>> convert_json_field_to_pandas_type({'name': 'a_categorical',
- 'type': 'any',
- 'contraints': {'enum': [
- 'a', 'b', 'c']},
- 'ordered': True})
- 'CategoricalDtype(categories=['a', 'b', 'c'], ordered=True)'
- >>> convert_json_field_to_pandas_type({'name': 'a_datetime',
- 'type': 'datetime'})
- 'datetime64[ns]'
- >>> convert_json_field_to_pandas_type({'name': 'a_datetime_with_tz',
- 'type': 'datetime',
- 'tz': 'US/Central'})
- 'datetime64[ns, US/Central]'
- """
- typ = field['type']
- if typ == 'string':
- return 'object'
- elif typ == 'integer':
- return 'int64'
- elif typ == 'number':
- return 'float64'
- elif typ == 'boolean':
- return 'bool'
- elif typ == 'duration':
- return 'timedelta64'
- elif typ == 'datetime':
- if field.get('tz'):
- return 'datetime64[ns, {tz}]'.format(tz=field['tz'])
- else:
- return 'datetime64[ns]'
- elif typ == 'any':
- if 'constraints' in field and 'ordered' in field:
- return CategoricalDtype(categories=field['constraints']['enum'],
- ordered=field['ordered'])
- else:
- return 'object'
- raise ValueError("Unsupported or invalid field type: {}".format(typ))
- def build_table_schema(data, index=True, primary_key=None, version=True):
- """
- Create a Table schema from ``data``.
- Parameters
- ----------
- data : Series, DataFrame
- index : bool, default True
- Whether to include ``data.index`` in the schema.
- primary_key : bool or None, default True
- column names to designate as the primary key.
- The default `None` will set `'primaryKey'` to the index
- level or levels if the index is unique.
- version : bool, default True
- Whether to include a field `pandas_version` with the version
- of pandas that generated the schema.
- Returns
- -------
- schema : dict
- Notes
- -----
- See `_as_json_table_type` for conversion types.
- Timedeltas as converted to ISO8601 duration format with
- 9 decimal places after the seconds field for nanosecond precision.
- Categoricals are converted to the `any` dtype, and use the `enum` field
- constraint to list the allowed values. The `ordered` attribute is included
- in an `ordered` field.
- Examples
- --------
- >>> df = pd.DataFrame(
- ... {'A': [1, 2, 3],
- ... 'B': ['a', 'b', 'c'],
- ... 'C': pd.date_range('2016-01-01', freq='d', periods=3),
- ... }, index=pd.Index(range(3), name='idx'))
- >>> build_table_schema(df)
- {'fields': [{'name': 'idx', 'type': 'integer'},
- {'name': 'A', 'type': 'integer'},
- {'name': 'B', 'type': 'string'},
- {'name': 'C', 'type': 'datetime'}],
- 'pandas_version': '0.20.0',
- 'primaryKey': ['idx']}
- """
- if index is True:
- data = set_default_names(data)
- schema = {}
- fields = []
- if index:
- if data.index.nlevels > 1:
- for level in data.index.levels:
- fields.append(convert_pandas_type_to_json_field(level))
- else:
- fields.append(convert_pandas_type_to_json_field(data.index))
- if data.ndim > 1:
- for column, s in data.iteritems():
- fields.append(convert_pandas_type_to_json_field(s))
- else:
- fields.append(convert_pandas_type_to_json_field(data))
- schema['fields'] = fields
- if index and data.index.is_unique and primary_key is None:
- if data.index.nlevels == 1:
- schema['primaryKey'] = [data.index.name]
- else:
- schema['primaryKey'] = data.index.names
- elif primary_key is not None:
- schema['primaryKey'] = primary_key
- if version:
- schema['pandas_version'] = '0.20.0'
- return schema
- def parse_table_schema(json, precise_float):
- """
- Builds a DataFrame from a given schema
- Parameters
- ----------
- json :
- A JSON table schema
- precise_float : boolean
- Flag controlling precision when decoding string to double values, as
- dictated by ``read_json``
- Returns
- -------
- df : DataFrame
- Raises
- ------
- NotImplementedError
- If the JSON table schema contains either timezone or timedelta data
- Notes
- -----
- Because :func:`DataFrame.to_json` uses the string 'index' to denote a
- name-less :class:`Index`, this function sets the name of the returned
- :class:`DataFrame` to ``None`` when said string is encountered with a
- normal :class:`Index`. For a :class:`MultiIndex`, the same limitation
- applies to any strings beginning with 'level_'. Therefore, an
- :class:`Index` name of 'index' and :class:`MultiIndex` names starting
- with 'level_' are not supported.
- See Also
- --------
- build_table_schema : Inverse function.
- pandas.read_json
- """
- table = loads(json, precise_float=precise_float)
- col_order = [field['name'] for field in table['schema']['fields']]
- df = DataFrame(table['data'], columns=col_order)[col_order]
- dtypes = {field['name']: convert_json_field_to_pandas_type(field)
- for field in table['schema']['fields']}
- # Cannot directly use as_type with timezone data on object; raise for now
- if any(str(x).startswith('datetime64[ns, ') for x in dtypes.values()):
- raise NotImplementedError('table="orient" can not yet read timezone '
- 'data')
- # No ISO constructor for Timedelta as of yet, so need to raise
- if 'timedelta64' in dtypes.values():
- raise NotImplementedError('table="orient" can not yet read '
- 'ISO-formatted Timedelta data')
- df = df.astype(dtypes)
- if 'primaryKey' in table['schema']:
- df = df.set_index(table['schema']['primaryKey'])
- if len(df.index.names) == 1:
- if df.index.name == 'index':
- df.index.name = None
- else:
- df.index.names = [None if x.startswith('level_') else x for x in
- df.index.names]
- return df
|