123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464 |
- """
- Read a SAS XPort format file into a Pandas DataFrame.
- Based on code from Jack Cushman (github.com/jcushman/xport).
- The file format is defined here:
- https://support.sas.com/techsup/technote/ts140.pdf
- """
- from datetime import datetime
- import struct
- import warnings
- import numpy as np
- from pandas.util._decorators import Appender
- import pandas as pd
- from pandas import compat
- from pandas.io.common import BaseIterator, get_filepath_or_buffer
- _correct_line1 = ("HEADER RECORD*******LIBRARY HEADER RECORD!!!!!!!"
- "000000000000000000000000000000 ")
- _correct_header1 = ("HEADER RECORD*******MEMBER HEADER RECORD!!!!!!!"
- "000000000000000001600000000")
- _correct_header2 = ("HEADER RECORD*******DSCRPTR HEADER RECORD!!!!!!!"
- "000000000000000000000000000000 ")
- _correct_obs_header = ("HEADER RECORD*******OBS HEADER RECORD!!!!!!!"
- "000000000000000000000000000000 ")
- _fieldkeys = ['ntype', 'nhfun', 'field_length', 'nvar0', 'name', 'label',
- 'nform', 'nfl', 'num_decimals', 'nfj', 'nfill', 'niform',
- 'nifl', 'nifd', 'npos', '_']
- _base_params_doc = """\
- Parameters
- ----------
- filepath_or_buffer : string or file-like object
- Path to SAS file or object implementing binary read method."""
- _params2_doc = """\
- index : identifier of index column
- Identifier of column that should be used as index of the DataFrame.
- encoding : string
- Encoding for text data.
- chunksize : int
- Read file `chunksize` lines at a time, returns iterator."""
- _format_params_doc = """\
- format : string
- File format, only `xport` is currently supported."""
- _iterator_doc = """\
- iterator : boolean, default False
- Return XportReader object for reading file incrementally."""
- _read_sas_doc = """Read a SAS file into a DataFrame.
- %(_base_params_doc)s
- %(_format_params_doc)s
- %(_params2_doc)s
- %(_iterator_doc)s
- Returns
- -------
- DataFrame or XportReader
- Examples
- --------
- Read a SAS Xport file:
- >>> df = pd.read_sas('filename.XPT')
- Read a Xport file in 10,000 line chunks:
- >>> itr = pd.read_sas('filename.XPT', chunksize=10000)
- >>> for chunk in itr:
- >>> do_something(chunk)
- """ % {"_base_params_doc": _base_params_doc,
- "_format_params_doc": _format_params_doc,
- "_params2_doc": _params2_doc,
- "_iterator_doc": _iterator_doc}
- _xport_reader_doc = """\
- Class for reading SAS Xport files.
- %(_base_params_doc)s
- %(_params2_doc)s
- Attributes
- ----------
- member_info : list
- Contains information about the file
- fields : list
- Contains information about the variables in the file
- """ % {"_base_params_doc": _base_params_doc,
- "_params2_doc": _params2_doc}
- _read_method_doc = """\
- Read observations from SAS Xport file, returning as data frame.
- Parameters
- ----------
- nrows : int
- Number of rows to read from data file; if None, read whole
- file.
- Returns
- -------
- A DataFrame.
- """
- def _parse_date(datestr):
- """ Given a date in xport format, return Python date. """
- try:
- # e.g. "16FEB11:10:07:55"
- return datetime.strptime(datestr, "%d%b%y:%H:%M:%S")
- except ValueError:
- return pd.NaT
- def _split_line(s, parts):
- """
- Parameters
- ----------
- s: string
- Fixed-length string to split
- parts: list of (name, length) pairs
- Used to break up string, name '_' will be filtered from output.
- Returns
- -------
- Dict of name:contents of string at given location.
- """
- out = {}
- start = 0
- for name, length in parts:
- out[name] = s[start:start + length].strip()
- start += length
- del out['_']
- return out
- def _handle_truncated_float_vec(vec, nbytes):
- # This feature is not well documented, but some SAS XPORT files
- # have 2-7 byte "truncated" floats. To read these truncated
- # floats, pad them with zeros on the right to make 8 byte floats.
- #
- # References:
- # https://github.com/jcushman/xport/pull/3
- # The R "foreign" library
- if nbytes != 8:
- vec1 = np.zeros(len(vec), np.dtype('S8'))
- dtype = np.dtype('S%d,S%d' % (nbytes, 8 - nbytes))
- vec2 = vec1.view(dtype=dtype)
- vec2['f0'] = vec
- return vec2
- return vec
- def _parse_float_vec(vec):
- """
- Parse a vector of float values representing IBM 8 byte floats into
- native 8 byte floats.
- """
- dtype = np.dtype('>u4,>u4')
- vec1 = vec.view(dtype=dtype)
- xport1 = vec1['f0']
- xport2 = vec1['f1']
- # Start by setting first half of ieee number to first half of IBM
- # number sans exponent
- ieee1 = xport1 & 0x00ffffff
- # The fraction bit to the left of the binary point in the ieee
- # format was set and the number was shifted 0, 1, 2, or 3
- # places. This will tell us how to adjust the ibm exponent to be a
- # power of 2 ieee exponent and how to shift the fraction bits to
- # restore the correct magnitude.
- shift = np.zeros(len(vec), dtype=np.uint8)
- shift[np.where(xport1 & 0x00200000)] = 1
- shift[np.where(xport1 & 0x00400000)] = 2
- shift[np.where(xport1 & 0x00800000)] = 3
- # shift the ieee number down the correct number of places then
- # set the second half of the ieee number to be the second half
- # of the ibm number shifted appropriately, ored with the bits
- # from the first half that would have been shifted in if we
- # could shift a double. All we are worried about are the low
- # order 3 bits of the first half since we're only shifting by
- # 1, 2, or 3.
- ieee1 >>= shift
- ieee2 = (xport2 >> shift) | ((xport1 & 0x00000007) << (29 + (3 - shift)))
- # clear the 1 bit to the left of the binary point
- ieee1 &= 0xffefffff
- # set the exponent of the ieee number to be the actual exponent
- # plus the shift count + 1023. Or this into the first half of the
- # ieee number. The ibm exponent is excess 64 but is adjusted by 65
- # since during conversion to ibm format the exponent is
- # incremented by 1 and the fraction bits left 4 positions to the
- # right of the radix point. (had to add >> 24 because C treats &
- # 0x7f as 0x7f000000 and Python doesn't)
- ieee1 |= ((((((xport1 >> 24) & 0x7f) - 65) << 2) +
- shift + 1023) << 20) | (xport1 & 0x80000000)
- ieee = np.empty((len(ieee1),), dtype='>u4,>u4')
- ieee['f0'] = ieee1
- ieee['f1'] = ieee2
- ieee = ieee.view(dtype='>f8')
- ieee = ieee.astype('f8')
- return ieee
- class XportReader(BaseIterator):
- __doc__ = _xport_reader_doc
- def __init__(self, filepath_or_buffer, index=None, encoding='ISO-8859-1',
- chunksize=None):
- self._encoding = encoding
- self._lines_read = 0
- self._index = index
- self._chunksize = chunksize
- if isinstance(filepath_or_buffer, str):
- (filepath_or_buffer, encoding,
- compression, should_close) = get_filepath_or_buffer(
- filepath_or_buffer, encoding=encoding)
- if isinstance(filepath_or_buffer, (str, compat.text_type, bytes)):
- self.filepath_or_buffer = open(filepath_or_buffer, 'rb')
- else:
- # Copy to BytesIO, and ensure no encoding
- contents = filepath_or_buffer.read()
- try:
- contents = contents.encode(self._encoding)
- except UnicodeEncodeError:
- pass
- self.filepath_or_buffer = compat.BytesIO(contents)
- self._read_header()
- def close(self):
- self.filepath_or_buffer.close()
- def _get_row(self):
- return self.filepath_or_buffer.read(80).decode()
- def _read_header(self):
- self.filepath_or_buffer.seek(0)
- # read file header
- line1 = self._get_row()
- if line1 != _correct_line1:
- self.close()
- raise ValueError("Header record is not an XPORT file.")
- line2 = self._get_row()
- fif = [['prefix', 24], ['version', 8], ['OS', 8],
- ['_', 24], ['created', 16]]
- file_info = _split_line(line2, fif)
- if file_info['prefix'] != "SAS SAS SASLIB":
- self.close()
- raise ValueError("Header record has invalid prefix.")
- file_info['created'] = _parse_date(file_info['created'])
- self.file_info = file_info
- line3 = self._get_row()
- file_info['modified'] = _parse_date(line3[:16])
- # read member header
- header1 = self._get_row()
- header2 = self._get_row()
- headflag1 = header1.startswith(_correct_header1)
- headflag2 = (header2 == _correct_header2)
- if not (headflag1 and headflag2):
- self.close()
- raise ValueError("Member header not found")
- # usually 140, could be 135
- fieldnamelength = int(header1[-5:-2])
- # member info
- mem = [['prefix', 8], ['set_name', 8], ['sasdata', 8],
- ['version', 8], ['OS', 8], ['_', 24], ['created', 16]]
- member_info = _split_line(self._get_row(), mem)
- mem = [['modified', 16], ['_', 16], ['label', 40], ['type', 8]]
- member_info.update(_split_line(self._get_row(), mem))
- member_info['modified'] = _parse_date(member_info['modified'])
- member_info['created'] = _parse_date(member_info['created'])
- self.member_info = member_info
- # read field names
- types = {1: 'numeric', 2: 'char'}
- fieldcount = int(self._get_row()[54:58])
- datalength = fieldnamelength * fieldcount
- # round up to nearest 80
- if datalength % 80:
- datalength += 80 - datalength % 80
- fielddata = self.filepath_or_buffer.read(datalength)
- fields = []
- obs_length = 0
- while len(fielddata) >= fieldnamelength:
- # pull data for one field
- field, fielddata = (fielddata[:fieldnamelength],
- fielddata[fieldnamelength:])
- # rest at end gets ignored, so if field is short, pad out
- # to match struct pattern below
- field = field.ljust(140)
- fieldstruct = struct.unpack('>hhhh8s40s8shhh2s8shhl52s', field)
- field = dict(zip(_fieldkeys, fieldstruct))
- del field['_']
- field['ntype'] = types[field['ntype']]
- fl = field['field_length']
- if field['ntype'] == 'numeric' and ((fl < 2) or (fl > 8)):
- self.close()
- msg = "Floating field width {0} is not between 2 and 8."
- raise TypeError(msg.format(fl))
- for k, v in field.items():
- try:
- field[k] = v.strip()
- except AttributeError:
- pass
- obs_length += field['field_length']
- fields += [field]
- header = self._get_row()
- if not header == _correct_obs_header:
- self.close()
- raise ValueError("Observation header not found.")
- self.fields = fields
- self.record_length = obs_length
- self.record_start = self.filepath_or_buffer.tell()
- self.nobs = self._record_count()
- self.columns = [x['name'].decode() for x in self.fields]
- # Setup the dtype.
- dtypel = [('s' + str(i), "S" + str(field['field_length']))
- for i, field in enumerate(self.fields)]
- dtype = np.dtype(dtypel)
- self._dtype = dtype
- def __next__(self):
- return self.read(nrows=self._chunksize or 1)
- def _record_count(self):
- """
- Get number of records in file.
- This is maybe suboptimal because we have to seek to the end of
- the file.
- Side effect: returns file position to record_start.
- """
- self.filepath_or_buffer.seek(0, 2)
- total_records_length = (self.filepath_or_buffer.tell() -
- self.record_start)
- if total_records_length % 80 != 0:
- warnings.warn("xport file may be corrupted")
- if self.record_length > 80:
- self.filepath_or_buffer.seek(self.record_start)
- return total_records_length // self.record_length
- self.filepath_or_buffer.seek(-80, 2)
- last_card = self.filepath_or_buffer.read(80)
- last_card = np.frombuffer(last_card, dtype=np.uint64)
- # 8 byte blank
- ix = np.flatnonzero(last_card == 2314885530818453536)
- if len(ix) == 0:
- tail_pad = 0
- else:
- tail_pad = 8 * len(ix)
- self.filepath_or_buffer.seek(self.record_start)
- return (total_records_length - tail_pad) // self.record_length
- def get_chunk(self, size=None):
- """
- Reads lines from Xport file and returns as dataframe
- Parameters
- ----------
- size : int, defaults to None
- Number of lines to read. If None, reads whole file.
- Returns
- -------
- DataFrame
- """
- if size is None:
- size = self._chunksize
- return self.read(nrows=size)
- def _missing_double(self, vec):
- v = vec.view(dtype='u1,u1,u2,u4')
- miss = (v['f1'] == 0) & (v['f2'] == 0) & (v['f3'] == 0)
- miss1 = (((v['f0'] >= 0x41) & (v['f0'] <= 0x5a)) |
- (v['f0'] == 0x5f) | (v['f0'] == 0x2e))
- miss &= miss1
- return miss
- @Appender(_read_method_doc)
- def read(self, nrows=None):
- if nrows is None:
- nrows = self.nobs
- read_lines = min(nrows, self.nobs - self._lines_read)
- read_len = read_lines * self.record_length
- if read_len <= 0:
- self.close()
- raise StopIteration
- raw = self.filepath_or_buffer.read(read_len)
- data = np.frombuffer(raw, dtype=self._dtype, count=read_lines)
- df = pd.DataFrame(index=range(read_lines))
- for j, x in enumerate(self.columns):
- vec = data['s%d' % j]
- ntype = self.fields[j]['ntype']
- if ntype == "numeric":
- vec = _handle_truncated_float_vec(
- vec, self.fields[j]['field_length'])
- miss = self._missing_double(vec)
- v = _parse_float_vec(vec)
- v[miss] = np.nan
- elif self.fields[j]['ntype'] == 'char':
- v = [y.rstrip() for y in vec]
- if compat.PY3:
- if self._encoding is not None:
- v = [y.decode(self._encoding) for y in v]
- df[x] = v
- if self._index is None:
- df.index = range(self._lines_read, self._lines_read + read_lines)
- else:
- df = df.set_index(self._index)
- self._lines_read += read_lines
- return df
|