123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248 |
- import numpy as np
- import pytest
- import pandas as pd
- from .base import BaseExtensionTests
- class BaseGetitemTests(BaseExtensionTests):
- """Tests for ExtensionArray.__getitem__."""
- def test_iloc_series(self, data):
- ser = pd.Series(data)
- result = ser.iloc[:4]
- expected = pd.Series(data[:4])
- self.assert_series_equal(result, expected)
- result = ser.iloc[[0, 1, 2, 3]]
- self.assert_series_equal(result, expected)
- def test_iloc_frame(self, data):
- df = pd.DataFrame({"A": data, 'B':
- np.arange(len(data), dtype='int64')})
- expected = pd.DataFrame({"A": data[:4]})
- # slice -> frame
- result = df.iloc[:4, [0]]
- self.assert_frame_equal(result, expected)
- # sequence -> frame
- result = df.iloc[[0, 1, 2, 3], [0]]
- self.assert_frame_equal(result, expected)
- expected = pd.Series(data[:4], name='A')
- # slice -> series
- result = df.iloc[:4, 0]
- self.assert_series_equal(result, expected)
- # sequence -> series
- result = df.iloc[:4, 0]
- self.assert_series_equal(result, expected)
- def test_loc_series(self, data):
- ser = pd.Series(data)
- result = ser.loc[:3]
- expected = pd.Series(data[:4])
- self.assert_series_equal(result, expected)
- result = ser.loc[[0, 1, 2, 3]]
- self.assert_series_equal(result, expected)
- def test_loc_frame(self, data):
- df = pd.DataFrame({"A": data,
- 'B': np.arange(len(data), dtype='int64')})
- expected = pd.DataFrame({"A": data[:4]})
- # slice -> frame
- result = df.loc[:3, ['A']]
- self.assert_frame_equal(result, expected)
- # sequence -> frame
- result = df.loc[[0, 1, 2, 3], ['A']]
- self.assert_frame_equal(result, expected)
- expected = pd.Series(data[:4], name='A')
- # slice -> series
- result = df.loc[:3, 'A']
- self.assert_series_equal(result, expected)
- # sequence -> series
- result = df.loc[:3, 'A']
- self.assert_series_equal(result, expected)
- def test_getitem_scalar(self, data):
- result = data[0]
- assert isinstance(result, data.dtype.type)
- result = pd.Series(data)[0]
- assert isinstance(result, data.dtype.type)
- def test_getitem_scalar_na(self, data_missing, na_cmp, na_value):
- result = data_missing[0]
- assert na_cmp(result, na_value)
- def test_getitem_mask(self, data):
- # Empty mask, raw array
- mask = np.zeros(len(data), dtype=bool)
- result = data[mask]
- assert len(result) == 0
- assert isinstance(result, type(data))
- # Empty mask, in series
- mask = np.zeros(len(data), dtype=bool)
- result = pd.Series(data)[mask]
- assert len(result) == 0
- assert result.dtype == data.dtype
- # non-empty mask, raw array
- mask[0] = True
- result = data[mask]
- assert len(result) == 1
- assert isinstance(result, type(data))
- # non-empty mask, in series
- result = pd.Series(data)[mask]
- assert len(result) == 1
- assert result.dtype == data.dtype
- def test_getitem_slice(self, data):
- # getitem[slice] should return an array
- result = data[slice(0)] # empty
- assert isinstance(result, type(data))
- result = data[slice(1)] # scalar
- assert isinstance(result, type(data))
- def test_get(self, data):
- # GH 20882
- s = pd.Series(data, index=[2 * i for i in range(len(data))])
- assert s.get(4) == s.iloc[2]
- result = s.get([4, 6])
- expected = s.iloc[[2, 3]]
- self.assert_series_equal(result, expected)
- result = s.get(slice(2))
- expected = s.iloc[[0, 1]]
- self.assert_series_equal(result, expected)
- assert s.get(-1) is None
- assert s.get(s.index.max() + 1) is None
- s = pd.Series(data[:6], index=list('abcdef'))
- assert s.get('c') == s.iloc[2]
- result = s.get(slice('b', 'd'))
- expected = s.iloc[[1, 2, 3]]
- self.assert_series_equal(result, expected)
- result = s.get('Z')
- assert result is None
- assert s.get(4) == s.iloc[4]
- assert s.get(-1) == s.iloc[-1]
- assert s.get(len(s)) is None
- # GH 21257
- s = pd.Series(data)
- s2 = s[::2]
- assert s2.get(1) is None
- def test_take_sequence(self, data):
- result = pd.Series(data)[[0, 1, 3]]
- assert result.iloc[0] == data[0]
- assert result.iloc[1] == data[1]
- assert result.iloc[2] == data[3]
- def test_take(self, data, na_value, na_cmp):
- result = data.take([0, -1])
- assert result.dtype == data.dtype
- assert result[0] == data[0]
- assert result[1] == data[-1]
- result = data.take([0, -1], allow_fill=True, fill_value=na_value)
- assert result[0] == data[0]
- assert na_cmp(result[1], na_value)
- with pytest.raises(IndexError, match="out of bounds"):
- data.take([len(data) + 1])
- def test_take_empty(self, data, na_value, na_cmp):
- empty = data[:0]
- result = empty.take([-1], allow_fill=True)
- assert na_cmp(result[0], na_value)
- with pytest.raises(IndexError):
- empty.take([-1])
- with pytest.raises(IndexError, match="cannot do a non-empty take"):
- empty.take([0, 1])
- def test_take_negative(self, data):
- # https://github.com/pandas-dev/pandas/issues/20640
- n = len(data)
- result = data.take([0, -n, n - 1, -1])
- expected = data.take([0, 0, n - 1, n - 1])
- self.assert_extension_array_equal(result, expected)
- def test_take_non_na_fill_value(self, data_missing):
- fill_value = data_missing[1] # valid
- na = data_missing[0]
- array = data_missing._from_sequence([na, fill_value, na])
- result = array.take([-1, 1], fill_value=fill_value, allow_fill=True)
- expected = array.take([1, 1])
- self.assert_extension_array_equal(result, expected)
- def test_take_pandas_style_negative_raises(self, data, na_value):
- with pytest.raises(ValueError):
- data.take([0, -2], fill_value=na_value, allow_fill=True)
- @pytest.mark.parametrize('allow_fill', [True, False])
- def test_take_out_of_bounds_raises(self, data, allow_fill):
- arr = data[:3]
- with pytest.raises(IndexError):
- arr.take(np.asarray([0, 3]), allow_fill=allow_fill)
- def test_take_series(self, data):
- s = pd.Series(data)
- result = s.take([0, -1])
- expected = pd.Series(
- data._from_sequence([data[0], data[len(data) - 1]], dtype=s.dtype),
- index=[0, len(data) - 1])
- self.assert_series_equal(result, expected)
- def test_reindex(self, data, na_value):
- s = pd.Series(data)
- result = s.reindex([0, 1, 3])
- expected = pd.Series(data.take([0, 1, 3]), index=[0, 1, 3])
- self.assert_series_equal(result, expected)
- n = len(data)
- result = s.reindex([-1, 0, n])
- expected = pd.Series(
- data._from_sequence([na_value, data[0], na_value],
- dtype=s.dtype),
- index=[-1, 0, n])
- self.assert_series_equal(result, expected)
- result = s.reindex([n, n + 1])
- expected = pd.Series(data._from_sequence([na_value, na_value],
- dtype=s.dtype),
- index=[n, n + 1])
- self.assert_series_equal(result, expected)
- def test_reindex_non_na_fill_value(self, data_missing):
- valid = data_missing[1]
- na = data_missing[0]
- array = data_missing._from_sequence([na, valid])
- ser = pd.Series(array)
- result = ser.reindex([0, 1, 2], fill_value=valid)
- expected = pd.Series(data_missing._from_sequence([na, valid, valid]))
- self.assert_series_equal(result, expected)
|