123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534 |
- # -*- coding: utf-8 -*-
- from __future__ import print_function
- # pylint: disable-msg=W0612,E1101
- from copy import deepcopy
- import pydoc
- import numpy as np
- import pytest
- from pandas.compat import long, lrange, range
- import pandas as pd
- from pandas import (
- Categorical, DataFrame, Series, SparseDataFrame, compat, date_range,
- timedelta_range)
- import pandas.util.testing as tm
- from pandas.util.testing import (
- assert_almost_equal, assert_frame_equal, assert_series_equal)
- class SharedWithSparse(object):
- """
- A collection of tests DataFrame and SparseDataFrame can share.
- In generic tests on this class, use ``self._assert_frame_equal()`` and
- ``self._assert_series_equal()`` which are implemented in sub-classes
- and dispatch correctly.
- """
- def _assert_frame_equal(self, left, right):
- """Dispatch to frame class dependent assertion"""
- raise NotImplementedError
- def _assert_series_equal(self, left, right):
- """Dispatch to series class dependent assertion"""
- raise NotImplementedError
- def test_copy_index_name_checking(self, float_frame):
- # don't want to be able to modify the index stored elsewhere after
- # making a copy
- for attr in ('index', 'columns'):
- ind = getattr(float_frame, attr)
- ind.name = None
- cp = float_frame.copy()
- getattr(cp, attr).name = 'foo'
- assert getattr(float_frame, attr).name is None
- def test_getitem_pop_assign_name(self, float_frame):
- s = float_frame['A']
- assert s.name == 'A'
- s = float_frame.pop('A')
- assert s.name == 'A'
- s = float_frame.loc[:, 'B']
- assert s.name == 'B'
- s2 = s.loc[:]
- assert s2.name == 'B'
- def test_get_value(self, float_frame):
- for idx in float_frame.index:
- for col in float_frame.columns:
- with tm.assert_produces_warning(FutureWarning,
- check_stacklevel=False):
- result = float_frame.get_value(idx, col)
- expected = float_frame[col][idx]
- tm.assert_almost_equal(result, expected)
- def test_add_prefix_suffix(self, float_frame):
- with_prefix = float_frame.add_prefix('foo#')
- expected = pd.Index(['foo#%s' % c for c in float_frame.columns])
- tm.assert_index_equal(with_prefix.columns, expected)
- with_suffix = float_frame.add_suffix('#foo')
- expected = pd.Index(['%s#foo' % c for c in float_frame.columns])
- tm.assert_index_equal(with_suffix.columns, expected)
- with_pct_prefix = float_frame.add_prefix('%')
- expected = pd.Index(['%{}'.format(c) for c in float_frame.columns])
- tm.assert_index_equal(with_pct_prefix.columns, expected)
- with_pct_suffix = float_frame.add_suffix('%')
- expected = pd.Index(['{}%'.format(c) for c in float_frame.columns])
- tm.assert_index_equal(with_pct_suffix.columns, expected)
- def test_get_axis(self, float_frame):
- f = float_frame
- assert f._get_axis_number(0) == 0
- assert f._get_axis_number(1) == 1
- assert f._get_axis_number('index') == 0
- assert f._get_axis_number('rows') == 0
- assert f._get_axis_number('columns') == 1
- assert f._get_axis_name(0) == 'index'
- assert f._get_axis_name(1) == 'columns'
- assert f._get_axis_name('index') == 'index'
- assert f._get_axis_name('rows') == 'index'
- assert f._get_axis_name('columns') == 'columns'
- assert f._get_axis(0) is f.index
- assert f._get_axis(1) is f.columns
- with pytest.raises(ValueError, match='No axis named'):
- f._get_axis_number(2)
- with pytest.raises(ValueError, match='No axis.*foo'):
- f._get_axis_name('foo')
- with pytest.raises(ValueError, match='No axis.*None'):
- f._get_axis_name(None)
- with pytest.raises(ValueError, match='No axis named'):
- f._get_axis_number(None)
- def test_keys(self, float_frame):
- getkeys = float_frame.keys
- assert getkeys() is float_frame.columns
- def test_column_contains_typeerror(self, float_frame):
- try:
- float_frame.columns in float_frame
- except TypeError:
- pass
- def test_tab_completion(self):
- # DataFrame whose columns are identifiers shall have them in __dir__.
- df = pd.DataFrame([list('abcd'), list('efgh')], columns=list('ABCD'))
- for key in list('ABCD'):
- assert key in dir(df)
- assert isinstance(df.__getitem__('A'), pd.Series)
- # DataFrame whose first-level columns are identifiers shall have
- # them in __dir__.
- df = pd.DataFrame(
- [list('abcd'), list('efgh')],
- columns=pd.MultiIndex.from_tuples(list(zip('ABCD', 'EFGH'))))
- for key in list('ABCD'):
- assert key in dir(df)
- for key in list('EFGH'):
- assert key not in dir(df)
- assert isinstance(df.__getitem__('A'), pd.DataFrame)
- def test_not_hashable(self, empty_frame):
- df = self.klass([1])
- pytest.raises(TypeError, hash, df)
- pytest.raises(TypeError, hash, empty_frame)
- def test_new_empty_index(self):
- df1 = self.klass(np.random.randn(0, 3))
- df2 = self.klass(np.random.randn(0, 3))
- df1.index.name = 'foo'
- assert df2.index.name is None
- def test_array_interface(self, float_frame):
- with np.errstate(all='ignore'):
- result = np.sqrt(float_frame)
- assert isinstance(result, type(float_frame))
- assert result.index is float_frame.index
- assert result.columns is float_frame.columns
- self._assert_frame_equal(result, float_frame.apply(np.sqrt))
- def test_get_agg_axis(self, float_frame):
- cols = float_frame._get_agg_axis(0)
- assert cols is float_frame.columns
- idx = float_frame._get_agg_axis(1)
- assert idx is float_frame.index
- pytest.raises(ValueError, float_frame._get_agg_axis, 2)
- def test_nonzero(self, float_frame, float_string_frame, empty_frame):
- assert empty_frame.empty
- assert not float_frame.empty
- assert not float_string_frame.empty
- # corner case
- df = DataFrame({'A': [1., 2., 3.],
- 'B': ['a', 'b', 'c']},
- index=np.arange(3))
- del df['A']
- assert not df.empty
- def test_iteritems(self):
- df = self.klass([[1, 2, 3], [4, 5, 6]], columns=['a', 'a', 'b'])
- for k, v in compat.iteritems(df):
- assert isinstance(v, self.klass._constructor_sliced)
- def test_items(self):
- # GH 17213, GH 13918
- cols = ['a', 'b', 'c']
- df = DataFrame([[1, 2, 3], [4, 5, 6]], columns=cols)
- for c, (k, v) in zip(cols, df.items()):
- assert c == k
- assert isinstance(v, Series)
- assert (df[k] == v).all()
- def test_iter(self, float_frame):
- assert tm.equalContents(list(float_frame), float_frame.columns)
- def test_iterrows(self, float_frame, float_string_frame):
- for k, v in float_frame.iterrows():
- exp = float_frame.loc[k]
- self._assert_series_equal(v, exp)
- for k, v in float_string_frame.iterrows():
- exp = float_string_frame.loc[k]
- self._assert_series_equal(v, exp)
- def test_iterrows_iso8601(self):
- # GH 19671
- if self.klass == SparseDataFrame:
- pytest.xfail(reason='SparseBlock datetime type not implemented.')
- s = self.klass(
- {'non_iso8601': ['M1701', 'M1802', 'M1903', 'M2004'],
- 'iso8601': date_range('2000-01-01', periods=4, freq='M')})
- for k, v in s.iterrows():
- exp = s.loc[k]
- self._assert_series_equal(v, exp)
- def test_itertuples(self, float_frame):
- for i, tup in enumerate(float_frame.itertuples()):
- s = self.klass._constructor_sliced(tup[1:])
- s.name = tup[0]
- expected = float_frame.iloc[i, :].reset_index(drop=True)
- self._assert_series_equal(s, expected)
- df = self.klass({'floats': np.random.randn(5),
- 'ints': lrange(5)}, columns=['floats', 'ints'])
- for tup in df.itertuples(index=False):
- assert isinstance(tup[1], (int, long))
- df = self.klass(data={"a": [1, 2, 3], "b": [4, 5, 6]})
- dfaa = df[['a', 'a']]
- assert (list(dfaa.itertuples()) ==
- [(0, 1, 1), (1, 2, 2), (2, 3, 3)])
- # repr with be int/long on 32-bit/windows
- if not (compat.is_platform_windows() or compat.is_platform_32bit()):
- assert (repr(list(df.itertuples(name=None))) ==
- '[(0, 1, 4), (1, 2, 5), (2, 3, 6)]')
- tup = next(df.itertuples(name='TestName'))
- assert tup._fields == ('Index', 'a', 'b')
- assert (tup.Index, tup.a, tup.b) == tup
- assert type(tup).__name__ == 'TestName'
- df.columns = ['def', 'return']
- tup2 = next(df.itertuples(name='TestName'))
- assert tup2 == (0, 1, 4)
- assert tup2._fields == ('Index', '_1', '_2')
- df3 = DataFrame({'f' + str(i): [i] for i in range(1024)})
- # will raise SyntaxError if trying to create namedtuple
- tup3 = next(df3.itertuples())
- assert not hasattr(tup3, '_fields')
- assert isinstance(tup3, tuple)
- def test_sequence_like_with_categorical(self):
- # GH 7839
- # make sure can iterate
- df = DataFrame({"id": [1, 2, 3, 4, 5, 6],
- "raw_grade": ['a', 'b', 'b', 'a', 'a', 'e']})
- df['grade'] = Categorical(df['raw_grade'])
- # basic sequencing testing
- result = list(df.grade.values)
- expected = np.array(df.grade.values).tolist()
- tm.assert_almost_equal(result, expected)
- # iteration
- for t in df.itertuples(index=False):
- str(t)
- for row, s in df.iterrows():
- str(s)
- for c, col in df.iteritems():
- str(s)
- def test_len(self, float_frame):
- assert len(float_frame) == len(float_frame.index)
- def test_values(self, float_frame, float_string_frame):
- frame = float_frame
- arr = frame.values
- frame_cols = frame.columns
- for i, row in enumerate(arr):
- for j, value in enumerate(row):
- col = frame_cols[j]
- if np.isnan(value):
- assert np.isnan(frame[col][i])
- else:
- assert value == frame[col][i]
- # mixed type
- arr = float_string_frame[['foo', 'A']].values
- assert arr[0, 0] == 'bar'
- df = self.klass({'complex': [1j, 2j, 3j], 'real': [1, 2, 3]})
- arr = df.values
- assert arr[0, 0] == 1j
- # single block corner case
- arr = float_frame[['A', 'B']].values
- expected = float_frame.reindex(columns=['A', 'B']).values
- assert_almost_equal(arr, expected)
- def test_to_numpy(self):
- df = pd.DataFrame({"A": [1, 2], "B": [3, 4.5]})
- expected = np.array([[1, 3], [2, 4.5]])
- result = df.to_numpy()
- tm.assert_numpy_array_equal(result, expected)
- def test_to_numpy_dtype(self):
- df = pd.DataFrame({"A": [1, 2], "B": [3, 4.5]})
- expected = np.array([[1, 3], [2, 4]], dtype="int64")
- result = df.to_numpy(dtype="int64")
- tm.assert_numpy_array_equal(result, expected)
- def test_to_numpy_copy(self):
- arr = np.random.randn(4, 3)
- df = pd.DataFrame(arr)
- assert df.values.base is arr
- assert df.to_numpy(copy=False).base is arr
- assert df.to_numpy(copy=True).base is None
- def test_transpose(self, float_frame):
- frame = float_frame
- dft = frame.T
- for idx, series in compat.iteritems(dft):
- for col, value in compat.iteritems(series):
- if np.isnan(value):
- assert np.isnan(frame[col][idx])
- else:
- assert value == frame[col][idx]
- # mixed type
- index, data = tm.getMixedTypeDict()
- mixed = self.klass(data, index=index)
- mixed_T = mixed.T
- for col, s in compat.iteritems(mixed_T):
- assert s.dtype == np.object_
- def test_swapaxes(self):
- df = self.klass(np.random.randn(10, 5))
- self._assert_frame_equal(df.T, df.swapaxes(0, 1))
- self._assert_frame_equal(df.T, df.swapaxes(1, 0))
- self._assert_frame_equal(df, df.swapaxes(0, 0))
- pytest.raises(ValueError, df.swapaxes, 2, 5)
- def test_axis_aliases(self, float_frame):
- f = float_frame
- # reg name
- expected = f.sum(axis=0)
- result = f.sum(axis='index')
- assert_series_equal(result, expected)
- expected = f.sum(axis=1)
- result = f.sum(axis='columns')
- assert_series_equal(result, expected)
- def test_class_axis(self):
- # GH 18147
- # no exception and no empty docstring
- assert pydoc.getdoc(DataFrame.index)
- assert pydoc.getdoc(DataFrame.columns)
- def test_more_values(self, float_string_frame):
- values = float_string_frame.values
- assert values.shape[1] == len(float_string_frame.columns)
- def test_repr_with_mi_nat(self, float_string_frame):
- df = self.klass({'X': [1, 2]},
- index=[[pd.NaT, pd.Timestamp('20130101')], ['a', 'b']])
- result = repr(df)
- expected = ' X\nNaT a 1\n2013-01-01 b 2'
- assert result == expected
- def test_iteritems_names(self, float_string_frame):
- for k, v in compat.iteritems(float_string_frame):
- assert v.name == k
- def test_series_put_names(self, float_string_frame):
- series = float_string_frame._series
- for k, v in compat.iteritems(series):
- assert v.name == k
- def test_empty_nonzero(self):
- df = self.klass([1, 2, 3])
- assert not df.empty
- df = self.klass(index=[1], columns=[1])
- assert not df.empty
- df = self.klass(index=['a', 'b'], columns=['c', 'd']).dropna()
- assert df.empty
- assert df.T.empty
- empty_frames = [self.klass(),
- self.klass(index=[1]),
- self.klass(columns=[1]),
- self.klass({1: []})]
- for df in empty_frames:
- assert df.empty
- assert df.T.empty
- def test_with_datetimelikes(self):
- df = self.klass({'A': date_range('20130101', periods=10),
- 'B': timedelta_range('1 day', periods=10)})
- t = df.T
- result = t.get_dtype_counts()
- if self.klass is DataFrame:
- expected = Series({'object': 10})
- else:
- expected = Series({'Sparse[object, nan]': 10})
- tm.assert_series_equal(result, expected)
- class TestDataFrameMisc(SharedWithSparse):
- klass = DataFrame
- # SharedWithSparse tests use generic, klass-agnostic assertion
- _assert_frame_equal = staticmethod(assert_frame_equal)
- _assert_series_equal = staticmethod(assert_series_equal)
- def test_values(self, float_frame):
- float_frame.values[:, 0] = 5.
- assert (float_frame.values[:, 0] == 5).all()
- def test_as_matrix_deprecated(self, float_frame):
- # GH 18458
- with tm.assert_produces_warning(FutureWarning):
- cols = float_frame.columns.tolist()
- result = float_frame.as_matrix(columns=cols)
- expected = float_frame.values
- tm.assert_numpy_array_equal(result, expected)
- def test_deepcopy(self, float_frame):
- cp = deepcopy(float_frame)
- series = cp['A']
- series[:] = 10
- for idx, value in compat.iteritems(series):
- assert float_frame['A'][idx] != value
- def test_transpose_get_view(self, float_frame):
- dft = float_frame.T
- dft.values[:, 5:10] = 5
- assert (float_frame.values[5:10] == 5).all()
- def test_inplace_return_self(self):
- # GH 1893
- data = DataFrame({'a': ['foo', 'bar', 'baz', 'qux'],
- 'b': [0, 0, 1, 1],
- 'c': [1, 2, 3, 4]})
- def _check_f(base, f):
- result = f(base)
- assert result is None
- # -----DataFrame-----
- # set_index
- f = lambda x: x.set_index('a', inplace=True)
- _check_f(data.copy(), f)
- # reset_index
- f = lambda x: x.reset_index(inplace=True)
- _check_f(data.set_index('a'), f)
- # drop_duplicates
- f = lambda x: x.drop_duplicates(inplace=True)
- _check_f(data.copy(), f)
- # sort
- f = lambda x: x.sort_values('b', inplace=True)
- _check_f(data.copy(), f)
- # sort_index
- f = lambda x: x.sort_index(inplace=True)
- _check_f(data.copy(), f)
- # fillna
- f = lambda x: x.fillna(0, inplace=True)
- _check_f(data.copy(), f)
- # replace
- f = lambda x: x.replace(1, 0, inplace=True)
- _check_f(data.copy(), f)
- # rename
- f = lambda x: x.rename({1: 'foo'}, inplace=True)
- _check_f(data.copy(), f)
- # -----Series-----
- d = data.copy()['c']
- # reset_index
- f = lambda x: x.reset_index(inplace=True, drop=True)
- _check_f(data.set_index('a')['c'], f)
- # fillna
- f = lambda x: x.fillna(0, inplace=True)
- _check_f(d.copy(), f)
- # replace
- f = lambda x: x.replace(1, 0, inplace=True)
- _check_f(d.copy(), f)
- # rename
- f = lambda x: x.rename({1: 'foo'}, inplace=True)
- _check_f(d.copy(), f)
- def test_tab_complete_warning(self, ip):
- # GH 16409
- pytest.importorskip('IPython', minversion="6.0.0")
- from IPython.core.completer import provisionalcompleter
- code = "import pandas as pd; df = pd.DataFrame()"
- ip.run_code(code)
- with tm.assert_produces_warning(None):
- with provisionalcompleter('ignore'):
- list(ip.Completer.completions('df.', 1))
|