123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863 |
- # -*- coding: utf-8 -*-
- from __future__ import print_function
- from datetime import datetime
- import numpy as np
- import pytest
- from pandas.compat import lrange
- import pandas as pd
- from pandas import DataFrame, Index, Series, Timestamp, date_range
- from pandas.tests.frame.common import TestData
- import pandas.util.testing as tm
- from pandas.util.testing import assert_frame_equal, assert_series_equal
- class TestDataFrameConcatCommon(TestData):
- def test_concat_multiple_frames_dtypes(self):
- # GH 2759
- A = DataFrame(data=np.ones((10, 2)), columns=[
- 'foo', 'bar'], dtype=np.float64)
- B = DataFrame(data=np.ones((10, 2)), dtype=np.float32)
- results = pd.concat((A, B), axis=1).get_dtype_counts()
- expected = Series(dict(float64=2, float32=2))
- assert_series_equal(results, expected)
- @pytest.mark.parametrize('data', [
- pd.date_range('2000', periods=4),
- pd.date_range('2000', periods=4, tz="US/Central"),
- pd.period_range('2000', periods=4),
- pd.timedelta_range(0, periods=4),
- ])
- def test_combine_datetlike_udf(self, data):
- # https://github.com/pandas-dev/pandas/issues/23079
- df = pd.DataFrame({"A": data})
- other = df.copy()
- df.iloc[1, 0] = None
- def combiner(a, b):
- return b
- result = df.combine(other, combiner)
- tm.assert_frame_equal(result, other)
- def test_concat_multiple_tzs(self):
- # GH 12467
- # combining datetime tz-aware and naive DataFrames
- ts1 = Timestamp('2015-01-01', tz=None)
- ts2 = Timestamp('2015-01-01', tz='UTC')
- ts3 = Timestamp('2015-01-01', tz='EST')
- df1 = DataFrame(dict(time=[ts1]))
- df2 = DataFrame(dict(time=[ts2]))
- df3 = DataFrame(dict(time=[ts3]))
- results = pd.concat([df1, df2]).reset_index(drop=True)
- expected = DataFrame(dict(time=[ts1, ts2]), dtype=object)
- assert_frame_equal(results, expected)
- results = pd.concat([df1, df3]).reset_index(drop=True)
- expected = DataFrame(dict(time=[ts1, ts3]), dtype=object)
- assert_frame_equal(results, expected)
- results = pd.concat([df2, df3]).reset_index(drop=True)
- expected = DataFrame(dict(time=[ts2, ts3]))
- assert_frame_equal(results, expected)
- @pytest.mark.parametrize(
- 't1',
- [
- '2015-01-01',
- pytest.param(pd.NaT, marks=pytest.mark.xfail(
- reason='GH23037 incorrect dtype when concatenating'))])
- def test_concat_tz_NaT(self, t1):
- # GH 22796
- # Concating tz-aware multicolumn DataFrames
- ts1 = Timestamp(t1, tz='UTC')
- ts2 = Timestamp('2015-01-01', tz='UTC')
- ts3 = Timestamp('2015-01-01', tz='UTC')
- df1 = DataFrame([[ts1, ts2]])
- df2 = DataFrame([[ts3]])
- result = pd.concat([df1, df2])
- expected = DataFrame([[ts1, ts2], [ts3, pd.NaT]], index=[0, 0])
- assert_frame_equal(result, expected)
- def test_concat_tz_not_aligned(self):
- # GH 22796
- ts = pd.to_datetime([1, 2]).tz_localize("UTC")
- a = pd.DataFrame({"A": ts})
- b = pd.DataFrame({"A": ts, "B": ts})
- result = pd.concat([a, b], sort=True, ignore_index=True)
- expected = pd.DataFrame({"A": list(ts) + list(ts),
- "B": [pd.NaT, pd.NaT] + list(ts)})
- assert_frame_equal(result, expected)
- def test_concat_tuple_keys(self):
- # GH 14438
- df1 = pd.DataFrame(np.ones((2, 2)), columns=list('AB'))
- df2 = pd.DataFrame(np.ones((3, 2)) * 2, columns=list('AB'))
- results = pd.concat((df1, df2), keys=[('bee', 'bah'), ('bee', 'boo')])
- expected = pd.DataFrame(
- {'A': {('bee', 'bah', 0): 1.0,
- ('bee', 'bah', 1): 1.0,
- ('bee', 'boo', 0): 2.0,
- ('bee', 'boo', 1): 2.0,
- ('bee', 'boo', 2): 2.0},
- 'B': {('bee', 'bah', 0): 1.0,
- ('bee', 'bah', 1): 1.0,
- ('bee', 'boo', 0): 2.0,
- ('bee', 'boo', 1): 2.0,
- ('bee', 'boo', 2): 2.0}})
- assert_frame_equal(results, expected)
- def test_append_series_dict(self):
- df = DataFrame(np.random.randn(5, 4),
- columns=['foo', 'bar', 'baz', 'qux'])
- series = df.loc[4]
- msg = 'Indexes have overlapping values'
- with pytest.raises(ValueError, match=msg):
- df.append(series, verify_integrity=True)
- series.name = None
- msg = 'Can only append a Series if ignore_index=True'
- with pytest.raises(TypeError, match=msg):
- df.append(series, verify_integrity=True)
- result = df.append(series[::-1], ignore_index=True)
- expected = df.append(DataFrame({0: series[::-1]}, index=df.columns).T,
- ignore_index=True)
- assert_frame_equal(result, expected)
- # dict
- result = df.append(series.to_dict(), ignore_index=True)
- assert_frame_equal(result, expected)
- result = df.append(series[::-1][:3], ignore_index=True)
- expected = df.append(DataFrame({0: series[::-1][:3]}).T,
- ignore_index=True, sort=True)
- assert_frame_equal(result, expected.loc[:, result.columns])
- # can append when name set
- row = df.loc[4]
- row.name = 5
- result = df.append(row)
- expected = df.append(df[-1:], ignore_index=True)
- assert_frame_equal(result, expected)
- def test_append_list_of_series_dicts(self):
- df = DataFrame(np.random.randn(5, 4),
- columns=['foo', 'bar', 'baz', 'qux'])
- dicts = [x.to_dict() for idx, x in df.iterrows()]
- result = df.append(dicts, ignore_index=True)
- expected = df.append(df, ignore_index=True)
- assert_frame_equal(result, expected)
- # different columns
- dicts = [{'foo': 1, 'bar': 2, 'baz': 3, 'peekaboo': 4},
- {'foo': 5, 'bar': 6, 'baz': 7, 'peekaboo': 8}]
- result = df.append(dicts, ignore_index=True, sort=True)
- expected = df.append(DataFrame(dicts), ignore_index=True, sort=True)
- assert_frame_equal(result, expected)
- def test_append_empty_dataframe(self):
- # Empty df append empty df
- df1 = DataFrame([])
- df2 = DataFrame([])
- result = df1.append(df2)
- expected = df1.copy()
- assert_frame_equal(result, expected)
- # Non-empty df append empty df
- df1 = DataFrame(np.random.randn(5, 2))
- df2 = DataFrame()
- result = df1.append(df2)
- expected = df1.copy()
- assert_frame_equal(result, expected)
- # Empty df with columns append empty df
- df1 = DataFrame(columns=['bar', 'foo'])
- df2 = DataFrame()
- result = df1.append(df2)
- expected = df1.copy()
- assert_frame_equal(result, expected)
- # Non-Empty df with columns append empty df
- df1 = DataFrame(np.random.randn(5, 2), columns=['bar', 'foo'])
- df2 = DataFrame()
- result = df1.append(df2)
- expected = df1.copy()
- assert_frame_equal(result, expected)
- def test_append_dtypes(self):
- # GH 5754
- # row appends of different dtypes (so need to do by-item)
- # can sometimes infer the correct type
- df1 = DataFrame({'bar': Timestamp('20130101')}, index=lrange(5))
- df2 = DataFrame()
- result = df1.append(df2)
- expected = df1.copy()
- assert_frame_equal(result, expected)
- df1 = DataFrame({'bar': Timestamp('20130101')}, index=lrange(1))
- df2 = DataFrame({'bar': 'foo'}, index=lrange(1, 2))
- result = df1.append(df2)
- expected = DataFrame({'bar': [Timestamp('20130101'), 'foo']})
- assert_frame_equal(result, expected)
- df1 = DataFrame({'bar': Timestamp('20130101')}, index=lrange(1))
- df2 = DataFrame({'bar': np.nan}, index=lrange(1, 2))
- result = df1.append(df2)
- expected = DataFrame(
- {'bar': Series([Timestamp('20130101'), np.nan], dtype='M8[ns]')})
- assert_frame_equal(result, expected)
- df1 = DataFrame({'bar': Timestamp('20130101')}, index=lrange(1))
- df2 = DataFrame({'bar': np.nan}, index=lrange(1, 2), dtype=object)
- result = df1.append(df2)
- expected = DataFrame(
- {'bar': Series([Timestamp('20130101'), np.nan], dtype='M8[ns]')})
- assert_frame_equal(result, expected)
- df1 = DataFrame({'bar': np.nan}, index=lrange(1))
- df2 = DataFrame({'bar': Timestamp('20130101')}, index=lrange(1, 2))
- result = df1.append(df2)
- expected = DataFrame(
- {'bar': Series([np.nan, Timestamp('20130101')], dtype='M8[ns]')})
- assert_frame_equal(result, expected)
- df1 = DataFrame({'bar': Timestamp('20130101')}, index=lrange(1))
- df2 = DataFrame({'bar': 1}, index=lrange(1, 2), dtype=object)
- result = df1.append(df2)
- expected = DataFrame({'bar': Series([Timestamp('20130101'), 1])})
- assert_frame_equal(result, expected)
- def test_update(self):
- df = DataFrame([[1.5, np.nan, 3.],
- [1.5, np.nan, 3.],
- [1.5, np.nan, 3],
- [1.5, np.nan, 3]])
- other = DataFrame([[3.6, 2., np.nan],
- [np.nan, np.nan, 7]], index=[1, 3])
- df.update(other)
- expected = DataFrame([[1.5, np.nan, 3],
- [3.6, 2, 3],
- [1.5, np.nan, 3],
- [1.5, np.nan, 7.]])
- assert_frame_equal(df, expected)
- def test_update_dtypes(self):
- # gh 3016
- df = DataFrame([[1., 2., False, True], [4., 5., True, False]],
- columns=['A', 'B', 'bool1', 'bool2'])
- other = DataFrame([[45, 45]], index=[0], columns=['A', 'B'])
- df.update(other)
- expected = DataFrame([[45., 45., False, True], [4., 5., True, False]],
- columns=['A', 'B', 'bool1', 'bool2'])
- assert_frame_equal(df, expected)
- def test_update_nooverwrite(self):
- df = DataFrame([[1.5, np.nan, 3.],
- [1.5, np.nan, 3.],
- [1.5, np.nan, 3],
- [1.5, np.nan, 3]])
- other = DataFrame([[3.6, 2., np.nan],
- [np.nan, np.nan, 7]], index=[1, 3])
- df.update(other, overwrite=False)
- expected = DataFrame([[1.5, np.nan, 3],
- [1.5, 2, 3],
- [1.5, np.nan, 3],
- [1.5, np.nan, 3.]])
- assert_frame_equal(df, expected)
- def test_update_filtered(self):
- df = DataFrame([[1.5, np.nan, 3.],
- [1.5, np.nan, 3.],
- [1.5, np.nan, 3],
- [1.5, np.nan, 3]])
- other = DataFrame([[3.6, 2., np.nan],
- [np.nan, np.nan, 7]], index=[1, 3])
- df.update(other, filter_func=lambda x: x > 2)
- expected = DataFrame([[1.5, np.nan, 3],
- [1.5, np.nan, 3],
- [1.5, np.nan, 3],
- [1.5, np.nan, 7.]])
- assert_frame_equal(df, expected)
- @pytest.mark.parametrize('bad_kwarg, exception, msg', [
- # errors must be 'ignore' or 'raise'
- ({'errors': 'something'}, ValueError, 'The parameter errors must.*'),
- ({'join': 'inner'}, NotImplementedError, 'Only left join is supported')
- ])
- def test_update_raise_bad_parameter(self, bad_kwarg, exception, msg):
- df = DataFrame([[1.5, 1, 3.]])
- with pytest.raises(exception, match=msg):
- df.update(df, **bad_kwarg)
- def test_update_raise_on_overlap(self):
- df = DataFrame([[1.5, 1, 3.],
- [1.5, np.nan, 3.],
- [1.5, np.nan, 3],
- [1.5, np.nan, 3]])
- other = DataFrame([[2., np.nan],
- [np.nan, 7]], index=[1, 3], columns=[1, 2])
- with pytest.raises(ValueError, match="Data overlaps"):
- df.update(other, errors='raise')
- @pytest.mark.parametrize('raise_conflict', [True, False])
- def test_update_deprecation(self, raise_conflict):
- df = DataFrame([[1.5, 1, 3.]])
- other = DataFrame()
- with tm.assert_produces_warning(FutureWarning):
- df.update(other, raise_conflict=raise_conflict)
- def test_update_from_non_df(self):
- d = {'a': Series([1, 2, 3, 4]), 'b': Series([5, 6, 7, 8])}
- df = DataFrame(d)
- d['a'] = Series([5, 6, 7, 8])
- df.update(d)
- expected = DataFrame(d)
- assert_frame_equal(df, expected)
- d = {'a': [1, 2, 3, 4], 'b': [5, 6, 7, 8]}
- df = DataFrame(d)
- d['a'] = [5, 6, 7, 8]
- df.update(d)
- expected = DataFrame(d)
- assert_frame_equal(df, expected)
- def test_join_str_datetime(self):
- str_dates = ['20120209', '20120222']
- dt_dates = [datetime(2012, 2, 9), datetime(2012, 2, 22)]
- A = DataFrame(str_dates, index=lrange(2), columns=['aa'])
- C = DataFrame([[1, 2], [3, 4]], index=str_dates, columns=dt_dates)
- tst = A.join(C, on='aa')
- assert len(tst.columns) == 3
- def test_join_multiindex_leftright(self):
- # GH 10741
- df1 = (pd.DataFrame([['a', 'x', 0.471780], ['a', 'y', 0.774908],
- ['a', 'z', 0.563634], ['b', 'x', -0.353756],
- ['b', 'y', 0.368062], ['b', 'z', -1.721840],
- ['c', 'x', 1], ['c', 'y', 2], ['c', 'z', 3]],
- columns=['first', 'second', 'value1'])
- .set_index(['first', 'second']))
- df2 = (pd.DataFrame([['a', 10], ['b', 20]],
- columns=['first', 'value2'])
- .set_index(['first']))
- exp = pd.DataFrame([[0.471780, 10], [0.774908, 10], [0.563634, 10],
- [-0.353756, 20], [0.368062, 20],
- [-1.721840, 20],
- [1.000000, np.nan], [2.000000, np.nan],
- [3.000000, np.nan]],
- index=df1.index, columns=['value1', 'value2'])
- # these must be the same results (but columns are flipped)
- assert_frame_equal(df1.join(df2, how='left'), exp)
- assert_frame_equal(df2.join(df1, how='right'),
- exp[['value2', 'value1']])
- exp_idx = pd.MultiIndex.from_product([['a', 'b'], ['x', 'y', 'z']],
- names=['first', 'second'])
- exp = pd.DataFrame([[0.471780, 10], [0.774908, 10], [0.563634, 10],
- [-0.353756, 20], [0.368062, 20], [-1.721840, 20]],
- index=exp_idx, columns=['value1', 'value2'])
- assert_frame_equal(df1.join(df2, how='right'), exp)
- assert_frame_equal(df2.join(df1, how='left'),
- exp[['value2', 'value1']])
- def test_concat_named_keys(self):
- # GH 14252
- df = pd.DataFrame({'foo': [1, 2], 'bar': [0.1, 0.2]})
- index = Index(['a', 'b'], name='baz')
- concatted_named_from_keys = pd.concat([df, df], keys=index)
- expected_named = pd.DataFrame(
- {'foo': [1, 2, 1, 2], 'bar': [0.1, 0.2, 0.1, 0.2]},
- index=pd.MultiIndex.from_product((['a', 'b'], [0, 1]),
- names=['baz', None]))
- assert_frame_equal(concatted_named_from_keys, expected_named)
- index_no_name = Index(['a', 'b'], name=None)
- concatted_named_from_names = pd.concat(
- [df, df], keys=index_no_name, names=['baz'])
- assert_frame_equal(concatted_named_from_names, expected_named)
- concatted_unnamed = pd.concat([df, df], keys=index_no_name)
- expected_unnamed = pd.DataFrame(
- {'foo': [1, 2, 1, 2], 'bar': [0.1, 0.2, 0.1, 0.2]},
- index=pd.MultiIndex.from_product((['a', 'b'], [0, 1]),
- names=[None, None]))
- assert_frame_equal(concatted_unnamed, expected_unnamed)
- def test_concat_axis_parameter(self):
- # GH 14369
- df1 = pd.DataFrame({'A': [0.1, 0.2]}, index=range(2))
- df2 = pd.DataFrame({'A': [0.3, 0.4]}, index=range(2))
- # Index/row/0 DataFrame
- expected_index = pd.DataFrame(
- {'A': [0.1, 0.2, 0.3, 0.4]}, index=[0, 1, 0, 1])
- concatted_index = pd.concat([df1, df2], axis='index')
- assert_frame_equal(concatted_index, expected_index)
- concatted_row = pd.concat([df1, df2], axis='rows')
- assert_frame_equal(concatted_row, expected_index)
- concatted_0 = pd.concat([df1, df2], axis=0)
- assert_frame_equal(concatted_0, expected_index)
- # Columns/1 DataFrame
- expected_columns = pd.DataFrame(
- [[0.1, 0.3], [0.2, 0.4]], index=[0, 1], columns=['A', 'A'])
- concatted_columns = pd.concat([df1, df2], axis='columns')
- assert_frame_equal(concatted_columns, expected_columns)
- concatted_1 = pd.concat([df1, df2], axis=1)
- assert_frame_equal(concatted_1, expected_columns)
- series1 = pd.Series([0.1, 0.2])
- series2 = pd.Series([0.3, 0.4])
- # Index/row/0 Series
- expected_index_series = pd.Series(
- [0.1, 0.2, 0.3, 0.4], index=[0, 1, 0, 1])
- concatted_index_series = pd.concat([series1, series2], axis='index')
- assert_series_equal(concatted_index_series, expected_index_series)
- concatted_row_series = pd.concat([series1, series2], axis='rows')
- assert_series_equal(concatted_row_series, expected_index_series)
- concatted_0_series = pd.concat([series1, series2], axis=0)
- assert_series_equal(concatted_0_series, expected_index_series)
- # Columns/1 Series
- expected_columns_series = pd.DataFrame(
- [[0.1, 0.3], [0.2, 0.4]], index=[0, 1], columns=[0, 1])
- concatted_columns_series = pd.concat(
- [series1, series2], axis='columns')
- assert_frame_equal(concatted_columns_series, expected_columns_series)
- concatted_1_series = pd.concat([series1, series2], axis=1)
- assert_frame_equal(concatted_1_series, expected_columns_series)
- # Testing ValueError
- with pytest.raises(ValueError, match='No axis named'):
- pd.concat([series1, series2], axis='something')
- def test_concat_numerical_names(self):
- # #15262 # #12223
- df = pd.DataFrame({'col': range(9)},
- dtype='int32',
- index=(pd.MultiIndex
- .from_product([['A0', 'A1', 'A2'],
- ['B0', 'B1', 'B2']],
- names=[1, 2])))
- result = pd.concat((df.iloc[:2, :], df.iloc[-2:, :]))
- expected = pd.DataFrame({'col': [0, 1, 7, 8]},
- dtype='int32',
- index=pd.MultiIndex.from_tuples([('A0', 'B0'),
- ('A0', 'B1'),
- ('A2', 'B1'),
- ('A2', 'B2')],
- names=[1, 2]))
- tm.assert_frame_equal(result, expected)
- class TestDataFrameCombineFirst(TestData):
- def test_combine_first_mixed(self):
- a = Series(['a', 'b'], index=lrange(2))
- b = Series(lrange(2), index=lrange(2))
- f = DataFrame({'A': a, 'B': b})
- a = Series(['a', 'b'], index=lrange(5, 7))
- b = Series(lrange(2), index=lrange(5, 7))
- g = DataFrame({'A': a, 'B': b})
- exp = pd.DataFrame({'A': list('abab'), 'B': [0., 1., 0., 1.]},
- index=[0, 1, 5, 6])
- combined = f.combine_first(g)
- tm.assert_frame_equal(combined, exp)
- def test_combine_first(self):
- # disjoint
- head, tail = self.frame[:5], self.frame[5:]
- combined = head.combine_first(tail)
- reordered_frame = self.frame.reindex(combined.index)
- assert_frame_equal(combined, reordered_frame)
- assert tm.equalContents(combined.columns, self.frame.columns)
- assert_series_equal(combined['A'], reordered_frame['A'])
- # same index
- fcopy = self.frame.copy()
- fcopy['A'] = 1
- del fcopy['C']
- fcopy2 = self.frame.copy()
- fcopy2['B'] = 0
- del fcopy2['D']
- combined = fcopy.combine_first(fcopy2)
- assert (combined['A'] == 1).all()
- assert_series_equal(combined['B'], fcopy['B'])
- assert_series_equal(combined['C'], fcopy2['C'])
- assert_series_equal(combined['D'], fcopy['D'])
- # overlap
- head, tail = reordered_frame[:10].copy(), reordered_frame
- head['A'] = 1
- combined = head.combine_first(tail)
- assert (combined['A'][:10] == 1).all()
- # reverse overlap
- tail['A'][:10] = 0
- combined = tail.combine_first(head)
- assert (combined['A'][:10] == 0).all()
- # no overlap
- f = self.frame[:10]
- g = self.frame[10:]
- combined = f.combine_first(g)
- assert_series_equal(combined['A'].reindex(f.index), f['A'])
- assert_series_equal(combined['A'].reindex(g.index), g['A'])
- # corner cases
- comb = self.frame.combine_first(self.empty)
- assert_frame_equal(comb, self.frame)
- comb = self.empty.combine_first(self.frame)
- assert_frame_equal(comb, self.frame)
- comb = self.frame.combine_first(DataFrame(index=["faz", "boo"]))
- assert "faz" in comb.index
- # #2525
- df = DataFrame({'a': [1]}, index=[datetime(2012, 1, 1)])
- df2 = DataFrame({}, columns=['b'])
- result = df.combine_first(df2)
- assert 'b' in result
- def test_combine_first_mixed_bug(self):
- idx = Index(['a', 'b', 'c', 'e'])
- ser1 = Series([5.0, -9.0, 4.0, 100.], index=idx)
- ser2 = Series(['a', 'b', 'c', 'e'], index=idx)
- ser3 = Series([12, 4, 5, 97], index=idx)
- frame1 = DataFrame({"col0": ser1,
- "col2": ser2,
- "col3": ser3})
- idx = Index(['a', 'b', 'c', 'f'])
- ser1 = Series([5.0, -9.0, 4.0, 100.], index=idx)
- ser2 = Series(['a', 'b', 'c', 'f'], index=idx)
- ser3 = Series([12, 4, 5, 97], index=idx)
- frame2 = DataFrame({"col1": ser1,
- "col2": ser2,
- "col5": ser3})
- combined = frame1.combine_first(frame2)
- assert len(combined.columns) == 5
- # gh 3016 (same as in update)
- df = DataFrame([[1., 2., False, True], [4., 5., True, False]],
- columns=['A', 'B', 'bool1', 'bool2'])
- other = DataFrame([[45, 45]], index=[0], columns=['A', 'B'])
- result = df.combine_first(other)
- assert_frame_equal(result, df)
- df.loc[0, 'A'] = np.nan
- result = df.combine_first(other)
- df.loc[0, 'A'] = 45
- assert_frame_equal(result, df)
- # doc example
- df1 = DataFrame({'A': [1., np.nan, 3., 5., np.nan],
- 'B': [np.nan, 2., 3., np.nan, 6.]})
- df2 = DataFrame({'A': [5., 2., 4., np.nan, 3., 7.],
- 'B': [np.nan, np.nan, 3., 4., 6., 8.]})
- result = df1.combine_first(df2)
- expected = DataFrame(
- {'A': [1, 2, 3, 5, 3, 7.], 'B': [np.nan, 2, 3, 4, 6, 8]})
- assert_frame_equal(result, expected)
- # GH3552, return object dtype with bools
- df1 = DataFrame(
- [[np.nan, 3., True], [-4.6, np.nan, True], [np.nan, 7., False]])
- df2 = DataFrame(
- [[-42.6, np.nan, True], [-5., 1.6, False]], index=[1, 2])
- result = df1.combine_first(df2)[2]
- expected = Series([True, True, False], name=2)
- assert_series_equal(result, expected)
- # GH 3593, converting datetime64[ns] incorrecly
- df0 = DataFrame({"a": [datetime(2000, 1, 1),
- datetime(2000, 1, 2),
- datetime(2000, 1, 3)]})
- df1 = DataFrame({"a": [None, None, None]})
- df2 = df1.combine_first(df0)
- assert_frame_equal(df2, df0)
- df2 = df0.combine_first(df1)
- assert_frame_equal(df2, df0)
- df0 = DataFrame({"a": [datetime(2000, 1, 1),
- datetime(2000, 1, 2),
- datetime(2000, 1, 3)]})
- df1 = DataFrame({"a": [datetime(2000, 1, 2), None, None]})
- df2 = df1.combine_first(df0)
- result = df0.copy()
- result.iloc[0, :] = df1.iloc[0, :]
- assert_frame_equal(df2, result)
- df2 = df0.combine_first(df1)
- assert_frame_equal(df2, df0)
- def test_combine_first_align_nan(self):
- # GH 7509 (not fixed)
- dfa = pd.DataFrame([[pd.Timestamp('2011-01-01'), 2]],
- columns=['a', 'b'])
- dfb = pd.DataFrame([[4], [5]], columns=['b'])
- assert dfa['a'].dtype == 'datetime64[ns]'
- assert dfa['b'].dtype == 'int64'
- res = dfa.combine_first(dfb)
- exp = pd.DataFrame({'a': [pd.Timestamp('2011-01-01'), pd.NaT],
- 'b': [2., 5.]}, columns=['a', 'b'])
- tm.assert_frame_equal(res, exp)
- assert res['a'].dtype == 'datetime64[ns]'
- # ToDo: this must be int64
- assert res['b'].dtype == 'float64'
- res = dfa.iloc[:0].combine_first(dfb)
- exp = pd.DataFrame({'a': [np.nan, np.nan],
- 'b': [4, 5]}, columns=['a', 'b'])
- tm.assert_frame_equal(res, exp)
- # ToDo: this must be datetime64
- assert res['a'].dtype == 'float64'
- # ToDo: this must be int64
- assert res['b'].dtype == 'int64'
- def test_combine_first_timezone(self):
- # see gh-7630
- data1 = pd.to_datetime('20100101 01:01').tz_localize('UTC')
- df1 = pd.DataFrame(columns=['UTCdatetime', 'abc'],
- data=data1,
- index=pd.date_range('20140627', periods=1))
- data2 = pd.to_datetime('20121212 12:12').tz_localize('UTC')
- df2 = pd.DataFrame(columns=['UTCdatetime', 'xyz'],
- data=data2,
- index=pd.date_range('20140628', periods=1))
- res = df2[['UTCdatetime']].combine_first(df1)
- exp = pd.DataFrame({'UTCdatetime': [pd.Timestamp('2010-01-01 01:01',
- tz='UTC'),
- pd.Timestamp('2012-12-12 12:12',
- tz='UTC')],
- 'abc': [pd.Timestamp('2010-01-01 01:01:00',
- tz='UTC'), pd.NaT]},
- columns=['UTCdatetime', 'abc'],
- index=pd.date_range('20140627', periods=2,
- freq='D'))
- tm.assert_frame_equal(res, exp)
- assert res['UTCdatetime'].dtype == 'datetime64[ns, UTC]'
- assert res['abc'].dtype == 'datetime64[ns, UTC]'
- # see gh-10567
- dts1 = pd.date_range('2015-01-01', '2015-01-05', tz='UTC')
- df1 = pd.DataFrame({'DATE': dts1})
- dts2 = pd.date_range('2015-01-03', '2015-01-05', tz='UTC')
- df2 = pd.DataFrame({'DATE': dts2})
- res = df1.combine_first(df2)
- tm.assert_frame_equal(res, df1)
- assert res['DATE'].dtype == 'datetime64[ns, UTC]'
- dts1 = pd.DatetimeIndex(['2011-01-01', 'NaT', '2011-01-03',
- '2011-01-04'], tz='US/Eastern')
- df1 = pd.DataFrame({'DATE': dts1}, index=[1, 3, 5, 7])
- dts2 = pd.DatetimeIndex(['2012-01-01', '2012-01-02',
- '2012-01-03'], tz='US/Eastern')
- df2 = pd.DataFrame({'DATE': dts2}, index=[2, 4, 5])
- res = df1.combine_first(df2)
- exp_dts = pd.DatetimeIndex(['2011-01-01', '2012-01-01', 'NaT',
- '2012-01-02', '2011-01-03', '2011-01-04'],
- tz='US/Eastern')
- exp = pd.DataFrame({'DATE': exp_dts}, index=[1, 2, 3, 4, 5, 7])
- tm.assert_frame_equal(res, exp)
- # different tz
- dts1 = pd.date_range('2015-01-01', '2015-01-05', tz='US/Eastern')
- df1 = pd.DataFrame({'DATE': dts1})
- dts2 = pd.date_range('2015-01-03', '2015-01-05')
- df2 = pd.DataFrame({'DATE': dts2})
- # if df1 doesn't have NaN, keep its dtype
- res = df1.combine_first(df2)
- tm.assert_frame_equal(res, df1)
- assert res['DATE'].dtype == 'datetime64[ns, US/Eastern]'
- dts1 = pd.date_range('2015-01-01', '2015-01-02', tz='US/Eastern')
- df1 = pd.DataFrame({'DATE': dts1})
- dts2 = pd.date_range('2015-01-01', '2015-01-03')
- df2 = pd.DataFrame({'DATE': dts2})
- res = df1.combine_first(df2)
- exp_dts = [pd.Timestamp('2015-01-01', tz='US/Eastern'),
- pd.Timestamp('2015-01-02', tz='US/Eastern'),
- pd.Timestamp('2015-01-03')]
- exp = pd.DataFrame({'DATE': exp_dts})
- tm.assert_frame_equal(res, exp)
- assert res['DATE'].dtype == 'object'
- def test_combine_first_timedelta(self):
- data1 = pd.TimedeltaIndex(['1 day', 'NaT', '3 day', '4day'])
- df1 = pd.DataFrame({'TD': data1}, index=[1, 3, 5, 7])
- data2 = pd.TimedeltaIndex(['10 day', '11 day', '12 day'])
- df2 = pd.DataFrame({'TD': data2}, index=[2, 4, 5])
- res = df1.combine_first(df2)
- exp_dts = pd.TimedeltaIndex(['1 day', '10 day', 'NaT',
- '11 day', '3 day', '4 day'])
- exp = pd.DataFrame({'TD': exp_dts}, index=[1, 2, 3, 4, 5, 7])
- tm.assert_frame_equal(res, exp)
- assert res['TD'].dtype == 'timedelta64[ns]'
- def test_combine_first_period(self):
- data1 = pd.PeriodIndex(['2011-01', 'NaT', '2011-03',
- '2011-04'], freq='M')
- df1 = pd.DataFrame({'P': data1}, index=[1, 3, 5, 7])
- data2 = pd.PeriodIndex(['2012-01-01', '2012-02',
- '2012-03'], freq='M')
- df2 = pd.DataFrame({'P': data2}, index=[2, 4, 5])
- res = df1.combine_first(df2)
- exp_dts = pd.PeriodIndex(['2011-01', '2012-01', 'NaT',
- '2012-02', '2011-03', '2011-04'],
- freq='M')
- exp = pd.DataFrame({'P': exp_dts}, index=[1, 2, 3, 4, 5, 7])
- tm.assert_frame_equal(res, exp)
- assert res['P'].dtype == data1.dtype
- # different freq
- dts2 = pd.PeriodIndex(['2012-01-01', '2012-01-02',
- '2012-01-03'], freq='D')
- df2 = pd.DataFrame({'P': dts2}, index=[2, 4, 5])
- res = df1.combine_first(df2)
- exp_dts = [pd.Period('2011-01', freq='M'),
- pd.Period('2012-01-01', freq='D'),
- pd.NaT,
- pd.Period('2012-01-02', freq='D'),
- pd.Period('2011-03', freq='M'),
- pd.Period('2011-04', freq='M')]
- exp = pd.DataFrame({'P': exp_dts}, index=[1, 2, 3, 4, 5, 7])
- tm.assert_frame_equal(res, exp)
- assert res['P'].dtype == 'object'
- def test_combine_first_int(self):
- # GH14687 - integer series that do no align exactly
- df1 = pd.DataFrame({'a': [0, 1, 3, 5]}, dtype='int64')
- df2 = pd.DataFrame({'a': [1, 4]}, dtype='int64')
- res = df1.combine_first(df2)
- tm.assert_frame_equal(res, df1)
- assert res['a'].dtype == 'int64'
- @pytest.mark.parametrize("val", [1, 1.0])
- def test_combine_first_with_asymmetric_other(self, val):
- # see gh-20699
- df1 = pd.DataFrame({'isNum': [val]})
- df2 = pd.DataFrame({'isBool': [True]})
- res = df1.combine_first(df2)
- exp = pd.DataFrame({'isBool': [True], 'isNum': [val]})
- tm.assert_frame_equal(res, exp)
- def test_concat_datetime_datetime64_frame(self):
- # #2624
- rows = []
- rows.append([datetime(2010, 1, 1), 1])
- rows.append([datetime(2010, 1, 2), 'hi'])
- df2_obj = DataFrame.from_records(rows, columns=['date', 'test'])
- ind = date_range(start="2000/1/1", freq="D", periods=10)
- df1 = DataFrame({'date': ind, 'test': lrange(10)})
- # it works!
- pd.concat([df1, df2_obj])
- class TestDataFrameUpdate(TestData):
- def test_update_nan(self):
- # #15593 #15617
- # test 1
- df1 = DataFrame({'A': [1.0, 2, 3], 'B': date_range('2000', periods=3)})
- df2 = DataFrame({'A': [None, 2, 3]})
- expected = df1.copy()
- df1.update(df2, overwrite=False)
- tm.assert_frame_equal(df1, expected)
- # test 2
- df1 = DataFrame({'A': [1.0, None, 3],
- 'B': date_range('2000', periods=3)})
- df2 = DataFrame({'A': [None, 2, 3]})
- expected = DataFrame({'A': [1.0, 2, 3],
- 'B': date_range('2000', periods=3)})
- df1.update(df2, overwrite=False)
- tm.assert_frame_equal(df1, expected)
|