1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283 |
- import pytest
- import pandas as pd
- import pandas.util.testing as tm
- from .base import BaseExtensionTests
- class BaseGroupbyTests(BaseExtensionTests):
- """Groupby-specific tests."""
- def test_grouping_grouper(self, data_for_grouping):
- df = pd.DataFrame({
- "A": ["B", "B", None, None, "A", "A", "B", "C"],
- "B": data_for_grouping
- })
- gr1 = df.groupby("A").grouper.groupings[0]
- gr2 = df.groupby("B").grouper.groupings[0]
- tm.assert_numpy_array_equal(gr1.grouper, df.A.values)
- tm.assert_extension_array_equal(gr2.grouper, data_for_grouping)
- @pytest.mark.parametrize('as_index', [True, False])
- def test_groupby_extension_agg(self, as_index, data_for_grouping):
- df = pd.DataFrame({"A": [1, 1, 2, 2, 3, 3, 1, 4],
- "B": data_for_grouping})
- result = df.groupby("B", as_index=as_index).A.mean()
- _, index = pd.factorize(data_for_grouping, sort=True)
- index = pd.Index(index, name="B")
- expected = pd.Series([3, 1, 4], index=index, name="A")
- if as_index:
- self.assert_series_equal(result, expected)
- else:
- expected = expected.reset_index()
- self.assert_frame_equal(result, expected)
- def test_groupby_extension_no_sort(self, data_for_grouping):
- df = pd.DataFrame({"A": [1, 1, 2, 2, 3, 3, 1, 4],
- "B": data_for_grouping})
- result = df.groupby("B", sort=False).A.mean()
- _, index = pd.factorize(data_for_grouping, sort=False)
- index = pd.Index(index, name="B")
- expected = pd.Series([1, 3, 4], index=index, name="A")
- self.assert_series_equal(result, expected)
- def test_groupby_extension_transform(self, data_for_grouping):
- valid = data_for_grouping[~data_for_grouping.isna()]
- df = pd.DataFrame({"A": [1, 1, 3, 3, 1, 4],
- "B": valid})
- result = df.groupby("B").A.transform(len)
- expected = pd.Series([3, 3, 2, 2, 3, 1], name="A")
- self.assert_series_equal(result, expected)
- @pytest.mark.parametrize('op', [
- lambda x: 1,
- lambda x: [1] * len(x),
- lambda x: pd.Series([1] * len(x)),
- lambda x: x,
- ], ids=['scalar', 'list', 'series', 'object'])
- def test_groupby_extension_apply(self, data_for_grouping, op):
- df = pd.DataFrame({"A": [1, 1, 2, 2, 3, 3, 1, 4],
- "B": data_for_grouping})
- df.groupby("B").apply(op)
- df.groupby("B").A.apply(op)
- df.groupby("A").apply(op)
- df.groupby("A").B.apply(op)
- def test_in_numeric_groupby(self, data_for_grouping):
- df = pd.DataFrame({"A": [1, 1, 2, 2, 3, 3, 1, 4],
- "B": data_for_grouping,
- "C": [1, 1, 1, 1, 1, 1, 1, 1]})
- result = df.groupby("A").sum().columns
- if data_for_grouping.dtype._is_numeric:
- expected = pd.Index(['B', 'C'])
- else:
- expected = pd.Index(['C'])
- tm.assert_index_equal(result, expected)
|