123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684 |
- # -*- coding: utf-8 -*-
- from __future__ import print_function
- from datetime import date, datetime, time, timedelta
- from warnings import catch_warnings, simplefilter
- import numpy as np
- import pytest
- from pandas._libs.tslib import iNaT
- from pandas.compat import long, lrange, lzip, map, range, zip
- from pandas.core.dtypes.common import is_float_dtype, is_integer, is_scalar
- from pandas.core.dtypes.dtypes import CategoricalDtype
- import pandas as pd
- from pandas import (
- Categorical, DataFrame, DatetimeIndex, Index, MultiIndex, Series,
- Timestamp, compat, date_range, isna, notna)
- import pandas.core.common as com
- from pandas.core.indexing import IndexingError
- from pandas.tests.frame.common import TestData
- import pandas.util.testing as tm
- from pandas.util.testing import (
- assert_almost_equal, assert_frame_equal, assert_series_equal)
- from pandas.tseries.offsets import BDay
- class TestDataFrameIndexing(TestData):
- def test_getitem(self):
- # Slicing
- sl = self.frame[:20]
- assert len(sl.index) == 20
- # Column access
- for _, series in compat.iteritems(sl):
- assert len(series.index) == 20
- assert tm.equalContents(series.index, sl.index)
- for key, _ in compat.iteritems(self.frame._series):
- assert self.frame[key] is not None
- assert 'random' not in self.frame
- with pytest.raises(KeyError, match='random'):
- self.frame['random']
- df = self.frame.copy()
- df['$10'] = np.random.randn(len(df))
- ad = np.random.randn(len(df))
- df['@awesome_domain'] = ad
- with pytest.raises(KeyError):
- df.__getitem__('df["$10"]')
- res = df['@awesome_domain']
- tm.assert_numpy_array_equal(ad, res.values)
- def test_getitem_dupe_cols(self):
- df = DataFrame([[1, 2, 3], [4, 5, 6]], columns=['a', 'a', 'b'])
- with pytest.raises(KeyError):
- df[['baf']]
- def test_get(self):
- b = self.frame.get('B')
- assert_series_equal(b, self.frame['B'])
- assert self.frame.get('foo') is None
- assert_series_equal(self.frame.get('foo', self.frame['B']),
- self.frame['B'])
- @pytest.mark.parametrize("df", [
- DataFrame(),
- DataFrame(columns=list("AB")),
- DataFrame(columns=list("AB"), index=range(3))
- ])
- def test_get_none(self, df):
- # see gh-5652
- assert df.get(None) is None
- def test_loc_iterable(self):
- idx = iter(['A', 'B', 'C'])
- result = self.frame.loc[:, idx]
- expected = self.frame.loc[:, ['A', 'B', 'C']]
- assert_frame_equal(result, expected)
- @pytest.mark.parametrize(
- "idx_type",
- [list, iter, Index, set,
- lambda l: dict(zip(l, range(len(l)))),
- lambda l: dict(zip(l, range(len(l)))).keys()],
- ids=["list", "iter", "Index", "set", "dict", "dict_keys"])
- @pytest.mark.parametrize("levels", [1, 2])
- def test_getitem_listlike(self, idx_type, levels):
- # GH 21294
- if levels == 1:
- frame, missing = self.frame, 'food'
- else:
- # MultiIndex columns
- frame = DataFrame(np.random.randn(8, 3),
- columns=Index([('foo', 'bar'), ('baz', 'qux'),
- ('peek', 'aboo')],
- name=('sth', 'sth2')))
- missing = ('good', 'food')
- keys = [frame.columns[1], frame.columns[0]]
- idx = idx_type(keys)
- idx_check = list(idx_type(keys))
- result = frame[idx]
- expected = frame.loc[:, idx_check]
- expected.columns.names = frame.columns.names
- assert_frame_equal(result, expected)
- idx = idx_type(keys + [missing])
- with pytest.raises(KeyError, match='not in index'):
- frame[idx]
- @pytest.mark.parametrize("val,expected", [
- (2**63 - 1, Series([1])),
- (2**63, Series([2])),
- ])
- def test_loc_uint64(self, val, expected):
- # see gh-19399
- df = DataFrame([1, 2], index=[2**63 - 1, 2**63])
- result = df.loc[val]
- expected.name = val
- tm.assert_series_equal(result, expected)
- def test_getitem_callable(self):
- # GH 12533
- result = self.frame[lambda x: 'A']
- tm.assert_series_equal(result, self.frame.loc[:, 'A'])
- result = self.frame[lambda x: ['A', 'B']]
- tm.assert_frame_equal(result, self.frame.loc[:, ['A', 'B']])
- df = self.frame[:3]
- result = df[lambda x: [True, False, True]]
- tm.assert_frame_equal(result, self.frame.iloc[[0, 2], :])
- def test_setitem_list(self):
- self.frame['E'] = 'foo'
- data = self.frame[['A', 'B']]
- self.frame[['B', 'A']] = data
- assert_series_equal(self.frame['B'], data['A'], check_names=False)
- assert_series_equal(self.frame['A'], data['B'], check_names=False)
- msg = 'Columns must be same length as key'
- with pytest.raises(ValueError, match=msg):
- data[['A']] = self.frame[['A', 'B']]
- msg = 'Length of values does not match length of index'
- with pytest.raises(ValueError, match=msg):
- data['A'] = range(len(data.index) - 1)
- df = DataFrame(0, lrange(3), ['tt1', 'tt2'], dtype=np.int_)
- df.loc[1, ['tt1', 'tt2']] = [1, 2]
- result = df.loc[df.index[1], ['tt1', 'tt2']]
- expected = Series([1, 2], df.columns, dtype=np.int_, name=1)
- assert_series_equal(result, expected)
- df['tt1'] = df['tt2'] = '0'
- df.loc[df.index[1], ['tt1', 'tt2']] = ['1', '2']
- result = df.loc[df.index[1], ['tt1', 'tt2']]
- expected = Series(['1', '2'], df.columns, name=1)
- assert_series_equal(result, expected)
- def test_setitem_list_not_dataframe(self):
- data = np.random.randn(len(self.frame), 2)
- self.frame[['A', 'B']] = data
- assert_almost_equal(self.frame[['A', 'B']].values, data)
- def test_setitem_list_of_tuples(self):
- tuples = lzip(self.frame['A'], self.frame['B'])
- self.frame['tuples'] = tuples
- result = self.frame['tuples']
- expected = Series(tuples, index=self.frame.index, name='tuples')
- assert_series_equal(result, expected)
- def test_setitem_mulit_index(self):
- # GH7655, test that assigning to a sub-frame of a frame
- # with multi-index columns aligns both rows and columns
- it = ['jim', 'joe', 'jolie'], ['first', 'last'], \
- ['left', 'center', 'right']
- cols = MultiIndex.from_product(it)
- index = pd.date_range('20141006', periods=20)
- vals = np.random.randint(1, 1000, (len(index), len(cols)))
- df = pd.DataFrame(vals, columns=cols, index=index)
- i, j = df.index.values.copy(), it[-1][:]
- np.random.shuffle(i)
- df['jim'] = df['jolie'].loc[i, ::-1]
- assert_frame_equal(df['jim'], df['jolie'])
- np.random.shuffle(j)
- df[('joe', 'first')] = df[('jolie', 'last')].loc[i, j]
- assert_frame_equal(df[('joe', 'first')], df[('jolie', 'last')])
- np.random.shuffle(j)
- df[('joe', 'last')] = df[('jolie', 'first')].loc[i, j]
- assert_frame_equal(df[('joe', 'last')], df[('jolie', 'first')])
- def test_setitem_callable(self):
- # GH 12533
- df = pd.DataFrame({'A': [1, 2, 3, 4], 'B': [5, 6, 7, 8]})
- df[lambda x: 'A'] = [11, 12, 13, 14]
- exp = pd.DataFrame({'A': [11, 12, 13, 14], 'B': [5, 6, 7, 8]})
- tm.assert_frame_equal(df, exp)
- def test_setitem_other_callable(self):
- # GH 13299
- def inc(x):
- return x + 1
- df = pd.DataFrame([[-1, 1], [1, -1]])
- df[df > 0] = inc
- expected = pd.DataFrame([[-1, inc], [inc, -1]])
- tm.assert_frame_equal(df, expected)
- def test_getitem_boolean(self):
- # boolean indexing
- d = self.tsframe.index[10]
- indexer = self.tsframe.index > d
- indexer_obj = indexer.astype(object)
- subindex = self.tsframe.index[indexer]
- subframe = self.tsframe[indexer]
- tm.assert_index_equal(subindex, subframe.index)
- with pytest.raises(ValueError, match='Item wrong length'):
- self.tsframe[indexer[:-1]]
- subframe_obj = self.tsframe[indexer_obj]
- assert_frame_equal(subframe_obj, subframe)
- with pytest.raises(ValueError, match='boolean values only'):
- self.tsframe[self.tsframe]
- # test that Series work
- indexer_obj = Series(indexer_obj, self.tsframe.index)
- subframe_obj = self.tsframe[indexer_obj]
- assert_frame_equal(subframe_obj, subframe)
- # test that Series indexers reindex
- # we are producing a warning that since the passed boolean
- # key is not the same as the given index, we will reindex
- # not sure this is really necessary
- with tm.assert_produces_warning(UserWarning, check_stacklevel=False):
- indexer_obj = indexer_obj.reindex(self.tsframe.index[::-1])
- subframe_obj = self.tsframe[indexer_obj]
- assert_frame_equal(subframe_obj, subframe)
- # test df[df > 0]
- for df in [self.tsframe, self.mixed_frame,
- self.mixed_float, self.mixed_int]:
- if compat.PY3 and df is self.mixed_frame:
- continue
- data = df._get_numeric_data()
- bif = df[df > 0]
- bifw = DataFrame({c: np.where(data[c] > 0, data[c], np.nan)
- for c in data.columns},
- index=data.index, columns=data.columns)
- # add back other columns to compare
- for c in df.columns:
- if c not in bifw:
- bifw[c] = df[c]
- bifw = bifw.reindex(columns=df.columns)
- assert_frame_equal(bif, bifw, check_dtype=False)
- for c in df.columns:
- if bif[c].dtype != bifw[c].dtype:
- assert bif[c].dtype == df[c].dtype
- def test_getitem_boolean_casting(self):
- # don't upcast if we don't need to
- df = self.tsframe.copy()
- df['E'] = 1
- df['E'] = df['E'].astype('int32')
- df['E1'] = df['E'].copy()
- df['F'] = 1
- df['F'] = df['F'].astype('int64')
- df['F1'] = df['F'].copy()
- casted = df[df > 0]
- result = casted.get_dtype_counts()
- expected = Series({'float64': 4, 'int32': 2, 'int64': 2})
- assert_series_equal(result, expected)
- # int block splitting
- df.loc[df.index[1:3], ['E1', 'F1']] = 0
- casted = df[df > 0]
- result = casted.get_dtype_counts()
- expected = Series({'float64': 6, 'int32': 1, 'int64': 1})
- assert_series_equal(result, expected)
- # where dtype conversions
- # GH 3733
- df = DataFrame(data=np.random.randn(100, 50))
- df = df.where(df > 0) # create nans
- bools = df > 0
- mask = isna(df)
- expected = bools.astype(float).mask(mask)
- result = bools.mask(mask)
- assert_frame_equal(result, expected)
- def test_getitem_boolean_list(self):
- df = DataFrame(np.arange(12).reshape(3, 4))
- def _checkit(lst):
- result = df[lst]
- expected = df.loc[df.index[lst]]
- assert_frame_equal(result, expected)
- _checkit([True, False, True])
- _checkit([True, True, True])
- _checkit([False, False, False])
- def test_getitem_boolean_iadd(self):
- arr = np.random.randn(5, 5)
- df = DataFrame(arr.copy(), columns=['A', 'B', 'C', 'D', 'E'])
- df[df < 0] += 1
- arr[arr < 0] += 1
- assert_almost_equal(df.values, arr)
- def test_boolean_index_empty_corner(self):
- # #2096
- blah = DataFrame(np.empty([0, 1]), columns=['A'],
- index=DatetimeIndex([]))
- # both of these should succeed trivially
- k = np.array([], bool)
- blah[k]
- blah[k] = 0
- def test_getitem_ix_mixed_integer(self):
- df = DataFrame(np.random.randn(4, 3),
- index=[1, 10, 'C', 'E'], columns=[1, 2, 3])
- result = df.iloc[:-1]
- expected = df.loc[df.index[:-1]]
- assert_frame_equal(result, expected)
- with catch_warnings(record=True):
- simplefilter("ignore", DeprecationWarning)
- result = df.ix[[1, 10]]
- expected = df.ix[Index([1, 10], dtype=object)]
- assert_frame_equal(result, expected)
- # 11320
- df = pd.DataFrame({"rna": (1.5, 2.2, 3.2, 4.5),
- -1000: [11, 21, 36, 40],
- 0: [10, 22, 43, 34],
- 1000: [0, 10, 20, 30]},
- columns=['rna', -1000, 0, 1000])
- result = df[[1000]]
- expected = df.iloc[:, [3]]
- assert_frame_equal(result, expected)
- result = df[[-1000]]
- expected = df.iloc[:, [1]]
- assert_frame_equal(result, expected)
- def test_getitem_setitem_ix_negative_integers(self):
- with catch_warnings(record=True):
- simplefilter("ignore", DeprecationWarning)
- result = self.frame.ix[:, -1]
- assert_series_equal(result, self.frame['D'])
- with catch_warnings(record=True):
- simplefilter("ignore", DeprecationWarning)
- result = self.frame.ix[:, [-1]]
- assert_frame_equal(result, self.frame[['D']])
- with catch_warnings(record=True):
- simplefilter("ignore", DeprecationWarning)
- result = self.frame.ix[:, [-1, -2]]
- assert_frame_equal(result, self.frame[['D', 'C']])
- with catch_warnings(record=True):
- simplefilter("ignore", DeprecationWarning)
- self.frame.ix[:, [-1]] = 0
- assert (self.frame['D'] == 0).all()
- df = DataFrame(np.random.randn(8, 4))
- # ix does label-based indexing when having an integer index
- with catch_warnings(record=True):
- simplefilter("ignore", DeprecationWarning)
- with pytest.raises(KeyError):
- df.ix[[-1]]
- with catch_warnings(record=True):
- simplefilter("ignore", DeprecationWarning)
- with pytest.raises(KeyError):
- df.ix[:, [-1]]
- # #1942
- a = DataFrame(np.random.randn(20, 2),
- index=[chr(x + 65) for x in range(20)])
- with catch_warnings(record=True):
- simplefilter("ignore", DeprecationWarning)
- a.ix[-1] = a.ix[-2]
- with catch_warnings(record=True):
- simplefilter("ignore", DeprecationWarning)
- assert_series_equal(a.ix[-1], a.ix[-2], check_names=False)
- assert a.ix[-1].name == 'T'
- assert a.ix[-2].name == 'S'
- def test_getattr(self):
- assert_series_equal(self.frame.A, self.frame['A'])
- pytest.raises(AttributeError, getattr, self.frame,
- 'NONEXISTENT_NAME')
- def test_setattr_column(self):
- df = DataFrame({'foobar': 1}, index=lrange(10))
- df.foobar = 5
- assert (df.foobar == 5).all()
- def test_setitem(self):
- # not sure what else to do here
- series = self.frame['A'][::2]
- self.frame['col5'] = series
- assert 'col5' in self.frame
- assert len(series) == 15
- assert len(self.frame) == 30
- exp = np.ravel(np.column_stack((series.values, [np.nan] * 15)))
- exp = Series(exp, index=self.frame.index, name='col5')
- tm.assert_series_equal(self.frame['col5'], exp)
- series = self.frame['A']
- self.frame['col6'] = series
- tm.assert_series_equal(series, self.frame['col6'], check_names=False)
- with pytest.raises(KeyError):
- self.frame[np.random.randn(len(self.frame) + 1)] = 1
- # set ndarray
- arr = np.random.randn(len(self.frame))
- self.frame['col9'] = arr
- assert (self.frame['col9'] == arr).all()
- self.frame['col7'] = 5
- assert((self.frame['col7'] == 5).all())
- self.frame['col0'] = 3.14
- assert((self.frame['col0'] == 3.14).all())
- self.frame['col8'] = 'foo'
- assert((self.frame['col8'] == 'foo').all())
- # this is partially a view (e.g. some blocks are view)
- # so raise/warn
- smaller = self.frame[:2]
- with pytest.raises(com.SettingWithCopyError):
- smaller['col10'] = ['1', '2']
- assert smaller['col10'].dtype == np.object_
- assert (smaller['col10'] == ['1', '2']).all()
- # dtype changing GH4204
- df = DataFrame([[0, 0]])
- df.iloc[0] = np.nan
- expected = DataFrame([[np.nan, np.nan]])
- assert_frame_equal(df, expected)
- df = DataFrame([[0, 0]])
- df.loc[0] = np.nan
- assert_frame_equal(df, expected)
- @pytest.mark.parametrize("dtype", ["int32", "int64", "float32", "float64"])
- def test_setitem_dtype(self, dtype):
- arr = np.random.randn(len(self.frame))
- self.frame[dtype] = np.array(arr, dtype=dtype)
- assert self.frame[dtype].dtype.name == dtype
- def test_setitem_tuple(self):
- self.frame['A', 'B'] = self.frame['A']
- assert_series_equal(self.frame['A', 'B'], self.frame[
- 'A'], check_names=False)
- def test_setitem_always_copy(self):
- s = self.frame['A'].copy()
- self.frame['E'] = s
- self.frame['E'][5:10] = np.nan
- assert notna(s[5:10]).all()
- def test_setitem_boolean(self):
- df = self.frame.copy()
- values = self.frame.values
- df[df['A'] > 0] = 4
- values[values[:, 0] > 0] = 4
- assert_almost_equal(df.values, values)
- # test that column reindexing works
- series = df['A'] == 4
- series = series.reindex(df.index[::-1])
- df[series] = 1
- values[values[:, 0] == 4] = 1
- assert_almost_equal(df.values, values)
- df[df > 0] = 5
- values[values > 0] = 5
- assert_almost_equal(df.values, values)
- df[df == 5] = 0
- values[values == 5] = 0
- assert_almost_equal(df.values, values)
- # a df that needs alignment first
- df[df[:-1] < 0] = 2
- np.putmask(values[:-1], values[:-1] < 0, 2)
- assert_almost_equal(df.values, values)
- # indexed with same shape but rows-reversed df
- df[df[::-1] == 2] = 3
- values[values == 2] = 3
- assert_almost_equal(df.values, values)
- msg = "Must pass DataFrame or 2-d ndarray with boolean values only"
- with pytest.raises(TypeError, match=msg):
- df[df * 0] = 2
- # index with DataFrame
- mask = df > np.abs(df)
- expected = df.copy()
- df[df > np.abs(df)] = np.nan
- expected.values[mask.values] = np.nan
- assert_frame_equal(df, expected)
- # set from DataFrame
- expected = df.copy()
- df[df > np.abs(df)] = df * 2
- np.putmask(expected.values, mask.values, df.values * 2)
- assert_frame_equal(df, expected)
- @pytest.mark.parametrize(
- "mask_type",
- [lambda df: df > np.abs(df) / 2,
- lambda df: (df > np.abs(df) / 2).values],
- ids=['dataframe', 'array'])
- def test_setitem_boolean_mask(self, mask_type):
- # Test for issue #18582
- df = self.frame.copy()
- mask = mask_type(df)
- # index with boolean mask
- result = df.copy()
- result[mask] = np.nan
- expected = df.copy()
- expected.values[np.array(mask)] = np.nan
- assert_frame_equal(result, expected)
- def test_setitem_cast(self):
- self.frame['D'] = self.frame['D'].astype('i8')
- assert self.frame['D'].dtype == np.int64
- # #669, should not cast?
- # this is now set to int64, which means a replacement of the column to
- # the value dtype (and nothing to do with the existing dtype)
- self.frame['B'] = 0
- assert self.frame['B'].dtype == np.int64
- # cast if pass array of course
- self.frame['B'] = np.arange(len(self.frame))
- assert issubclass(self.frame['B'].dtype.type, np.integer)
- self.frame['foo'] = 'bar'
- self.frame['foo'] = 0
- assert self.frame['foo'].dtype == np.int64
- self.frame['foo'] = 'bar'
- self.frame['foo'] = 2.5
- assert self.frame['foo'].dtype == np.float64
- self.frame['something'] = 0
- assert self.frame['something'].dtype == np.int64
- self.frame['something'] = 2
- assert self.frame['something'].dtype == np.int64
- self.frame['something'] = 2.5
- assert self.frame['something'].dtype == np.float64
- # GH 7704
- # dtype conversion on setting
- df = DataFrame(np.random.rand(30, 3), columns=tuple('ABC'))
- df['event'] = np.nan
- df.loc[10, 'event'] = 'foo'
- result = df.get_dtype_counts().sort_values()
- expected = Series({'float64': 3, 'object': 1}).sort_values()
- assert_series_equal(result, expected)
- # Test that data type is preserved . #5782
- df = DataFrame({'one': np.arange(6, dtype=np.int8)})
- df.loc[1, 'one'] = 6
- assert df.dtypes.one == np.dtype(np.int8)
- df.one = np.int8(7)
- assert df.dtypes.one == np.dtype(np.int8)
- def test_setitem_boolean_column(self):
- expected = self.frame.copy()
- mask = self.frame['A'] > 0
- self.frame.loc[mask, 'B'] = 0
- expected.values[mask.values, 1] = 0
- assert_frame_equal(self.frame, expected)
- def test_frame_setitem_timestamp(self):
- # GH#2155
- columns = date_range(start='1/1/2012', end='2/1/2012', freq=BDay())
- index = lrange(10)
- data = DataFrame(columns=columns, index=index)
- t = datetime(2012, 11, 1)
- ts = Timestamp(t)
- data[ts] = np.nan # works, mostly a smoke-test
- assert np.isnan(data[ts]).all()
- def test_setitem_corner(self):
- # corner case
- df = DataFrame({'B': [1., 2., 3.],
- 'C': ['a', 'b', 'c']},
- index=np.arange(3))
- del df['B']
- df['B'] = [1., 2., 3.]
- assert 'B' in df
- assert len(df.columns) == 2
- df['A'] = 'beginning'
- df['E'] = 'foo'
- df['D'] = 'bar'
- df[datetime.now()] = 'date'
- df[datetime.now()] = 5.
- # what to do when empty frame with index
- dm = DataFrame(index=self.frame.index)
- dm['A'] = 'foo'
- dm['B'] = 'bar'
- assert len(dm.columns) == 2
- assert dm.values.dtype == np.object_
- # upcast
- dm['C'] = 1
- assert dm['C'].dtype == np.int64
- dm['E'] = 1.
- assert dm['E'].dtype == np.float64
- # set existing column
- dm['A'] = 'bar'
- assert 'bar' == dm['A'][0]
- dm = DataFrame(index=np.arange(3))
- dm['A'] = 1
- dm['foo'] = 'bar'
- del dm['foo']
- dm['foo'] = 'bar'
- assert dm['foo'].dtype == np.object_
- dm['coercable'] = ['1', '2', '3']
- assert dm['coercable'].dtype == np.object_
- def test_setitem_corner2(self):
- data = {"title": ['foobar', 'bar', 'foobar'] + ['foobar'] * 17,
- "cruft": np.random.random(20)}
- df = DataFrame(data)
- ix = df[df['title'] == 'bar'].index
- df.loc[ix, ['title']] = 'foobar'
- df.loc[ix, ['cruft']] = 0
- assert df.loc[1, 'title'] == 'foobar'
- assert df.loc[1, 'cruft'] == 0
- def test_setitem_ambig(self):
- # Difficulties with mixed-type data
- from decimal import Decimal
- # Created as float type
- dm = DataFrame(index=lrange(3), columns=lrange(3))
- coercable_series = Series([Decimal(1) for _ in range(3)],
- index=lrange(3))
- uncoercable_series = Series(['foo', 'bzr', 'baz'], index=lrange(3))
- dm[0] = np.ones(3)
- assert len(dm.columns) == 3
- dm[1] = coercable_series
- assert len(dm.columns) == 3
- dm[2] = uncoercable_series
- assert len(dm.columns) == 3
- assert dm[2].dtype == np.object_
- def test_setitem_clear_caches(self):
- # see gh-304
- df = DataFrame({'x': [1.1, 2.1, 3.1, 4.1], 'y': [5.1, 6.1, 7.1, 8.1]},
- index=[0, 1, 2, 3])
- df.insert(2, 'z', np.nan)
- # cache it
- foo = df['z']
- df.loc[df.index[2:], 'z'] = 42
- expected = Series([np.nan, np.nan, 42, 42], index=df.index, name='z')
- assert df['z'] is not foo
- tm.assert_series_equal(df['z'], expected)
- def test_setitem_None(self):
- # GH #766
- self.frame[None] = self.frame['A']
- assert_series_equal(
- self.frame.iloc[:, -1], self.frame['A'], check_names=False)
- assert_series_equal(self.frame.loc[:, None], self.frame[
- 'A'], check_names=False)
- assert_series_equal(self.frame[None], self.frame[
- 'A'], check_names=False)
- repr(self.frame)
- def test_setitem_empty(self):
- # GH 9596
- df = pd.DataFrame({'a': ['1', '2', '3'],
- 'b': ['11', '22', '33'],
- 'c': ['111', '222', '333']})
- result = df.copy()
- result.loc[result.b.isna(), 'a'] = result.a
- assert_frame_equal(result, df)
- @pytest.mark.parametrize("dtype", ["float", "int64"])
- @pytest.mark.parametrize("kwargs", [
- dict(),
- dict(index=[1]),
- dict(columns=["A"])
- ])
- def test_setitem_empty_frame_with_boolean(self, dtype, kwargs):
- # see gh-10126
- kwargs["dtype"] = dtype
- df = DataFrame(**kwargs)
- df2 = df.copy()
- df[df > df2] = 47
- assert_frame_equal(df, df2)
- def test_setitem_scalars_no_index(self):
- # GH16823 / 17894
- df = DataFrame()
- df['foo'] = 1
- expected = DataFrame(columns=['foo']).astype(np.int64)
- assert_frame_equal(df, expected)
- def test_getitem_empty_frame_with_boolean(self):
- # Test for issue #11859
- df = pd.DataFrame()
- df2 = df[df > 0]
- assert_frame_equal(df, df2)
- def test_delitem_corner(self):
- f = self.frame.copy()
- del f['D']
- assert len(f.columns) == 3
- pytest.raises(KeyError, f.__delitem__, 'D')
- del f['B']
- assert len(f.columns) == 2
- def test_getitem_fancy_2d(self):
- f = self.frame
- with catch_warnings(record=True):
- simplefilter("ignore", DeprecationWarning)
- assert_frame_equal(f.ix[:, ['B', 'A']],
- f.reindex(columns=['B', 'A']))
- subidx = self.frame.index[[5, 4, 1]]
- with catch_warnings(record=True):
- simplefilter("ignore", DeprecationWarning)
- assert_frame_equal(f.ix[subidx, ['B', 'A']],
- f.reindex(index=subidx, columns=['B', 'A']))
- # slicing rows, etc.
- with catch_warnings(record=True):
- simplefilter("ignore", DeprecationWarning)
- assert_frame_equal(f.ix[5:10], f[5:10])
- assert_frame_equal(f.ix[5:10, :], f[5:10])
- assert_frame_equal(f.ix[:5, ['A', 'B']],
- f.reindex(index=f.index[:5],
- columns=['A', 'B']))
- # slice rows with labels, inclusive!
- with catch_warnings(record=True):
- simplefilter("ignore", DeprecationWarning)
- expected = f.ix[5:11]
- result = f.ix[f.index[5]:f.index[10]]
- assert_frame_equal(expected, result)
- # slice columns
- with catch_warnings(record=True):
- simplefilter("ignore", DeprecationWarning)
- assert_frame_equal(f.ix[:, :2], f.reindex(columns=['A', 'B']))
- # get view
- with catch_warnings(record=True):
- simplefilter("ignore", DeprecationWarning)
- exp = f.copy()
- f.ix[5:10].values[:] = 5
- exp.values[5:10] = 5
- assert_frame_equal(f, exp)
- with catch_warnings(record=True):
- simplefilter("ignore", DeprecationWarning)
- pytest.raises(ValueError, f.ix.__getitem__, f > 0.5)
- def test_slice_floats(self):
- index = [52195.504153, 52196.303147, 52198.369883]
- df = DataFrame(np.random.rand(3, 2), index=index)
- s1 = df.loc[52195.1:52196.5]
- assert len(s1) == 2
- s1 = df.loc[52195.1:52196.6]
- assert len(s1) == 2
- s1 = df.loc[52195.1:52198.9]
- assert len(s1) == 3
- def test_getitem_fancy_slice_integers_step(self):
- df = DataFrame(np.random.randn(10, 5))
- # this is OK
- result = df.iloc[:8:2] # noqa
- df.iloc[:8:2] = np.nan
- assert isna(df.iloc[:8:2]).values.all()
- def test_getitem_setitem_integer_slice_keyerrors(self):
- df = DataFrame(np.random.randn(10, 5), index=lrange(0, 20, 2))
- # this is OK
- cp = df.copy()
- cp.iloc[4:10] = 0
- assert (cp.iloc[4:10] == 0).values.all()
- # so is this
- cp = df.copy()
- cp.iloc[3:11] = 0
- assert (cp.iloc[3:11] == 0).values.all()
- result = df.iloc[2:6]
- result2 = df.loc[3:11]
- expected = df.reindex([4, 6, 8, 10])
- assert_frame_equal(result, expected)
- assert_frame_equal(result2, expected)
- # non-monotonic, raise KeyError
- df2 = df.iloc[lrange(5) + lrange(5, 10)[::-1]]
- pytest.raises(KeyError, df2.loc.__getitem__, slice(3, 11))
- pytest.raises(KeyError, df2.loc.__setitem__, slice(3, 11), 0)
- def test_setitem_fancy_2d(self):
- # case 1
- frame = self.frame.copy()
- expected = frame.copy()
- with catch_warnings(record=True):
- simplefilter("ignore", DeprecationWarning)
- frame.ix[:, ['B', 'A']] = 1
- expected['B'] = 1.
- expected['A'] = 1.
- assert_frame_equal(frame, expected)
- # case 2
- frame = self.frame.copy()
- frame2 = self.frame.copy()
- expected = frame.copy()
- subidx = self.frame.index[[5, 4, 1]]
- values = np.random.randn(3, 2)
- with catch_warnings(record=True):
- simplefilter("ignore", DeprecationWarning)
- frame.ix[subidx, ['B', 'A']] = values
- frame2.ix[[5, 4, 1], ['B', 'A']] = values
- expected['B'].ix[subidx] = values[:, 0]
- expected['A'].ix[subidx] = values[:, 1]
- assert_frame_equal(frame, expected)
- assert_frame_equal(frame2, expected)
- # case 3: slicing rows, etc.
- frame = self.frame.copy()
- with catch_warnings(record=True):
- simplefilter("ignore", DeprecationWarning)
- expected1 = self.frame.copy()
- frame.ix[5:10] = 1.
- expected1.values[5:10] = 1.
- assert_frame_equal(frame, expected1)
- with catch_warnings(record=True):
- simplefilter("ignore", DeprecationWarning)
- expected2 = self.frame.copy()
- arr = np.random.randn(5, len(frame.columns))
- frame.ix[5:10] = arr
- expected2.values[5:10] = arr
- assert_frame_equal(frame, expected2)
- # case 4
- with catch_warnings(record=True):
- simplefilter("ignore", DeprecationWarning)
- frame = self.frame.copy()
- frame.ix[5:10, :] = 1.
- assert_frame_equal(frame, expected1)
- frame.ix[5:10, :] = arr
- assert_frame_equal(frame, expected2)
- # case 5
- with catch_warnings(record=True):
- simplefilter("ignore", DeprecationWarning)
- frame = self.frame.copy()
- frame2 = self.frame.copy()
- expected = self.frame.copy()
- values = np.random.randn(5, 2)
- frame.ix[:5, ['A', 'B']] = values
- expected['A'][:5] = values[:, 0]
- expected['B'][:5] = values[:, 1]
- assert_frame_equal(frame, expected)
- with catch_warnings(record=True):
- simplefilter("ignore", DeprecationWarning)
- frame2.ix[:5, [0, 1]] = values
- assert_frame_equal(frame2, expected)
- # case 6: slice rows with labels, inclusive!
- with catch_warnings(record=True):
- simplefilter("ignore", DeprecationWarning)
- frame = self.frame.copy()
- expected = self.frame.copy()
- frame.ix[frame.index[5]:frame.index[10]] = 5.
- expected.values[5:11] = 5
- assert_frame_equal(frame, expected)
- # case 7: slice columns
- with catch_warnings(record=True):
- simplefilter("ignore", DeprecationWarning)
- frame = self.frame.copy()
- frame2 = self.frame.copy()
- expected = self.frame.copy()
- # slice indices
- frame.ix[:, 1:3] = 4.
- expected.values[:, 1:3] = 4.
- assert_frame_equal(frame, expected)
- # slice with labels
- frame.ix[:, 'B':'C'] = 4.
- assert_frame_equal(frame, expected)
- # new corner case of boolean slicing / setting
- frame = DataFrame(lzip([2, 3, 9, 6, 7], [np.nan] * 5),
- columns=['a', 'b'])
- lst = [100]
- lst.extend([np.nan] * 4)
- expected = DataFrame(lzip([100, 3, 9, 6, 7], lst),
- columns=['a', 'b'])
- frame[frame['a'] == 2] = 100
- assert_frame_equal(frame, expected)
- def test_fancy_getitem_slice_mixed(self):
- sliced = self.mixed_frame.iloc[:, -3:]
- assert sliced['D'].dtype == np.float64
- # get view with single block
- # setting it triggers setting with copy
- sliced = self.frame.iloc[:, -3:]
- with pytest.raises(com.SettingWithCopyError):
- sliced['C'] = 4.
- assert (self.frame['C'] == 4).all()
- def test_fancy_setitem_int_labels(self):
- # integer index defers to label-based indexing
- df = DataFrame(np.random.randn(10, 5), index=np.arange(0, 20, 2))
- with catch_warnings(record=True):
- simplefilter("ignore", DeprecationWarning)
- tmp = df.copy()
- exp = df.copy()
- tmp.ix[[0, 2, 4]] = 5
- exp.values[:3] = 5
- assert_frame_equal(tmp, exp)
- with catch_warnings(record=True):
- simplefilter("ignore", DeprecationWarning)
- tmp = df.copy()
- exp = df.copy()
- tmp.ix[6] = 5
- exp.values[3] = 5
- assert_frame_equal(tmp, exp)
- with catch_warnings(record=True):
- simplefilter("ignore", DeprecationWarning)
- tmp = df.copy()
- exp = df.copy()
- tmp.ix[:, 2] = 5
- # tmp correctly sets the dtype
- # so match the exp way
- exp[2] = 5
- assert_frame_equal(tmp, exp)
- def test_fancy_getitem_int_labels(self):
- df = DataFrame(np.random.randn(10, 5), index=np.arange(0, 20, 2))
- with catch_warnings(record=True):
- simplefilter("ignore", DeprecationWarning)
- result = df.ix[[4, 2, 0], [2, 0]]
- expected = df.reindex(index=[4, 2, 0], columns=[2, 0])
- assert_frame_equal(result, expected)
- with catch_warnings(record=True):
- simplefilter("ignore", DeprecationWarning)
- result = df.ix[[4, 2, 0]]
- expected = df.reindex(index=[4, 2, 0])
- assert_frame_equal(result, expected)
- with catch_warnings(record=True):
- simplefilter("ignore", DeprecationWarning)
- result = df.ix[4]
- expected = df.xs(4)
- assert_series_equal(result, expected)
- with catch_warnings(record=True):
- simplefilter("ignore", DeprecationWarning)
- result = df.ix[:, 3]
- expected = df[3]
- assert_series_equal(result, expected)
- def test_fancy_index_int_labels_exceptions(self):
- df = DataFrame(np.random.randn(10, 5), index=np.arange(0, 20, 2))
- with catch_warnings(record=True):
- simplefilter("ignore", DeprecationWarning)
- # labels that aren't contained
- pytest.raises(KeyError, df.ix.__setitem__,
- ([0, 1, 2], [2, 3, 4]), 5)
- # try to set indices not contained in frame
- pytest.raises(KeyError, self.frame.ix.__setitem__,
- ['foo', 'bar', 'baz'], 1)
- pytest.raises(KeyError, self.frame.ix.__setitem__,
- (slice(None, None), ['E']), 1)
- # partial setting now allows this GH2578
- # pytest.raises(KeyError, self.frame.ix.__setitem__,
- # (slice(None, None), 'E'), 1)
- def test_setitem_fancy_mixed_2d(self):
- with catch_warnings(record=True):
- simplefilter("ignore", DeprecationWarning)
- self.mixed_frame.ix[:5, ['C', 'B', 'A']] = 5
- result = self.mixed_frame.ix[:5, ['C', 'B', 'A']]
- assert (result.values == 5).all()
- self.mixed_frame.ix[5] = np.nan
- assert isna(self.mixed_frame.ix[5]).all()
- self.mixed_frame.ix[5] = self.mixed_frame.ix[6]
- assert_series_equal(self.mixed_frame.ix[5], self.mixed_frame.ix[6],
- check_names=False)
- # #1432
- with catch_warnings(record=True):
- simplefilter("ignore", DeprecationWarning)
- df = DataFrame({1: [1., 2., 3.],
- 2: [3, 4, 5]})
- assert df._is_mixed_type
- df.ix[1] = [5, 10]
- expected = DataFrame({1: [1., 5., 3.],
- 2: [3, 10, 5]})
- assert_frame_equal(df, expected)
- def test_ix_align(self):
- b = Series(np.random.randn(10), name=0).sort_values()
- df_orig = DataFrame(np.random.randn(10, 4))
- df = df_orig.copy()
- with catch_warnings(record=True):
- simplefilter("ignore", DeprecationWarning)
- df.ix[:, 0] = b
- assert_series_equal(df.ix[:, 0].reindex(b.index), b)
- with catch_warnings(record=True):
- simplefilter("ignore", DeprecationWarning)
- dft = df_orig.T
- dft.ix[0, :] = b
- assert_series_equal(dft.ix[0, :].reindex(b.index), b)
- with catch_warnings(record=True):
- simplefilter("ignore", DeprecationWarning)
- df = df_orig.copy()
- df.ix[:5, 0] = b
- s = df.ix[:5, 0]
- assert_series_equal(s, b.reindex(s.index))
- with catch_warnings(record=True):
- simplefilter("ignore", DeprecationWarning)
- dft = df_orig.T
- dft.ix[0, :5] = b
- s = dft.ix[0, :5]
- assert_series_equal(s, b.reindex(s.index))
- with catch_warnings(record=True):
- simplefilter("ignore", DeprecationWarning)
- df = df_orig.copy()
- idx = [0, 1, 3, 5]
- df.ix[idx, 0] = b
- s = df.ix[idx, 0]
- assert_series_equal(s, b.reindex(s.index))
- with catch_warnings(record=True):
- simplefilter("ignore", DeprecationWarning)
- dft = df_orig.T
- dft.ix[0, idx] = b
- s = dft.ix[0, idx]
- assert_series_equal(s, b.reindex(s.index))
- def test_ix_frame_align(self):
- b = DataFrame(np.random.randn(3, 4))
- df_orig = DataFrame(np.random.randn(10, 4))
- df = df_orig.copy()
- with catch_warnings(record=True):
- simplefilter("ignore", DeprecationWarning)
- df.ix[:3] = b
- out = b.ix[:3]
- assert_frame_equal(out, b)
- b.sort_index(inplace=True)
- with catch_warnings(record=True):
- simplefilter("ignore", DeprecationWarning)
- df = df_orig.copy()
- df.ix[[0, 1, 2]] = b
- out = df.ix[[0, 1, 2]].reindex(b.index)
- assert_frame_equal(out, b)
- with catch_warnings(record=True):
- simplefilter("ignore", DeprecationWarning)
- df = df_orig.copy()
- df.ix[:3] = b
- out = df.ix[:3]
- assert_frame_equal(out, b.reindex(out.index))
- def test_getitem_setitem_non_ix_labels(self):
- df = tm.makeTimeDataFrame()
- start, end = df.index[[5, 10]]
- result = df.loc[start:end]
- result2 = df[start:end]
- expected = df[5:11]
- assert_frame_equal(result, expected)
- assert_frame_equal(result2, expected)
- result = df.copy()
- result.loc[start:end] = 0
- result2 = df.copy()
- result2[start:end] = 0
- expected = df.copy()
- expected[5:11] = 0
- assert_frame_equal(result, expected)
- assert_frame_equal(result2, expected)
- def test_ix_multi_take(self):
- df = DataFrame(np.random.randn(3, 2))
- rs = df.loc[df.index == 0, :]
- xp = df.reindex([0])
- assert_frame_equal(rs, xp)
- """ #1321
- df = DataFrame(np.random.randn(3, 2))
- rs = df.loc[df.index==0, df.columns==1]
- xp = df.reindex([0], [1])
- assert_frame_equal(rs, xp)
- """
- def test_ix_multi_take_nonint_index(self):
- df = DataFrame(np.random.randn(3, 2), index=['x', 'y', 'z'],
- columns=['a', 'b'])
- with catch_warnings(record=True):
- simplefilter("ignore", DeprecationWarning)
- rs = df.ix[[0], [0]]
- xp = df.reindex(['x'], columns=['a'])
- assert_frame_equal(rs, xp)
- def test_ix_multi_take_multiindex(self):
- df = DataFrame(np.random.randn(3, 2), index=['x', 'y', 'z'],
- columns=[['a', 'b'], ['1', '2']])
- with catch_warnings(record=True):
- simplefilter("ignore", DeprecationWarning)
- rs = df.ix[[0], [0]]
- xp = df.reindex(['x'], columns=[('a', '1')])
- assert_frame_equal(rs, xp)
- def test_ix_dup(self):
- idx = Index(['a', 'a', 'b', 'c', 'd', 'd'])
- df = DataFrame(np.random.randn(len(idx), 3), idx)
- with catch_warnings(record=True):
- simplefilter("ignore", DeprecationWarning)
- sub = df.ix[:'d']
- assert_frame_equal(sub, df)
- with catch_warnings(record=True):
- simplefilter("ignore", DeprecationWarning)
- sub = df.ix['a':'c']
- assert_frame_equal(sub, df.ix[0:4])
- with catch_warnings(record=True):
- simplefilter("ignore", DeprecationWarning)
- sub = df.ix['b':'d']
- assert_frame_equal(sub, df.ix[2:])
- def test_getitem_fancy_1d(self):
- f = self.frame
- # return self if no slicing...for now
- with catch_warnings(record=True):
- simplefilter("ignore", DeprecationWarning)
- assert f.ix[:, :] is f
- # low dimensional slice
- with catch_warnings(record=True):
- simplefilter("ignore", DeprecationWarning)
- xs1 = f.ix[2, ['C', 'B', 'A']]
- xs2 = f.xs(f.index[2]).reindex(['C', 'B', 'A'])
- tm.assert_series_equal(xs1, xs2)
- with catch_warnings(record=True):
- simplefilter("ignore", DeprecationWarning)
- ts1 = f.ix[5:10, 2]
- ts2 = f[f.columns[2]][5:10]
- tm.assert_series_equal(ts1, ts2)
- # positional xs
- with catch_warnings(record=True):
- simplefilter("ignore", DeprecationWarning)
- xs1 = f.ix[0]
- xs2 = f.xs(f.index[0])
- tm.assert_series_equal(xs1, xs2)
- with catch_warnings(record=True):
- simplefilter("ignore", DeprecationWarning)
- xs1 = f.ix[f.index[5]]
- xs2 = f.xs(f.index[5])
- tm.assert_series_equal(xs1, xs2)
- # single column
- with catch_warnings(record=True):
- simplefilter("ignore", DeprecationWarning)
- assert_series_equal(f.ix[:, 'A'], f['A'])
- # return view
- with catch_warnings(record=True):
- simplefilter("ignore", DeprecationWarning)
- exp = f.copy()
- exp.values[5] = 4
- f.ix[5][:] = 4
- tm.assert_frame_equal(exp, f)
- with catch_warnings(record=True):
- simplefilter("ignore", DeprecationWarning)
- exp.values[:, 1] = 6
- f.ix[:, 1][:] = 6
- tm.assert_frame_equal(exp, f)
- # slice of mixed-frame
- with catch_warnings(record=True):
- simplefilter("ignore", DeprecationWarning)
- xs = self.mixed_frame.ix[5]
- exp = self.mixed_frame.xs(self.mixed_frame.index[5])
- tm.assert_series_equal(xs, exp)
- def test_setitem_fancy_1d(self):
- # case 1: set cross-section for indices
- frame = self.frame.copy()
- expected = self.frame.copy()
- with catch_warnings(record=True):
- simplefilter("ignore", DeprecationWarning)
- frame.ix[2, ['C', 'B', 'A']] = [1., 2., 3.]
- expected['C'][2] = 1.
- expected['B'][2] = 2.
- expected['A'][2] = 3.
- assert_frame_equal(frame, expected)
- with catch_warnings(record=True):
- simplefilter("ignore", DeprecationWarning)
- frame2 = self.frame.copy()
- frame2.ix[2, [3, 2, 1]] = [1., 2., 3.]
- assert_frame_equal(frame, expected)
- # case 2, set a section of a column
- frame = self.frame.copy()
- expected = self.frame.copy()
- with catch_warnings(record=True):
- simplefilter("ignore", DeprecationWarning)
- vals = np.random.randn(5)
- expected.values[5:10, 2] = vals
- frame.ix[5:10, 2] = vals
- assert_frame_equal(frame, expected)
- with catch_warnings(record=True):
- simplefilter("ignore", DeprecationWarning)
- frame2 = self.frame.copy()
- frame2.ix[5:10, 'B'] = vals
- assert_frame_equal(frame, expected)
- # case 3: full xs
- frame = self.frame.copy()
- expected = self.frame.copy()
- with catch_warnings(record=True):
- simplefilter("ignore", DeprecationWarning)
- frame.ix[4] = 5.
- expected.values[4] = 5.
- assert_frame_equal(frame, expected)
- with catch_warnings(record=True):
- simplefilter("ignore", DeprecationWarning)
- frame.ix[frame.index[4]] = 6.
- expected.values[4] = 6.
- assert_frame_equal(frame, expected)
- # single column
- frame = self.frame.copy()
- expected = self.frame.copy()
- with catch_warnings(record=True):
- simplefilter("ignore", DeprecationWarning)
- frame.ix[:, 'A'] = 7.
- expected['A'] = 7.
- assert_frame_equal(frame, expected)
- def test_getitem_fancy_scalar(self):
- f = self.frame
- ix = f.loc
- # individual value
- for col in f.columns:
- ts = f[col]
- for idx in f.index[::5]:
- assert ix[idx, col] == ts[idx]
- def test_setitem_fancy_scalar(self):
- f = self.frame
- expected = self.frame.copy()
- ix = f.loc
- # individual value
- for j, col in enumerate(f.columns):
- ts = f[col] # noqa
- for idx in f.index[::5]:
- i = f.index.get_loc(idx)
- val = np.random.randn()
- expected.values[i, j] = val
- ix[idx, col] = val
- assert_frame_equal(f, expected)
- def test_getitem_fancy_boolean(self):
- f = self.frame
- ix = f.loc
- expected = f.reindex(columns=['B', 'D'])
- result = ix[:, [False, True, False, True]]
- assert_frame_equal(result, expected)
- expected = f.reindex(index=f.index[5:10], columns=['B', 'D'])
- result = ix[f.index[5:10], [False, True, False, True]]
- assert_frame_equal(result, expected)
- boolvec = f.index > f.index[7]
- expected = f.reindex(index=f.index[boolvec])
- result = ix[boolvec]
- assert_frame_equal(result, expected)
- result = ix[boolvec, :]
- assert_frame_equal(result, expected)
- result = ix[boolvec, f.columns[2:]]
- expected = f.reindex(index=f.index[boolvec],
- columns=['C', 'D'])
- assert_frame_equal(result, expected)
- def test_setitem_fancy_boolean(self):
- # from 2d, set with booleans
- frame = self.frame.copy()
- expected = self.frame.copy()
- mask = frame['A'] > 0
- frame.loc[mask] = 0.
- expected.values[mask.values] = 0.
- assert_frame_equal(frame, expected)
- frame = self.frame.copy()
- expected = self.frame.copy()
- frame.loc[mask, ['A', 'B']] = 0.
- expected.values[mask.values, :2] = 0.
- assert_frame_equal(frame, expected)
- def test_getitem_fancy_ints(self):
- result = self.frame.iloc[[1, 4, 7]]
- expected = self.frame.loc[self.frame.index[[1, 4, 7]]]
- assert_frame_equal(result, expected)
- result = self.frame.iloc[:, [2, 0, 1]]
- expected = self.frame.loc[:, self.frame.columns[[2, 0, 1]]]
- assert_frame_equal(result, expected)
- def test_getitem_setitem_fancy_exceptions(self):
- ix = self.frame.iloc
- with pytest.raises(IndexingError, match='Too many indexers'):
- ix[:, :, :]
- with pytest.raises(IndexingError):
- ix[:, :, :] = 1
- def test_getitem_setitem_boolean_misaligned(self):
- # boolean index misaligned labels
- mask = self.frame['A'][::-1] > 1
- result = self.frame.loc[mask]
- expected = self.frame.loc[mask[::-1]]
- assert_frame_equal(result, expected)
- cp = self.frame.copy()
- expected = self.frame.copy()
- cp.loc[mask] = 0
- expected.loc[mask] = 0
- assert_frame_equal(cp, expected)
- def test_getitem_setitem_boolean_multi(self):
- df = DataFrame(np.random.randn(3, 2))
- # get
- k1 = np.array([True, False, True])
- k2 = np.array([False, True])
- result = df.loc[k1, k2]
- expected = df.loc[[0, 2], [1]]
- assert_frame_equal(result, expected)
- expected = df.copy()
- df.loc[np.array([True, False, True]),
- np.array([False, True])] = 5
- expected.loc[[0, 2], [1]] = 5
- assert_frame_equal(df, expected)
- def test_getitem_setitem_float_labels(self):
- index = Index([1.5, 2, 3, 4, 5])
- df = DataFrame(np.random.randn(5, 5), index=index)
- result = df.loc[1.5:4]
- expected = df.reindex([1.5, 2, 3, 4])
- assert_frame_equal(result, expected)
- assert len(result) == 4
- result = df.loc[4:5]
- expected = df.reindex([4, 5]) # reindex with int
- assert_frame_equal(result, expected, check_index_type=False)
- assert len(result) == 2
- result = df.loc[4:5]
- expected = df.reindex([4.0, 5.0]) # reindex with float
- assert_frame_equal(result, expected)
- assert len(result) == 2
- # loc_float changes this to work properly
- result = df.loc[1:2]
- expected = df.iloc[0:2]
- assert_frame_equal(result, expected)
- df.loc[1:2] = 0
- result = df[1:2]
- assert (result == 0).all().all()
- # #2727
- index = Index([1.0, 2.5, 3.5, 4.5, 5.0])
- df = DataFrame(np.random.randn(5, 5), index=index)
- # positional slicing only via iloc!
- pytest.raises(TypeError, lambda: df.iloc[1.0:5])
- result = df.iloc[4:5]
- expected = df.reindex([5.0])
- assert_frame_equal(result, expected)
- assert len(result) == 1
- cp = df.copy()
- with pytest.raises(TypeError):
- cp.iloc[1.0:5] = 0
- with pytest.raises(TypeError):
- result = cp.iloc[1.0:5] == 0 # noqa
- assert result.values.all()
- assert (cp.iloc[0:1] == df.iloc[0:1]).values.all()
- cp = df.copy()
- cp.iloc[4:5] = 0
- assert (cp.iloc[4:5] == 0).values.all()
- assert (cp.iloc[0:4] == df.iloc[0:4]).values.all()
- # float slicing
- result = df.loc[1.0:5]
- expected = df
- assert_frame_equal(result, expected)
- assert len(result) == 5
- result = df.loc[1.1:5]
- expected = df.reindex([2.5, 3.5, 4.5, 5.0])
- assert_frame_equal(result, expected)
- assert len(result) == 4
- result = df.loc[4.51:5]
- expected = df.reindex([5.0])
- assert_frame_equal(result, expected)
- assert len(result) == 1
- result = df.loc[1.0:5.0]
- expected = df.reindex([1.0, 2.5, 3.5, 4.5, 5.0])
- assert_frame_equal(result, expected)
- assert len(result) == 5
- cp = df.copy()
- cp.loc[1.0:5.0] = 0
- result = cp.loc[1.0:5.0]
- assert (result == 0).values.all()
- def test_setitem_single_column_mixed(self):
- df = DataFrame(np.random.randn(5, 3), index=['a', 'b', 'c', 'd', 'e'],
- columns=['foo', 'bar', 'baz'])
- df['str'] = 'qux'
- df.loc[df.index[::2], 'str'] = np.nan
- expected = np.array([np.nan, 'qux', np.nan, 'qux', np.nan],
- dtype=object)
- assert_almost_equal(df['str'].values, expected)
- def test_setitem_single_column_mixed_datetime(self):
- df = DataFrame(np.random.randn(5, 3), index=['a', 'b', 'c', 'd', 'e'],
- columns=['foo', 'bar', 'baz'])
- df['timestamp'] = Timestamp('20010102')
- # check our dtypes
- result = df.get_dtype_counts()
- expected = Series({'float64': 3, 'datetime64[ns]': 1})
- assert_series_equal(result, expected)
- # set an allowable datetime64 type
- df.loc['b', 'timestamp'] = iNaT
- assert isna(df.loc['b', 'timestamp'])
- # allow this syntax
- df.loc['c', 'timestamp'] = np.nan
- assert isna(df.loc['c', 'timestamp'])
- # allow this syntax
- df.loc['d', :] = np.nan
- assert not isna(df.loc['c', :]).all()
- # as of GH 3216 this will now work!
- # try to set with a list like item
- # pytest.raises(
- # Exception, df.loc.__setitem__, ('d', 'timestamp'), [np.nan])
- def test_setitem_mixed_datetime(self):
- # GH 9336
- expected = DataFrame({'a': [0, 0, 0, 0, 13, 14],
- 'b': [pd.datetime(2012, 1, 1),
- 1,
- 'x',
- 'y',
- pd.datetime(2013, 1, 1),
- pd.datetime(2014, 1, 1)]})
- df = pd.DataFrame(0, columns=list('ab'), index=range(6))
- df['b'] = pd.NaT
- df.loc[0, 'b'] = pd.datetime(2012, 1, 1)
- df.loc[1, 'b'] = 1
- df.loc[[2, 3], 'b'] = 'x', 'y'
- A = np.array([[13, np.datetime64('2013-01-01T00:00:00')],
- [14, np.datetime64('2014-01-01T00:00:00')]])
- df.loc[[4, 5], ['a', 'b']] = A
- assert_frame_equal(df, expected)
- def test_setitem_frame(self):
- piece = self.frame.loc[self.frame.index[:2], ['A', 'B']]
- self.frame.loc[self.frame.index[-2]:, ['A', 'B']] = piece.values
- result = self.frame.loc[self.frame.index[-2:], ['A', 'B']].values
- expected = piece.values
- assert_almost_equal(result, expected)
- # GH 3216
- # already aligned
- f = self.mixed_frame.copy()
- piece = DataFrame([[1., 2.], [3., 4.]],
- index=f.index[0:2], columns=['A', 'B'])
- key = (slice(None, 2), ['A', 'B'])
- f.loc[key] = piece
- assert_almost_equal(f.loc[f.index[0:2], ['A', 'B']].values,
- piece.values)
- # rows unaligned
- f = self.mixed_frame.copy()
- piece = DataFrame([[1., 2.], [3., 4.], [5., 6.], [7., 8.]],
- index=list(f.index[0:2]) + ['foo', 'bar'],
- columns=['A', 'B'])
- key = (slice(None, 2), ['A', 'B'])
- f.loc[key] = piece
- assert_almost_equal(f.loc[f.index[0:2:], ['A', 'B']].values,
- piece.values[0:2])
- # key is unaligned with values
- f = self.mixed_frame.copy()
- piece = f.loc[f.index[:2], ['A']]
- piece.index = f.index[-2:]
- key = (slice(-2, None), ['A', 'B'])
- f.loc[key] = piece
- piece['B'] = np.nan
- assert_almost_equal(f.loc[f.index[-2:], ['A', 'B']].values,
- piece.values)
- # ndarray
- f = self.mixed_frame.copy()
- piece = self.mixed_frame.loc[f.index[:2], ['A', 'B']]
- key = (slice(-2, None), ['A', 'B'])
- f.loc[key] = piece.values
- assert_almost_equal(f.loc[f.index[-2:], ['A', 'B']].values,
- piece.values)
- # needs upcasting
- df = DataFrame([[1, 2, 'foo'], [3, 4, 'bar']], columns=['A', 'B', 'C'])
- df2 = df.copy()
- df2.loc[:, ['A', 'B']] = df.loc[:, ['A', 'B']] + 0.5
- expected = df.reindex(columns=['A', 'B'])
- expected += 0.5
- expected['C'] = df['C']
- assert_frame_equal(df2, expected)
- def test_setitem_frame_align(self):
- piece = self.frame.loc[self.frame.index[:2], ['A', 'B']]
- piece.index = self.frame.index[-2:]
- piece.columns = ['A', 'B']
- self.frame.loc[self.frame.index[-2:], ['A', 'B']] = piece
- result = self.frame.loc[self.frame.index[-2:], ['A', 'B']].values
- expected = piece.values
- assert_almost_equal(result, expected)
- def test_getitem_setitem_ix_duplicates(self):
- # #1201
- df = DataFrame(np.random.randn(5, 3),
- index=['foo', 'foo', 'bar', 'baz', 'bar'])
- result = df.loc['foo']
- expected = df[:2]
- assert_frame_equal(result, expected)
- result = df.loc['bar']
- expected = df.iloc[[2, 4]]
- assert_frame_equal(result, expected)
- result = df.loc['baz']
- expected = df.iloc[3]
- assert_series_equal(result, expected)
- def test_getitem_ix_boolean_duplicates_multiple(self):
- # #1201
- df = DataFrame(np.random.randn(5, 3),
- index=['foo', 'foo', 'bar', 'baz', 'bar'])
- result = df.loc[['bar']]
- exp = df.iloc[[2, 4]]
- assert_frame_equal(result, exp)
- result = df.loc[df[1] > 0]
- exp = df[df[1] > 0]
- assert_frame_equal(result, exp)
- result = df.loc[df[0] > 0]
- exp = df[df[0] > 0]
- assert_frame_equal(result, exp)
- def test_getitem_setitem_ix_bool_keyerror(self):
- # #2199
- df = DataFrame({'a': [1, 2, 3]})
- pytest.raises(KeyError, df.loc.__getitem__, False)
- pytest.raises(KeyError, df.loc.__getitem__, True)
- pytest.raises(KeyError, df.loc.__setitem__, False, 0)
- pytest.raises(KeyError, df.loc.__setitem__, True, 0)
- def test_getitem_list_duplicates(self):
- # #1943
- df = DataFrame(np.random.randn(4, 4), columns=list('AABC'))
- df.columns.name = 'foo'
- result = df[['B', 'C']]
- assert result.columns.name == 'foo'
- expected = df.iloc[:, 2:]
- assert_frame_equal(result, expected)
- def test_get_value(self):
- for idx in self.frame.index:
- for col in self.frame.columns:
- with tm.assert_produces_warning(FutureWarning,
- check_stacklevel=False):
- result = self.frame.get_value(idx, col)
- expected = self.frame[col][idx]
- assert result == expected
- def test_lookup(self):
- def alt(df, rows, cols, dtype):
- with tm.assert_produces_warning(FutureWarning,
- check_stacklevel=False):
- result = [df.get_value(r, c) for r, c in zip(rows, cols)]
- return np.array(result, dtype=dtype)
- def testit(df):
- rows = list(df.index) * len(df.columns)
- cols = list(df.columns) * len(df.index)
- result = df.lookup(rows, cols)
- expected = alt(df, rows, cols, dtype=np.object_)
- tm.assert_almost_equal(result, expected, check_dtype=False)
- testit(self.mixed_frame)
- testit(self.frame)
- df = DataFrame({'label': ['a', 'b', 'a', 'c'],
- 'mask_a': [True, True, False, True],
- 'mask_b': [True, False, False, False],
- 'mask_c': [False, True, False, True]})
- df['mask'] = df.lookup(df.index, 'mask_' + df['label'])
- exp_mask = alt(df, df.index, 'mask_' + df['label'], dtype=np.bool_)
- tm.assert_series_equal(df['mask'], pd.Series(exp_mask, name='mask'))
- assert df['mask'].dtype == np.bool_
- with pytest.raises(KeyError):
- self.frame.lookup(['xyz'], ['A'])
- with pytest.raises(KeyError):
- self.frame.lookup([self.frame.index[0]], ['xyz'])
- with pytest.raises(ValueError, match='same size'):
- self.frame.lookup(['a', 'b', 'c'], ['a'])
- def test_set_value(self):
- for idx in self.frame.index:
- for col in self.frame.columns:
- with tm.assert_produces_warning(FutureWarning,
- check_stacklevel=False):
- self.frame.set_value(idx, col, 1)
- assert self.frame[col][idx] == 1
- def test_set_value_resize(self):
- with tm.assert_produces_warning(FutureWarning,
- check_stacklevel=False):
- res = self.frame.set_value('foobar', 'B', 0)
- assert res is self.frame
- assert res.index[-1] == 'foobar'
- with tm.assert_produces_warning(FutureWarning,
- check_stacklevel=False):
- assert res.get_value('foobar', 'B') == 0
- self.frame.loc['foobar', 'qux'] = 0
- with tm.assert_produces_warning(FutureWarning,
- check_stacklevel=False):
- assert self.frame.get_value('foobar', 'qux') == 0
- res = self.frame.copy()
- with tm.assert_produces_warning(FutureWarning,
- check_stacklevel=False):
- res3 = res.set_value('foobar', 'baz', 'sam')
- assert res3['baz'].dtype == np.object_
- res = self.frame.copy()
- with tm.assert_produces_warning(FutureWarning,
- check_stacklevel=False):
- res3 = res.set_value('foobar', 'baz', True)
- assert res3['baz'].dtype == np.object_
- res = self.frame.copy()
- with tm.assert_produces_warning(FutureWarning,
- check_stacklevel=False):
- res3 = res.set_value('foobar', 'baz', 5)
- assert is_float_dtype(res3['baz'])
- assert isna(res3['baz'].drop(['foobar'])).all()
- with tm.assert_produces_warning(FutureWarning,
- check_stacklevel=False):
- pytest.raises(ValueError, res3.set_value, 'foobar', 'baz', 'sam')
- def test_set_value_with_index_dtype_change(self):
- df_orig = DataFrame(np.random.randn(3, 3),
- index=lrange(3), columns=list('ABC'))
- # this is actually ambiguous as the 2 is interpreted as a positional
- # so column is not created
- df = df_orig.copy()
- with tm.assert_produces_warning(FutureWarning,
- check_stacklevel=False):
- df.set_value('C', 2, 1.0)
- assert list(df.index) == list(df_orig.index) + ['C']
- # assert list(df.columns) == list(df_orig.columns) + [2]
- df = df_orig.copy()
- df.loc['C', 2] = 1.0
- assert list(df.index) == list(df_orig.index) + ['C']
- # assert list(df.columns) == list(df_orig.columns) + [2]
- # create both new
- df = df_orig.copy()
- with tm.assert_produces_warning(FutureWarning,
- check_stacklevel=False):
- df.set_value('C', 'D', 1.0)
- assert list(df.index) == list(df_orig.index) + ['C']
- assert list(df.columns) == list(df_orig.columns) + ['D']
- df = df_orig.copy()
- df.loc['C', 'D'] = 1.0
- assert list(df.index) == list(df_orig.index) + ['C']
- assert list(df.columns) == list(df_orig.columns) + ['D']
- def test_get_set_value_no_partial_indexing(self):
- # partial w/ MultiIndex raise exception
- index = MultiIndex.from_tuples([(0, 1), (0, 2), (1, 1), (1, 2)])
- df = DataFrame(index=index, columns=lrange(4))
- with tm.assert_produces_warning(FutureWarning,
- check_stacklevel=False):
- pytest.raises(KeyError, df.get_value, 0, 1)
- def test_single_element_ix_dont_upcast(self):
- self.frame['E'] = 1
- assert issubclass(self.frame['E'].dtype.type, (int, np.integer))
- with catch_warnings(record=True):
- simplefilter("ignore", DeprecationWarning)
- result = self.frame.ix[self.frame.index[5], 'E']
- assert is_integer(result)
- result = self.frame.loc[self.frame.index[5], 'E']
- assert is_integer(result)
- # GH 11617
- df = pd.DataFrame(dict(a=[1.23]))
- df["b"] = 666
- with catch_warnings(record=True):
- simplefilter("ignore", DeprecationWarning)
- result = df.ix[0, "b"]
- assert is_integer(result)
- result = df.loc[0, "b"]
- assert is_integer(result)
- expected = Series([666], [0], name='b')
- with catch_warnings(record=True):
- simplefilter("ignore", DeprecationWarning)
- result = df.ix[[0], "b"]
- assert_series_equal(result, expected)
- result = df.loc[[0], "b"]
- assert_series_equal(result, expected)
- def test_iloc_row(self):
- df = DataFrame(np.random.randn(10, 4), index=lrange(0, 20, 2))
- result = df.iloc[1]
- exp = df.loc[2]
- assert_series_equal(result, exp)
- result = df.iloc[2]
- exp = df.loc[4]
- assert_series_equal(result, exp)
- # slice
- result = df.iloc[slice(4, 8)]
- expected = df.loc[8:14]
- assert_frame_equal(result, expected)
- # verify slice is view
- # setting it makes it raise/warn
- with pytest.raises(com.SettingWithCopyError):
- result[2] = 0.
- exp_col = df[2].copy()
- exp_col[4:8] = 0.
- assert_series_equal(df[2], exp_col)
- # list of integers
- result = df.iloc[[1, 2, 4, 6]]
- expected = df.reindex(df.index[[1, 2, 4, 6]])
- assert_frame_equal(result, expected)
- def test_iloc_col(self):
- df = DataFrame(np.random.randn(4, 10), columns=lrange(0, 20, 2))
- result = df.iloc[:, 1]
- exp = df.loc[:, 2]
- assert_series_equal(result, exp)
- result = df.iloc[:, 2]
- exp = df.loc[:, 4]
- assert_series_equal(result, exp)
- # slice
- result = df.iloc[:, slice(4, 8)]
- expected = df.loc[:, 8:14]
- assert_frame_equal(result, expected)
- # verify slice is view
- # and that we are setting a copy
- with pytest.raises(com.SettingWithCopyError):
- result[8] = 0.
- assert (df[8] == 0).all()
- # list of integers
- result = df.iloc[:, [1, 2, 4, 6]]
- expected = df.reindex(columns=df.columns[[1, 2, 4, 6]])
- assert_frame_equal(result, expected)
- def test_iloc_duplicates(self):
- df = DataFrame(np.random.rand(3, 3), columns=list('ABC'),
- index=list('aab'))
- result = df.iloc[0]
- with catch_warnings(record=True):
- simplefilter("ignore", DeprecationWarning)
- result2 = df.ix[0]
- assert isinstance(result, Series)
- assert_almost_equal(result.values, df.values[0])
- assert_series_equal(result, result2)
- with catch_warnings(record=True):
- simplefilter("ignore", DeprecationWarning)
- result = df.T.iloc[:, 0]
- result2 = df.T.ix[:, 0]
- assert isinstance(result, Series)
- assert_almost_equal(result.values, df.values[0])
- assert_series_equal(result, result2)
- # multiindex
- df = DataFrame(np.random.randn(3, 3),
- columns=[['i', 'i', 'j'], ['A', 'A', 'B']],
- index=[['i', 'i', 'j'], ['X', 'X', 'Y']])
- with catch_warnings(record=True):
- simplefilter("ignore", DeprecationWarning)
- rs = df.iloc[0]
- xp = df.ix[0]
- assert_series_equal(rs, xp)
- with catch_warnings(record=True):
- simplefilter("ignore", DeprecationWarning)
- rs = df.iloc[:, 0]
- xp = df.T.ix[0]
- assert_series_equal(rs, xp)
- with catch_warnings(record=True):
- simplefilter("ignore", DeprecationWarning)
- rs = df.iloc[:, [0]]
- xp = df.ix[:, [0]]
- assert_frame_equal(rs, xp)
- # #2259
- df = DataFrame([[1, 2, 3], [4, 5, 6]], columns=[1, 1, 2])
- result = df.iloc[:, [0]]
- expected = df.take([0], axis=1)
- assert_frame_equal(result, expected)
- def test_loc_duplicates(self):
- # gh-17105
- # insert a duplicate element to the index
- trange = pd.date_range(start=pd.Timestamp(year=2017, month=1, day=1),
- end=pd.Timestamp(year=2017, month=1, day=5))
- trange = trange.insert(loc=5,
- item=pd.Timestamp(year=2017, month=1, day=5))
- df = pd.DataFrame(0, index=trange, columns=["A", "B"])
- bool_idx = np.array([False, False, False, False, False, True])
- # assignment
- df.loc[trange[bool_idx], "A"] = 6
- expected = pd.DataFrame({'A': [0, 0, 0, 0, 6, 6],
- 'B': [0, 0, 0, 0, 0, 0]},
- index=trange)
- tm.assert_frame_equal(df, expected)
- # in-place
- df = pd.DataFrame(0, index=trange, columns=["A", "B"])
- df.loc[trange[bool_idx], "A"] += 6
- tm.assert_frame_equal(df, expected)
- def test_iloc_sparse_propegate_fill_value(self):
- from pandas.core.sparse.api import SparseDataFrame
- df = SparseDataFrame({'A': [999, 1]}, default_fill_value=999)
- assert len(df['A'].sp_values) == len(df.iloc[:, 0].sp_values)
- def test_iat(self):
- for i, row in enumerate(self.frame.index):
- for j, col in enumerate(self.frame.columns):
- result = self.frame.iat[i, j]
- expected = self.frame.at[row, col]
- assert result == expected
- def test_nested_exception(self):
- # Ignore the strange way of triggering the problem
- # (which may get fixed), it's just a way to trigger
- # the issue or reraising an outer exception without
- # a named argument
- df = DataFrame({"a": [1, 2, 3], "b": [4, 5, 6],
- "c": [7, 8, 9]}).set_index(["a", "b"])
- index = list(df.index)
- index[0] = ["a", "b"]
- df.index = index
- try:
- repr(df)
- except Exception as e:
- assert type(e) != UnboundLocalError
- @pytest.mark.parametrize("method,expected_values", [
- ("nearest", [0, 1, 1, 2]),
- ("pad", [np.nan, 0, 1, 1]),
- ("backfill", [0, 1, 2, 2])
- ])
- def test_reindex_methods(self, method, expected_values):
- df = pd.DataFrame({"x": list(range(5))})
- target = np.array([-0.1, 0.9, 1.1, 1.5])
- expected = pd.DataFrame({'x': expected_values}, index=target)
- actual = df.reindex(target, method=method)
- assert_frame_equal(expected, actual)
- actual = df.reindex_like(df, method=method, tolerance=0)
- assert_frame_equal(df, actual)
- actual = df.reindex_like(df, method=method, tolerance=[0, 0, 0, 0])
- assert_frame_equal(df, actual)
- actual = df.reindex(target, method=method, tolerance=1)
- assert_frame_equal(expected, actual)
- actual = df.reindex(target, method=method, tolerance=[1, 1, 1, 1])
- assert_frame_equal(expected, actual)
- e2 = expected[::-1]
- actual = df.reindex(target[::-1], method=method)
- assert_frame_equal(e2, actual)
- new_order = [3, 0, 2, 1]
- e2 = expected.iloc[new_order]
- actual = df.reindex(target[new_order], method=method)
- assert_frame_equal(e2, actual)
- switched_method = ('pad' if method == 'backfill'
- else 'backfill' if method == 'pad'
- else method)
- actual = df[::-1].reindex(target, method=switched_method)
- assert_frame_equal(expected, actual)
- def test_reindex_methods_nearest_special(self):
- df = pd.DataFrame({"x": list(range(5))})
- target = np.array([-0.1, 0.9, 1.1, 1.5])
- expected = pd.DataFrame({"x": [0, 1, 1, np.nan]}, index=target)
- actual = df.reindex(target, method="nearest", tolerance=0.2)
- assert_frame_equal(expected, actual)
- expected = pd.DataFrame({"x": [0, np.nan, 1, np.nan]}, index=target)
- actual = df.reindex(target, method="nearest",
- tolerance=[0.5, 0.01, 0.4, 0.1])
- assert_frame_equal(expected, actual)
- def test_reindex_frame_add_nat(self):
- rng = date_range('1/1/2000 00:00:00', periods=10, freq='10s')
- df = DataFrame({'A': np.random.randn(len(rng)), 'B': rng})
- result = df.reindex(lrange(15))
- assert np.issubdtype(result['B'].dtype, np.dtype('M8[ns]'))
- mask = com.isna(result)['B']
- assert mask[-5:].all()
- assert not mask[:-5].any()
- def test_set_dataframe_column_ns_dtype(self):
- x = DataFrame([datetime.now(), datetime.now()])
- assert x[0].dtype == np.dtype('M8[ns]')
- def test_non_monotonic_reindex_methods(self):
- dr = pd.date_range('2013-08-01', periods=6, freq='B')
- data = np.random.randn(6, 1)
- df = pd.DataFrame(data, index=dr, columns=list('A'))
- df_rev = pd.DataFrame(data, index=dr[[3, 4, 5] + [0, 1, 2]],
- columns=list('A'))
- # index is not monotonic increasing or decreasing
- pytest.raises(ValueError, df_rev.reindex, df.index, method='pad')
- pytest.raises(ValueError, df_rev.reindex, df.index, method='ffill')
- pytest.raises(ValueError, df_rev.reindex, df.index, method='bfill')
- pytest.raises(ValueError, df_rev.reindex, df.index, method='nearest')
- def test_reindex_level(self):
- from itertools import permutations
- icol = ['jim', 'joe', 'jolie']
- def verify_first_level(df, level, idx, check_index_type=True):
- def f(val):
- return np.nonzero((df[level] == val).to_numpy())[0]
- i = np.concatenate(list(map(f, idx)))
- left = df.set_index(icol).reindex(idx, level=level)
- right = df.iloc[i].set_index(icol)
- assert_frame_equal(left, right, check_index_type=check_index_type)
- def verify(df, level, idx, indexer, check_index_type=True):
- left = df.set_index(icol).reindex(idx, level=level)
- right = df.iloc[indexer].set_index(icol)
- assert_frame_equal(left, right, check_index_type=check_index_type)
- df = pd.DataFrame({'jim': list('B' * 4 + 'A' * 2 + 'C' * 3),
- 'joe': list('abcdeabcd')[::-1],
- 'jolie': [10, 20, 30] * 3,
- 'joline': np.random.randint(0, 1000, 9)})
- target = [['C', 'B', 'A'], ['F', 'C', 'A', 'D'], ['A'],
- ['A', 'B', 'C'], ['C', 'A', 'B'], ['C', 'B'], ['C', 'A'],
- ['A', 'B'], ['B', 'A', 'C']]
- for idx in target:
- verify_first_level(df, 'jim', idx)
- # reindex by these causes different MultiIndex levels
- for idx in [['D', 'F'], ['A', 'C', 'B']]:
- verify_first_level(df, 'jim', idx, check_index_type=False)
- verify(df, 'joe', list('abcde'), [3, 2, 1, 0, 5, 4, 8, 7, 6])
- verify(df, 'joe', list('abcd'), [3, 2, 1, 0, 5, 8, 7, 6])
- verify(df, 'joe', list('abc'), [3, 2, 1, 8, 7, 6])
- verify(df, 'joe', list('eca'), [1, 3, 4, 6, 8])
- verify(df, 'joe', list('edc'), [0, 1, 4, 5, 6])
- verify(df, 'joe', list('eadbc'), [3, 0, 2, 1, 4, 5, 8, 7, 6])
- verify(df, 'joe', list('edwq'), [0, 4, 5])
- verify(df, 'joe', list('wq'), [], check_index_type=False)
- df = DataFrame({'jim': ['mid'] * 5 + ['btm'] * 8 + ['top'] * 7,
- 'joe': ['3rd'] * 2 + ['1st'] * 3 + ['2nd'] * 3 +
- ['1st'] * 2 + ['3rd'] * 3 + ['1st'] * 2 +
- ['3rd'] * 3 + ['2nd'] * 2,
- # this needs to be jointly unique with jim and joe or
- # reindexing will fail ~1.5% of the time, this works
- # out to needing unique groups of same size as joe
- 'jolie': np.concatenate([
- np.random.choice(1000, x, replace=False)
- for x in [2, 3, 3, 2, 3, 2, 3, 2]]),
- 'joline': np.random.randn(20).round(3) * 10})
- for idx in permutations(df['jim'].unique()):
- for i in range(3):
- verify_first_level(df, 'jim', idx[:i + 1])
- i = [2, 3, 4, 0, 1, 8, 9, 5, 6, 7, 10,
- 11, 12, 13, 14, 18, 19, 15, 16, 17]
- verify(df, 'joe', ['1st', '2nd', '3rd'], i)
- i = [0, 1, 2, 3, 4, 10, 11, 12, 5, 6,
- 7, 8, 9, 15, 16, 17, 18, 19, 13, 14]
- verify(df, 'joe', ['3rd', '2nd', '1st'], i)
- i = [0, 1, 5, 6, 7, 10, 11, 12, 18, 19, 15, 16, 17]
- verify(df, 'joe', ['2nd', '3rd'], i)
- i = [0, 1, 2, 3, 4, 10, 11, 12, 8, 9, 15, 16, 17, 13, 14]
- verify(df, 'joe', ['3rd', '1st'], i)
- def test_getitem_ix_float_duplicates(self):
- df = pd.DataFrame(np.random.randn(3, 3),
- index=[0.1, 0.2, 0.2], columns=list('abc'))
- expect = df.iloc[1:]
- assert_frame_equal(df.loc[0.2], expect)
- with catch_warnings(record=True):
- simplefilter("ignore", DeprecationWarning)
- assert_frame_equal(df.ix[0.2], expect)
- expect = df.iloc[1:, 0]
- assert_series_equal(df.loc[0.2, 'a'], expect)
- df.index = [1, 0.2, 0.2]
- expect = df.iloc[1:]
- assert_frame_equal(df.loc[0.2], expect)
- with catch_warnings(record=True):
- simplefilter("ignore", DeprecationWarning)
- assert_frame_equal(df.ix[0.2], expect)
- expect = df.iloc[1:, 0]
- assert_series_equal(df.loc[0.2, 'a'], expect)
- df = pd.DataFrame(np.random.randn(4, 3),
- index=[1, 0.2, 0.2, 1], columns=list('abc'))
- expect = df.iloc[1:-1]
- assert_frame_equal(df.loc[0.2], expect)
- with catch_warnings(record=True):
- simplefilter("ignore", DeprecationWarning)
- assert_frame_equal(df.ix[0.2], expect)
- expect = df.iloc[1:-1, 0]
- assert_series_equal(df.loc[0.2, 'a'], expect)
- df.index = [0.1, 0.2, 2, 0.2]
- expect = df.iloc[[1, -1]]
- assert_frame_equal(df.loc[0.2], expect)
- with catch_warnings(record=True):
- simplefilter("ignore", DeprecationWarning)
- assert_frame_equal(df.ix[0.2], expect)
- expect = df.iloc[[1, -1], 0]
- assert_series_equal(df.loc[0.2, 'a'], expect)
- def test_getitem_sparse_column(self):
- # https://github.com/pandas-dev/pandas/issues/23559
- data = pd.SparseArray([0, 1])
- df = pd.DataFrame({"A": data})
- expected = pd.Series(data, name="A")
- result = df['A']
- tm.assert_series_equal(result, expected)
- result = df.iloc[:, 0]
- tm.assert_series_equal(result, expected)
- result = df.loc[:, 'A']
- tm.assert_series_equal(result, expected)
- def test_setitem_with_sparse_value(self):
- # GH8131
- df = pd.DataFrame({'c_1': ['a', 'b', 'c'], 'n_1': [1., 2., 3.]})
- sp_array = pd.SparseArray([0, 0, 1])
- df['new_column'] = sp_array
- assert_series_equal(df['new_column'],
- pd.Series(sp_array, name='new_column'),
- check_names=False)
- def test_setitem_with_unaligned_sparse_value(self):
- df = pd.DataFrame({'c_1': ['a', 'b', 'c'], 'n_1': [1., 2., 3.]})
- sp_series = pd.Series(pd.SparseArray([0, 0, 1]), index=[2, 1, 0])
- df['new_column'] = sp_series
- exp = pd.Series(pd.SparseArray([1, 0, 0]), name='new_column')
- assert_series_equal(df['new_column'], exp)
- def test_setitem_with_unaligned_tz_aware_datetime_column(self):
- # GH 12981
- # Assignment of unaligned offset-aware datetime series.
- # Make sure timezone isn't lost
- column = pd.Series(pd.date_range('2015-01-01', periods=3, tz='utc'),
- name='dates')
- df = pd.DataFrame({'dates': column})
- df['dates'] = column[[1, 0, 2]]
- assert_series_equal(df['dates'], column)
- df = pd.DataFrame({'dates': column})
- df.loc[[0, 1, 2], 'dates'] = column[[1, 0, 2]]
- assert_series_equal(df['dates'], column)
- def test_setitem_datetime_coercion(self):
- # gh-1048
- df = pd.DataFrame({'c': [pd.Timestamp('2010-10-01')] * 3})
- df.loc[0:1, 'c'] = np.datetime64('2008-08-08')
- assert pd.Timestamp('2008-08-08') == df.loc[0, 'c']
- assert pd.Timestamp('2008-08-08') == df.loc[1, 'c']
- df.loc[2, 'c'] = date(2005, 5, 5)
- assert pd.Timestamp('2005-05-05') == df.loc[2, 'c']
- def test_setitem_datetimelike_with_inference(self):
- # GH 7592
- # assignment of timedeltas with NaT
- one_hour = timedelta(hours=1)
- df = DataFrame(index=date_range('20130101', periods=4))
- df['A'] = np.array([1 * one_hour] * 4, dtype='m8[ns]')
- df.loc[:, 'B'] = np.array([2 * one_hour] * 4, dtype='m8[ns]')
- df.loc[:3, 'C'] = np.array([3 * one_hour] * 3, dtype='m8[ns]')
- df.loc[:, 'D'] = np.array([4 * one_hour] * 4, dtype='m8[ns]')
- df.loc[df.index[:3], 'E'] = np.array([5 * one_hour] * 3,
- dtype='m8[ns]')
- df['F'] = np.timedelta64('NaT')
- df.loc[df.index[:-1], 'F'] = np.array([6 * one_hour] * 3,
- dtype='m8[ns]')
- df.loc[df.index[-3]:, 'G'] = date_range('20130101', periods=3)
- df['H'] = np.datetime64('NaT')
- result = df.dtypes
- expected = Series([np.dtype('timedelta64[ns]')] * 6 +
- [np.dtype('datetime64[ns]')] * 2,
- index=list('ABCDEFGH'))
- assert_series_equal(result, expected)
- @pytest.mark.parametrize('idxer', ['var', ['var']])
- def test_setitem_datetimeindex_tz(self, idxer, tz_naive_fixture):
- # GH 11365
- tz = tz_naive_fixture
- idx = date_range(start='2015-07-12', periods=3, freq='H', tz=tz)
- expected = DataFrame(1.2, index=idx, columns=['var'])
- result = DataFrame(index=idx, columns=['var'])
- result.loc[:, idxer] = expected
- tm.assert_frame_equal(result, expected)
- def test_at_time_between_time_datetimeindex(self):
- index = date_range("2012-01-01", "2012-01-05", freq='30min')
- df = DataFrame(np.random.randn(len(index), 5), index=index)
- akey = time(12, 0, 0)
- bkey = slice(time(13, 0, 0), time(14, 0, 0))
- ainds = [24, 72, 120, 168]
- binds = [26, 27, 28, 74, 75, 76, 122, 123, 124, 170, 171, 172]
- result = df.at_time(akey)
- expected = df.loc[akey]
- expected2 = df.iloc[ainds]
- assert_frame_equal(result, expected)
- assert_frame_equal(result, expected2)
- assert len(result) == 4
- result = df.between_time(bkey.start, bkey.stop)
- expected = df.loc[bkey]
- expected2 = df.iloc[binds]
- assert_frame_equal(result, expected)
- assert_frame_equal(result, expected2)
- assert len(result) == 12
- result = df.copy()
- result.loc[akey] = 0
- result = result.loc[akey]
- expected = df.loc[akey].copy()
- expected.loc[:] = 0
- assert_frame_equal(result, expected)
- result = df.copy()
- result.loc[akey] = 0
- result.loc[akey] = df.iloc[ainds]
- assert_frame_equal(result, df)
- result = df.copy()
- result.loc[bkey] = 0
- result = result.loc[bkey]
- expected = df.loc[bkey].copy()
- expected.loc[:] = 0
- assert_frame_equal(result, expected)
- result = df.copy()
- result.loc[bkey] = 0
- result.loc[bkey] = df.iloc[binds]
- assert_frame_equal(result, df)
- def test_xs(self):
- idx = self.frame.index[5]
- xs = self.frame.xs(idx)
- for item, value in compat.iteritems(xs):
- if np.isnan(value):
- assert np.isnan(self.frame[item][idx])
- else:
- assert value == self.frame[item][idx]
- # mixed-type xs
- test_data = {
- 'A': {'1': 1, '2': 2},
- 'B': {'1': '1', '2': '2', '3': '3'},
- }
- frame = DataFrame(test_data)
- xs = frame.xs('1')
- assert xs.dtype == np.object_
- assert xs['A'] == 1
- assert xs['B'] == '1'
- with pytest.raises(KeyError):
- self.tsframe.xs(self.tsframe.index[0] - BDay())
- # xs get column
- series = self.frame.xs('A', axis=1)
- expected = self.frame['A']
- assert_series_equal(series, expected)
- # view is returned if possible
- series = self.frame.xs('A', axis=1)
- series[:] = 5
- assert (expected == 5).all()
- def test_xs_corner(self):
- # pathological mixed-type reordering case
- df = DataFrame(index=[0])
- df['A'] = 1.
- df['B'] = 'foo'
- df['C'] = 2.
- df['D'] = 'bar'
- df['E'] = 3.
- xs = df.xs(0)
- exp = pd.Series([1., 'foo', 2., 'bar', 3.],
- index=list('ABCDE'), name=0)
- tm.assert_series_equal(xs, exp)
- # no columns but Index(dtype=object)
- df = DataFrame(index=['a', 'b', 'c'])
- result = df.xs('a')
- expected = Series([], name='a', index=pd.Index([], dtype=object))
- assert_series_equal(result, expected)
- def test_xs_duplicates(self):
- df = DataFrame(np.random.randn(5, 2), index=['b', 'b', 'c', 'b', 'a'])
- cross = df.xs('c')
- exp = df.iloc[2]
- assert_series_equal(cross, exp)
- def test_xs_keep_level(self):
- df = (DataFrame({'day': {0: 'sat', 1: 'sun'},
- 'flavour': {0: 'strawberry', 1: 'strawberry'},
- 'sales': {0: 10, 1: 12},
- 'year': {0: 2008, 1: 2008}})
- .set_index(['year', 'flavour', 'day']))
- result = df.xs('sat', level='day', drop_level=False)
- expected = df[:1]
- assert_frame_equal(result, expected)
- result = df.xs([2008, 'sat'], level=['year', 'day'], drop_level=False)
- assert_frame_equal(result, expected)
- def test_xs_view(self):
- # in 0.14 this will return a view if possible a copy otherwise, but
- # this is numpy dependent
- dm = DataFrame(np.arange(20.).reshape(4, 5),
- index=lrange(4), columns=lrange(5))
- dm.xs(2)[:] = 10
- assert (dm.xs(2) == 10).all()
- def test_index_namedtuple(self):
- from collections import namedtuple
- IndexType = namedtuple("IndexType", ["a", "b"])
- idx1 = IndexType("foo", "bar")
- idx2 = IndexType("baz", "bof")
- index = Index([idx1, idx2],
- name="composite_index", tupleize_cols=False)
- df = DataFrame([(1, 2), (3, 4)], index=index, columns=["A", "B"])
- with catch_warnings(record=True):
- simplefilter("ignore", DeprecationWarning)
- result = df.ix[IndexType("foo", "bar")]["A"]
- assert result == 1
- result = df.loc[IndexType("foo", "bar")]["A"]
- assert result == 1
- def test_boolean_indexing(self):
- idx = lrange(3)
- cols = ['A', 'B', 'C']
- df1 = DataFrame(index=idx, columns=cols,
- data=np.array([[0.0, 0.5, 1.0],
- [1.5, 2.0, 2.5],
- [3.0, 3.5, 4.0]],
- dtype=float))
- df2 = DataFrame(index=idx, columns=cols,
- data=np.ones((len(idx), len(cols))))
- expected = DataFrame(index=idx, columns=cols,
- data=np.array([[0.0, 0.5, 1.0],
- [1.5, 2.0, -1],
- [-1, -1, -1]], dtype=float))
- df1[df1 > 2.0 * df2] = -1
- assert_frame_equal(df1, expected)
- with pytest.raises(ValueError, match='Item wrong length'):
- df1[df1.index[:-1] > 2] = -1
- def test_boolean_indexing_mixed(self):
- df = DataFrame({
- long(0): {35: np.nan, 40: np.nan, 43: np.nan,
- 49: np.nan, 50: np.nan},
- long(1): {35: np.nan,
- 40: 0.32632316859446198,
- 43: np.nan,
- 49: 0.32632316859446198,
- 50: 0.39114724480578139},
- long(2): {35: np.nan, 40: np.nan, 43: 0.29012581014105987,
- 49: np.nan, 50: np.nan},
- long(3): {35: np.nan, 40: np.nan, 43: np.nan, 49: np.nan,
- 50: np.nan},
- long(4): {35: 0.34215328467153283, 40: np.nan, 43: np.nan,
- 49: np.nan, 50: np.nan},
- 'y': {35: 0, 40: 0, 43: 0, 49: 0, 50: 1}})
- # mixed int/float ok
- df2 = df.copy()
- df2[df2 > 0.3] = 1
- expected = df.copy()
- expected.loc[40, 1] = 1
- expected.loc[49, 1] = 1
- expected.loc[50, 1] = 1
- expected.loc[35, 4] = 1
- assert_frame_equal(df2, expected)
- df['foo'] = 'test'
- msg = ("boolean setting on mixed-type|"
- "not supported between|"
- "unorderable types")
- with pytest.raises(TypeError, match=msg):
- # TODO: This message should be the same in PY2/PY3
- df[df > 0.3] = 1
- def test_where(self):
- default_frame = DataFrame(np.random.randn(5, 3),
- columns=['A', 'B', 'C'])
- def _safe_add(df):
- # only add to the numeric items
- def is_ok(s):
- return (issubclass(s.dtype.type, (np.integer, np.floating)) and
- s.dtype != 'uint8')
- return DataFrame(dict((c, s + 1) if is_ok(s) else (c, s)
- for c, s in compat.iteritems(df)))
- def _check_get(df, cond, check_dtypes=True):
- other1 = _safe_add(df)
- rs = df.where(cond, other1)
- rs2 = df.where(cond.values, other1)
- for k, v in rs.iteritems():
- exp = Series(
- np.where(cond[k], df[k], other1[k]), index=v.index)
- assert_series_equal(v, exp, check_names=False)
- assert_frame_equal(rs, rs2)
- # dtypes
- if check_dtypes:
- assert (rs.dtypes == df.dtypes).all()
- # check getting
- for df in [default_frame, self.mixed_frame,
- self.mixed_float, self.mixed_int]:
- if compat.PY3 and df is self.mixed_frame:
- with pytest.raises(TypeError):
- df > 0
- continue
- cond = df > 0
- _check_get(df, cond)
- # upcasting case (GH # 2794)
- df = DataFrame({c: Series([1] * 3, dtype=c)
- for c in ['float32', 'float64',
- 'int32', 'int64']})
- df.iloc[1, :] = 0
- result = df.where(df >= 0).get_dtype_counts()
- # when we don't preserve boolean casts
- #
- # expected = Series({ 'float32' : 1, 'float64' : 3 })
- expected = Series({'float32': 1, 'float64': 1, 'int32': 1, 'int64': 1})
- assert_series_equal(result, expected)
- # aligning
- def _check_align(df, cond, other, check_dtypes=True):
- rs = df.where(cond, other)
- for i, k in enumerate(rs.columns):
- result = rs[k]
- d = df[k].values
- c = cond[k].reindex(df[k].index).fillna(False).values
- if is_scalar(other):
- o = other
- else:
- if isinstance(other, np.ndarray):
- o = Series(other[:, i], index=result.index).values
- else:
- o = other[k].values
- new_values = d if c.all() else np.where(c, d, o)
- expected = Series(new_values, index=result.index, name=k)
- # since we can't always have the correct numpy dtype
- # as numpy doesn't know how to downcast, don't check
- assert_series_equal(result, expected, check_dtype=False)
- # dtypes
- # can't check dtype when other is an ndarray
- if check_dtypes and not isinstance(other, np.ndarray):
- assert (rs.dtypes == df.dtypes).all()
- for df in [self.mixed_frame, self.mixed_float, self.mixed_int]:
- if compat.PY3 and df is self.mixed_frame:
- with pytest.raises(TypeError):
- df > 0
- continue
- # other is a frame
- cond = (df > 0)[1:]
- _check_align(df, cond, _safe_add(df))
- # check other is ndarray
- cond = df > 0
- _check_align(df, cond, (_safe_add(df).values))
- # integers are upcast, so don't check the dtypes
- cond = df > 0
- check_dtypes = all(not issubclass(s.type, np.integer)
- for s in df.dtypes)
- _check_align(df, cond, np.nan, check_dtypes=check_dtypes)
- # invalid conditions
- df = default_frame
- err1 = (df + 1).values[0:2, :]
- pytest.raises(ValueError, df.where, cond, err1)
- err2 = cond.iloc[:2, :].values
- other1 = _safe_add(df)
- pytest.raises(ValueError, df.where, err2, other1)
- pytest.raises(ValueError, df.mask, True)
- pytest.raises(ValueError, df.mask, 0)
- # where inplace
- def _check_set(df, cond, check_dtypes=True):
- dfi = df.copy()
- econd = cond.reindex_like(df).fillna(True)
- expected = dfi.mask(~econd)
- dfi.where(cond, np.nan, inplace=True)
- assert_frame_equal(dfi, expected)
- # dtypes (and confirm upcasts)x
- if check_dtypes:
- for k, v in compat.iteritems(df.dtypes):
- if issubclass(v.type, np.integer) and not cond[k].all():
- v = np.dtype('float64')
- assert dfi[k].dtype == v
- for df in [default_frame, self.mixed_frame, self.mixed_float,
- self.mixed_int]:
- if compat.PY3 and df is self.mixed_frame:
- with pytest.raises(TypeError):
- df > 0
- continue
- cond = df > 0
- _check_set(df, cond)
- cond = df >= 0
- _check_set(df, cond)
- # aligining
- cond = (df >= 0)[1:]
- _check_set(df, cond)
- # GH 10218
- # test DataFrame.where with Series slicing
- df = DataFrame({'a': range(3), 'b': range(4, 7)})
- result = df.where(df['a'] == 1)
- expected = df[df['a'] == 1].reindex(df.index)
- assert_frame_equal(result, expected)
- @pytest.mark.parametrize("klass", [list, tuple, np.array])
- def test_where_array_like(self, klass):
- # see gh-15414
- df = DataFrame({"a": [1, 2, 3]})
- cond = [[False], [True], [True]]
- expected = DataFrame({"a": [np.nan, 2, 3]})
- result = df.where(klass(cond))
- assert_frame_equal(result, expected)
- df["b"] = 2
- expected["b"] = [2, np.nan, 2]
- cond = [[False, True], [True, False], [True, True]]
- result = df.where(klass(cond))
- assert_frame_equal(result, expected)
- @pytest.mark.parametrize("cond", [
- [[1], [0], [1]],
- Series([[2], [5], [7]]),
- DataFrame({"a": [2, 5, 7]}),
- [["True"], ["False"], ["True"]],
- [[Timestamp("2017-01-01")],
- [pd.NaT], [Timestamp("2017-01-02")]]
- ])
- def test_where_invalid_input_single(self, cond):
- # see gh-15414: only boolean arrays accepted
- df = DataFrame({"a": [1, 2, 3]})
- msg = "Boolean array expected for the condition"
- with pytest.raises(ValueError, match=msg):
- df.where(cond)
- @pytest.mark.parametrize("cond", [
- [[0, 1], [1, 0], [1, 1]],
- Series([[0, 2], [5, 0], [4, 7]]),
- [["False", "True"], ["True", "False"],
- ["True", "True"]],
- DataFrame({"a": [2, 5, 7], "b": [4, 8, 9]}),
- [[pd.NaT, Timestamp("2017-01-01")],
- [Timestamp("2017-01-02"), pd.NaT],
- [Timestamp("2017-01-03"), Timestamp("2017-01-03")]]
- ])
- def test_where_invalid_input_multiple(self, cond):
- # see gh-15414: only boolean arrays accepted
- df = DataFrame({"a": [1, 2, 3], "b": [2, 2, 2]})
- msg = "Boolean array expected for the condition"
- with pytest.raises(ValueError, match=msg):
- df.where(cond)
- def test_where_dataframe_col_match(self):
- df = DataFrame([[1, 2, 3], [4, 5, 6]])
- cond = DataFrame([[True, False, True], [False, False, True]])
- result = df.where(cond)
- expected = DataFrame([[1.0, np.nan, 3], [np.nan, np.nan, 6]])
- tm.assert_frame_equal(result, expected)
- # this *does* align, though has no matching columns
- cond.columns = ["a", "b", "c"]
- result = df.where(cond)
- expected = DataFrame(np.nan, index=df.index, columns=df.columns)
- tm.assert_frame_equal(result, expected)
- def test_where_ndframe_align(self):
- msg = "Array conditional must be same shape as self"
- df = DataFrame([[1, 2, 3], [4, 5, 6]])
- cond = [True]
- with pytest.raises(ValueError, match=msg):
- df.where(cond)
- expected = DataFrame([[1, 2, 3], [np.nan, np.nan, np.nan]])
- out = df.where(Series(cond))
- tm.assert_frame_equal(out, expected)
- cond = np.array([False, True, False, True])
- with pytest.raises(ValueError, match=msg):
- df.where(cond)
- expected = DataFrame([[np.nan, np.nan, np.nan], [4, 5, 6]])
- out = df.where(Series(cond))
- tm.assert_frame_equal(out, expected)
- def test_where_bug(self):
- # see gh-2793
- df = DataFrame({'a': [1.0, 2.0, 3.0, 4.0], 'b': [
- 4.0, 3.0, 2.0, 1.0]}, dtype='float64')
- expected = DataFrame({'a': [np.nan, np.nan, 3.0, 4.0], 'b': [
- 4.0, 3.0, np.nan, np.nan]}, dtype='float64')
- result = df.where(df > 2, np.nan)
- assert_frame_equal(result, expected)
- result = df.copy()
- result.where(result > 2, np.nan, inplace=True)
- assert_frame_equal(result, expected)
- def test_where_bug_mixed(self, sint_dtype):
- # see gh-2793
- df = DataFrame({"a": np.array([1, 2, 3, 4], dtype=sint_dtype),
- "b": np.array([4.0, 3.0, 2.0, 1.0],
- dtype="float64")})
- expected = DataFrame({"a": [np.nan, np.nan, 3.0, 4.0],
- "b": [4.0, 3.0, np.nan, np.nan]},
- dtype="float64")
- result = df.where(df > 2, np.nan)
- assert_frame_equal(result, expected)
- result = df.copy()
- result.where(result > 2, np.nan, inplace=True)
- assert_frame_equal(result, expected)
- def test_where_bug_transposition(self):
- # see gh-7506
- a = DataFrame({0: [1, 2], 1: [3, 4], 2: [5, 6]})
- b = DataFrame({0: [np.nan, 8], 1: [9, np.nan], 2: [np.nan, np.nan]})
- do_not_replace = b.isna() | (a > b)
- expected = a.copy()
- expected[~do_not_replace] = b
- result = a.where(do_not_replace, b)
- assert_frame_equal(result, expected)
- a = DataFrame({0: [4, 6], 1: [1, 0]})
- b = DataFrame({0: [np.nan, 3], 1: [3, np.nan]})
- do_not_replace = b.isna() | (a > b)
- expected = a.copy()
- expected[~do_not_replace] = b
- result = a.where(do_not_replace, b)
- assert_frame_equal(result, expected)
- def test_where_datetime(self):
- # GH 3311
- df = DataFrame(dict(A=date_range('20130102', periods=5),
- B=date_range('20130104', periods=5),
- C=np.random.randn(5)))
- stamp = datetime(2013, 1, 3)
- with pytest.raises(TypeError):
- df > stamp
- result = df[df.iloc[:, :-1] > stamp]
- expected = df.copy()
- expected.loc[[0, 1], 'A'] = np.nan
- expected.loc[:, 'C'] = np.nan
- assert_frame_equal(result, expected)
- def test_where_none(self):
- # GH 4667
- # setting with None changes dtype
- df = DataFrame({'series': Series(range(10))}).astype(float)
- df[df > 7] = None
- expected = DataFrame(
- {'series': Series([0, 1, 2, 3, 4, 5, 6, 7, np.nan, np.nan])})
- assert_frame_equal(df, expected)
- # GH 7656
- df = DataFrame([{'A': 1, 'B': np.nan, 'C': 'Test'}, {
- 'A': np.nan, 'B': 'Test', 'C': np.nan}])
- msg = 'boolean setting on mixed-type'
- with pytest.raises(TypeError, match=msg):
- df.where(~isna(df), None, inplace=True)
- def test_where_empty_df_and_empty_cond_having_non_bool_dtypes(self):
- # see gh-21947
- df = pd.DataFrame(columns=["a"])
- cond = df.applymap(lambda x: x > 0)
- result = df.where(cond)
- tm.assert_frame_equal(result, df)
- def test_where_align(self):
- def create():
- df = DataFrame(np.random.randn(10, 3))
- df.iloc[3:5, 0] = np.nan
- df.iloc[4:6, 1] = np.nan
- df.iloc[5:8, 2] = np.nan
- return df
- # series
- df = create()
- expected = df.fillna(df.mean())
- result = df.where(pd.notna(df), df.mean(), axis='columns')
- assert_frame_equal(result, expected)
- df.where(pd.notna(df), df.mean(), inplace=True, axis='columns')
- assert_frame_equal(df, expected)
- df = create().fillna(0)
- expected = df.apply(lambda x, y: x.where(x > 0, y), y=df[0])
- result = df.where(df > 0, df[0], axis='index')
- assert_frame_equal(result, expected)
- result = df.where(df > 0, df[0], axis='rows')
- assert_frame_equal(result, expected)
- # frame
- df = create()
- expected = df.fillna(1)
- result = df.where(pd.notna(df), DataFrame(
- 1, index=df.index, columns=df.columns))
- assert_frame_equal(result, expected)
- def test_where_complex(self):
- # GH 6345
- expected = DataFrame(
- [[1 + 1j, 2], [np.nan, 4 + 1j]], columns=['a', 'b'])
- df = DataFrame([[1 + 1j, 2], [5 + 1j, 4 + 1j]], columns=['a', 'b'])
- df[df.abs() >= 5] = np.nan
- assert_frame_equal(df, expected)
- def test_where_axis(self):
- # GH 9736
- df = DataFrame(np.random.randn(2, 2))
- mask = DataFrame([[False, False], [False, False]])
- s = Series([0, 1])
- expected = DataFrame([[0, 0], [1, 1]], dtype='float64')
- result = df.where(mask, s, axis='index')
- assert_frame_equal(result, expected)
- result = df.copy()
- result.where(mask, s, axis='index', inplace=True)
- assert_frame_equal(result, expected)
- expected = DataFrame([[0, 1], [0, 1]], dtype='float64')
- result = df.where(mask, s, axis='columns')
- assert_frame_equal(result, expected)
- result = df.copy()
- result.where(mask, s, axis='columns', inplace=True)
- assert_frame_equal(result, expected)
- # Upcast needed
- df = DataFrame([[1, 2], [3, 4]], dtype='int64')
- mask = DataFrame([[False, False], [False, False]])
- s = Series([0, np.nan])
- expected = DataFrame([[0, 0], [np.nan, np.nan]], dtype='float64')
- result = df.where(mask, s, axis='index')
- assert_frame_equal(result, expected)
- result = df.copy()
- result.where(mask, s, axis='index', inplace=True)
- assert_frame_equal(result, expected)
- expected = DataFrame([[0, np.nan], [0, np.nan]])
- result = df.where(mask, s, axis='columns')
- assert_frame_equal(result, expected)
- expected = DataFrame({0: np.array([0, 0], dtype='int64'),
- 1: np.array([np.nan, np.nan], dtype='float64')})
- result = df.copy()
- result.where(mask, s, axis='columns', inplace=True)
- assert_frame_equal(result, expected)
- # Multiple dtypes (=> multiple Blocks)
- df = pd.concat([
- DataFrame(np.random.randn(10, 2)),
- DataFrame(np.random.randint(0, 10, size=(10, 2)), dtype='int64')],
- ignore_index=True, axis=1)
- mask = DataFrame(False, columns=df.columns, index=df.index)
- s1 = Series(1, index=df.columns)
- s2 = Series(2, index=df.index)
- result = df.where(mask, s1, axis='columns')
- expected = DataFrame(1.0, columns=df.columns, index=df.index)
- expected[2] = expected[2].astype('int64')
- expected[3] = expected[3].astype('int64')
- assert_frame_equal(result, expected)
- result = df.copy()
- result.where(mask, s1, axis='columns', inplace=True)
- assert_frame_equal(result, expected)
- result = df.where(mask, s2, axis='index')
- expected = DataFrame(2.0, columns=df.columns, index=df.index)
- expected[2] = expected[2].astype('int64')
- expected[3] = expected[3].astype('int64')
- assert_frame_equal(result, expected)
- result = df.copy()
- result.where(mask, s2, axis='index', inplace=True)
- assert_frame_equal(result, expected)
- # DataFrame vs DataFrame
- d1 = df.copy().drop(1, axis=0)
- expected = df.copy()
- expected.loc[1, :] = np.nan
- result = df.where(mask, d1)
- assert_frame_equal(result, expected)
- result = df.where(mask, d1, axis='index')
- assert_frame_equal(result, expected)
- result = df.copy()
- result.where(mask, d1, inplace=True)
- assert_frame_equal(result, expected)
- result = df.copy()
- result.where(mask, d1, inplace=True, axis='index')
- assert_frame_equal(result, expected)
- d2 = df.copy().drop(1, axis=1)
- expected = df.copy()
- expected.loc[:, 1] = np.nan
- result = df.where(mask, d2)
- assert_frame_equal(result, expected)
- result = df.where(mask, d2, axis='columns')
- assert_frame_equal(result, expected)
- result = df.copy()
- result.where(mask, d2, inplace=True)
- assert_frame_equal(result, expected)
- result = df.copy()
- result.where(mask, d2, inplace=True, axis='columns')
- assert_frame_equal(result, expected)
- def test_where_callable(self):
- # GH 12533
- df = DataFrame([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
- result = df.where(lambda x: x > 4, lambda x: x + 1)
- exp = DataFrame([[2, 3, 4], [5, 5, 6], [7, 8, 9]])
- tm.assert_frame_equal(result, exp)
- tm.assert_frame_equal(result, df.where(df > 4, df + 1))
- # return ndarray and scalar
- result = df.where(lambda x: (x % 2 == 0).values, lambda x: 99)
- exp = DataFrame([[99, 2, 99], [4, 99, 6], [99, 8, 99]])
- tm.assert_frame_equal(result, exp)
- tm.assert_frame_equal(result, df.where(df % 2 == 0, 99))
- # chain
- result = (df + 2).where(lambda x: x > 8, lambda x: x + 10)
- exp = DataFrame([[13, 14, 15], [16, 17, 18], [9, 10, 11]])
- tm.assert_frame_equal(result, exp)
- tm.assert_frame_equal(result,
- (df + 2).where((df + 2) > 8, (df + 2) + 10))
- def test_where_tz_values(self, tz_naive_fixture):
- df1 = DataFrame(DatetimeIndex(['20150101', '20150102', '20150103'],
- tz=tz_naive_fixture),
- columns=['date'])
- df2 = DataFrame(DatetimeIndex(['20150103', '20150104', '20150105'],
- tz=tz_naive_fixture),
- columns=['date'])
- mask = DataFrame([True, True, False], columns=['date'])
- exp = DataFrame(DatetimeIndex(['20150101', '20150102', '20150105'],
- tz=tz_naive_fixture),
- columns=['date'])
- result = df1.where(mask, df2)
- assert_frame_equal(exp, result)
- def test_mask(self):
- df = DataFrame(np.random.randn(5, 3))
- cond = df > 0
- rs = df.where(cond, np.nan)
- assert_frame_equal(rs, df.mask(df <= 0))
- assert_frame_equal(rs, df.mask(~cond))
- other = DataFrame(np.random.randn(5, 3))
- rs = df.where(cond, other)
- assert_frame_equal(rs, df.mask(df <= 0, other))
- assert_frame_equal(rs, df.mask(~cond, other))
- # see gh-21891
- df = DataFrame([1, 2])
- res = df.mask([[True], [False]])
- exp = DataFrame([np.nan, 2])
- tm.assert_frame_equal(res, exp)
- def test_mask_inplace(self):
- # GH8801
- df = DataFrame(np.random.randn(5, 3))
- cond = df > 0
- rdf = df.copy()
- rdf.where(cond, inplace=True)
- assert_frame_equal(rdf, df.where(cond))
- assert_frame_equal(rdf, df.mask(~cond))
- rdf = df.copy()
- rdf.where(cond, -df, inplace=True)
- assert_frame_equal(rdf, df.where(cond, -df))
- assert_frame_equal(rdf, df.mask(~cond, -df))
- def test_mask_edge_case_1xN_frame(self):
- # GH4071
- df = DataFrame([[1, 2]])
- res = df.mask(DataFrame([[True, False]]))
- expec = DataFrame([[np.nan, 2]])
- assert_frame_equal(res, expec)
- def test_mask_callable(self):
- # GH 12533
- df = DataFrame([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
- result = df.mask(lambda x: x > 4, lambda x: x + 1)
- exp = DataFrame([[1, 2, 3], [4, 6, 7], [8, 9, 10]])
- tm.assert_frame_equal(result, exp)
- tm.assert_frame_equal(result, df.mask(df > 4, df + 1))
- # return ndarray and scalar
- result = df.mask(lambda x: (x % 2 == 0).values, lambda x: 99)
- exp = DataFrame([[1, 99, 3], [99, 5, 99], [7, 99, 9]])
- tm.assert_frame_equal(result, exp)
- tm.assert_frame_equal(result, df.mask(df % 2 == 0, 99))
- # chain
- result = (df + 2).mask(lambda x: x > 8, lambda x: x + 10)
- exp = DataFrame([[3, 4, 5], [6, 7, 8], [19, 20, 21]])
- tm.assert_frame_equal(result, exp)
- tm.assert_frame_equal(result,
- (df + 2).mask((df + 2) > 8, (df + 2) + 10))
- def test_head_tail(self):
- assert_frame_equal(self.frame.head(), self.frame[:5])
- assert_frame_equal(self.frame.tail(), self.frame[-5:])
- assert_frame_equal(self.frame.head(0), self.frame[0:0])
- assert_frame_equal(self.frame.tail(0), self.frame[0:0])
- assert_frame_equal(self.frame.head(-1), self.frame[:-1])
- assert_frame_equal(self.frame.tail(-1), self.frame[1:])
- assert_frame_equal(self.frame.head(1), self.frame[:1])
- assert_frame_equal(self.frame.tail(1), self.frame[-1:])
- # with a float index
- df = self.frame.copy()
- df.index = np.arange(len(self.frame)) + 0.1
- assert_frame_equal(df.head(), df.iloc[:5])
- assert_frame_equal(df.tail(), df.iloc[-5:])
- assert_frame_equal(df.head(0), df[0:0])
- assert_frame_equal(df.tail(0), df[0:0])
- assert_frame_equal(df.head(-1), df.iloc[:-1])
- assert_frame_equal(df.tail(-1), df.iloc[1:])
- # test empty dataframe
- empty_df = DataFrame()
- assert_frame_equal(empty_df.tail(), empty_df)
- assert_frame_equal(empty_df.head(), empty_df)
- def test_type_error_multiindex(self):
- # See gh-12218
- df = DataFrame(columns=['i', 'c', 'x', 'y'],
- data=[[0, 0, 1, 2], [1, 0, 3, 4],
- [0, 1, 1, 2], [1, 1, 3, 4]])
- dg = df.pivot_table(index='i', columns='c',
- values=['x', 'y'])
- with pytest.raises(TypeError, match="is an invalid key"):
- str(dg[:, 0])
- index = Index(range(2), name='i')
- columns = MultiIndex(levels=[['x', 'y'], [0, 1]],
- codes=[[0, 1], [0, 0]],
- names=[None, 'c'])
- expected = DataFrame([[1, 2], [3, 4]], columns=columns, index=index)
- result = dg.loc[:, (slice(None), 0)]
- assert_frame_equal(result, expected)
- name = ('x', 0)
- index = Index(range(2), name='i')
- expected = Series([1, 3], index=index, name=name)
- result = dg['x', 0]
- assert_series_equal(result, expected)
- def test_interval_index(self):
- # GH 19977
- index = pd.interval_range(start=0, periods=3)
- df = pd.DataFrame([[1, 2, 3], [4, 5, 6], [7, 8, 9]],
- index=index,
- columns=['A', 'B', 'C'])
- expected = 1
- result = df.loc[0.5, 'A']
- assert_almost_equal(result, expected)
- index = pd.interval_range(start=0, periods=3, closed='both')
- df = pd.DataFrame([[1, 2, 3], [4, 5, 6], [7, 8, 9]],
- index=index,
- columns=['A', 'B', 'C'])
- index_exp = pd.interval_range(start=0, periods=2,
- freq=1, closed='both')
- expected = pd.Series([1, 4], index=index_exp, name='A')
- result = df.loc[1, 'A']
- assert_series_equal(result, expected)
- class TestDataFrameIndexingDatetimeWithTZ(TestData):
- def setup_method(self, method):
- self.idx = Index(date_range('20130101', periods=3, tz='US/Eastern'),
- name='foo')
- self.dr = date_range('20130110', periods=3)
- self.df = DataFrame({'A': self.idx, 'B': self.dr})
- def test_setitem(self):
- df = self.df
- idx = self.idx
- # setitem
- df['C'] = idx
- assert_series_equal(df['C'], Series(idx, name='C'))
- df['D'] = 'foo'
- df['D'] = idx
- assert_series_equal(df['D'], Series(idx, name='D'))
- del df['D']
- # assert that A & C are not sharing the same base (e.g. they
- # are copies)
- b1 = df._data.blocks[1]
- b2 = df._data.blocks[2]
- tm.assert_extension_array_equal(b1.values, b2.values)
- assert id(b1.values._data.base) != id(b2.values._data.base)
- # with nan
- df2 = df.copy()
- df2.iloc[1, 1] = pd.NaT
- df2.iloc[1, 2] = pd.NaT
- result = df2['B']
- assert_series_equal(notna(result), Series(
- [True, False, True], name='B'))
- assert_series_equal(df2.dtypes, df.dtypes)
- def test_set_reset(self):
- idx = self.idx
- # set/reset
- df = DataFrame({'A': [0, 1, 2]}, index=idx)
- result = df.reset_index()
- assert result['foo'].dtype, 'M8[ns, US/Eastern'
- df = result.set_index('foo')
- tm.assert_index_equal(df.index, idx)
- def test_transpose(self):
- result = self.df.T
- expected = DataFrame(self.df.values.T)
- expected.index = ['A', 'B']
- assert_frame_equal(result, expected)
- def test_scalar_assignment(self):
- # issue #19843
- df = pd.DataFrame(index=(0, 1, 2))
- df['now'] = pd.Timestamp('20130101', tz='UTC')
- expected = pd.DataFrame(
- {'now': pd.Timestamp('20130101', tz='UTC')}, index=[0, 1, 2])
- tm.assert_frame_equal(df, expected)
- class TestDataFrameIndexingUInt64(TestData):
- def setup_method(self, method):
- self.ir = Index(np.arange(3), dtype=np.uint64)
- self.idx = Index([2**63, 2**63 + 5, 2**63 + 10], name='foo')
- self.df = DataFrame({'A': self.idx, 'B': self.ir})
- def test_setitem(self):
- df = self.df
- idx = self.idx
- # setitem
- df['C'] = idx
- assert_series_equal(df['C'], Series(idx, name='C'))
- df['D'] = 'foo'
- df['D'] = idx
- assert_series_equal(df['D'], Series(idx, name='D'))
- del df['D']
- # With NaN: because uint64 has no NaN element,
- # the column should be cast to object.
- df2 = df.copy()
- df2.iloc[1, 1] = pd.NaT
- df2.iloc[1, 2] = pd.NaT
- result = df2['B']
- assert_series_equal(notna(result), Series(
- [True, False, True], name='B'))
- assert_series_equal(df2.dtypes, Series([np.dtype('uint64'),
- np.dtype('O'), np.dtype('O')],
- index=['A', 'B', 'C']))
- def test_set_reset(self):
- idx = self.idx
- # set/reset
- df = DataFrame({'A': [0, 1, 2]}, index=idx)
- result = df.reset_index()
- assert result['foo'].dtype == np.dtype('uint64')
- df = result.set_index('foo')
- tm.assert_index_equal(df.index, idx)
- def test_transpose(self):
- result = self.df.T
- expected = DataFrame(self.df.values.T)
- expected.index = ['A', 'B']
- assert_frame_equal(result, expected)
- class TestDataFrameIndexingCategorical(object):
- def test_assignment(self):
- # assignment
- df = DataFrame({'value': np.array(
- np.random.randint(0, 10000, 100), dtype='int32')})
- labels = Categorical(["{0} - {1}".format(i, i + 499)
- for i in range(0, 10000, 500)])
- df = df.sort_values(by=['value'], ascending=True)
- s = pd.cut(df.value, range(0, 10500, 500), right=False, labels=labels)
- d = s.values
- df['D'] = d
- str(df)
- result = df.dtypes
- expected = Series(
- [np.dtype('int32'), CategoricalDtype(categories=labels,
- ordered=False)],
- index=['value', 'D'])
- tm.assert_series_equal(result, expected)
- df['E'] = s
- str(df)
- result = df.dtypes
- expected = Series([np.dtype('int32'),
- CategoricalDtype(categories=labels, ordered=False),
- CategoricalDtype(categories=labels, ordered=False)],
- index=['value', 'D', 'E'])
- tm.assert_series_equal(result, expected)
- result1 = df['D']
- result2 = df['E']
- tm.assert_categorical_equal(result1._data._block.values, d)
- # sorting
- s.name = 'E'
- tm.assert_series_equal(result2.sort_index(), s.sort_index())
- cat = Categorical([1, 2, 3, 10], categories=[1, 2, 3, 4, 10])
- df = DataFrame(Series(cat))
- def test_assigning_ops(self):
- # systematically test the assigning operations:
- # for all slicing ops:
- # for value in categories and value not in categories:
- # - assign a single value -> exp_single_cats_value
- # - assign a complete row (mixed values) -> exp_single_row
- # assign multiple rows (mixed values) (-> array) -> exp_multi_row
- # assign a part of a column with dtype == categorical ->
- # exp_parts_cats_col
- # assign a part of a column with dtype != categorical ->
- # exp_parts_cats_col
- cats = Categorical(["a", "a", "a", "a", "a", "a", "a"],
- categories=["a", "b"])
- idx = Index(["h", "i", "j", "k", "l", "m", "n"])
- values = [1, 1, 1, 1, 1, 1, 1]
- orig = DataFrame({"cats": cats, "values": values}, index=idx)
- # the expected values
- # changed single row
- cats1 = Categorical(["a", "a", "b", "a", "a", "a", "a"],
- categories=["a", "b"])
- idx1 = Index(["h", "i", "j", "k", "l", "m", "n"])
- values1 = [1, 1, 2, 1, 1, 1, 1]
- exp_single_row = DataFrame({"cats": cats1,
- "values": values1}, index=idx1)
- # changed multiple rows
- cats2 = Categorical(["a", "a", "b", "b", "a", "a", "a"],
- categories=["a", "b"])
- idx2 = Index(["h", "i", "j", "k", "l", "m", "n"])
- values2 = [1, 1, 2, 2, 1, 1, 1]
- exp_multi_row = DataFrame({"cats": cats2,
- "values": values2}, index=idx2)
- # changed part of the cats column
- cats3 = Categorical(
- ["a", "a", "b", "b", "a", "a", "a"], categories=["a", "b"])
- idx3 = Index(["h", "i", "j", "k", "l", "m", "n"])
- values3 = [1, 1, 1, 1, 1, 1, 1]
- exp_parts_cats_col = DataFrame({"cats": cats3,
- "values": values3}, index=idx3)
- # changed single value in cats col
- cats4 = Categorical(
- ["a", "a", "b", "a", "a", "a", "a"], categories=["a", "b"])
- idx4 = Index(["h", "i", "j", "k", "l", "m", "n"])
- values4 = [1, 1, 1, 1, 1, 1, 1]
- exp_single_cats_value = DataFrame({"cats": cats4,
- "values": values4}, index=idx4)
- # iloc
- # ###############
- # - assign a single value -> exp_single_cats_value
- df = orig.copy()
- df.iloc[2, 0] = "b"
- tm.assert_frame_equal(df, exp_single_cats_value)
- df = orig.copy()
- df.iloc[df.index == "j", 0] = "b"
- tm.assert_frame_equal(df, exp_single_cats_value)
- # - assign a single value not in the current categories set
- with pytest.raises(ValueError):
- df = orig.copy()
- df.iloc[2, 0] = "c"
- # - assign a complete row (mixed values) -> exp_single_row
- df = orig.copy()
- df.iloc[2, :] = ["b", 2]
- tm.assert_frame_equal(df, exp_single_row)
- # - assign a complete row (mixed values) not in categories set
- with pytest.raises(ValueError):
- df = orig.copy()
- df.iloc[2, :] = ["c", 2]
- # - assign multiple rows (mixed values) -> exp_multi_row
- df = orig.copy()
- df.iloc[2:4, :] = [["b", 2], ["b", 2]]
- tm.assert_frame_equal(df, exp_multi_row)
- with pytest.raises(ValueError):
- df = orig.copy()
- df.iloc[2:4, :] = [["c", 2], ["c", 2]]
- # assign a part of a column with dtype == categorical ->
- # exp_parts_cats_col
- df = orig.copy()
- df.iloc[2:4, 0] = Categorical(["b", "b"], categories=["a", "b"])
- tm.assert_frame_equal(df, exp_parts_cats_col)
- with pytest.raises(ValueError):
- # different categories -> not sure if this should fail or pass
- df = orig.copy()
- df.iloc[2:4, 0] = Categorical(list('bb'), categories=list('abc'))
- with pytest.raises(ValueError):
- # different values
- df = orig.copy()
- df.iloc[2:4, 0] = Categorical(list('cc'), categories=list('abc'))
- # assign a part of a column with dtype != categorical ->
- # exp_parts_cats_col
- df = orig.copy()
- df.iloc[2:4, 0] = ["b", "b"]
- tm.assert_frame_equal(df, exp_parts_cats_col)
- with pytest.raises(ValueError):
- df.iloc[2:4, 0] = ["c", "c"]
- # loc
- # ##############
- # - assign a single value -> exp_single_cats_value
- df = orig.copy()
- df.loc["j", "cats"] = "b"
- tm.assert_frame_equal(df, exp_single_cats_value)
- df = orig.copy()
- df.loc[df.index == "j", "cats"] = "b"
- tm.assert_frame_equal(df, exp_single_cats_value)
- # - assign a single value not in the current categories set
- with pytest.raises(ValueError):
- df = orig.copy()
- df.loc["j", "cats"] = "c"
- # - assign a complete row (mixed values) -> exp_single_row
- df = orig.copy()
- df.loc["j", :] = ["b", 2]
- tm.assert_frame_equal(df, exp_single_row)
- # - assign a complete row (mixed values) not in categories set
- with pytest.raises(ValueError):
- df = orig.copy()
- df.loc["j", :] = ["c", 2]
- # - assign multiple rows (mixed values) -> exp_multi_row
- df = orig.copy()
- df.loc["j":"k", :] = [["b", 2], ["b", 2]]
- tm.assert_frame_equal(df, exp_multi_row)
- with pytest.raises(ValueError):
- df = orig.copy()
- df.loc["j":"k", :] = [["c", 2], ["c", 2]]
- # assign a part of a column with dtype == categorical ->
- # exp_parts_cats_col
- df = orig.copy()
- df.loc["j":"k", "cats"] = Categorical(
- ["b", "b"], categories=["a", "b"])
- tm.assert_frame_equal(df, exp_parts_cats_col)
- with pytest.raises(ValueError):
- # different categories -> not sure if this should fail or pass
- df = orig.copy()
- df.loc["j":"k", "cats"] = Categorical(
- ["b", "b"], categories=["a", "b", "c"])
- with pytest.raises(ValueError):
- # different values
- df = orig.copy()
- df.loc["j":"k", "cats"] = Categorical(
- ["c", "c"], categories=["a", "b", "c"])
- # assign a part of a column with dtype != categorical ->
- # exp_parts_cats_col
- df = orig.copy()
- df.loc["j":"k", "cats"] = ["b", "b"]
- tm.assert_frame_equal(df, exp_parts_cats_col)
- with pytest.raises(ValueError):
- df.loc["j":"k", "cats"] = ["c", "c"]
- # loc
- # ##############
- # - assign a single value -> exp_single_cats_value
- df = orig.copy()
- df.loc["j", df.columns[0]] = "b"
- tm.assert_frame_equal(df, exp_single_cats_value)
- df = orig.copy()
- df.loc[df.index == "j", df.columns[0]] = "b"
- tm.assert_frame_equal(df, exp_single_cats_value)
- # - assign a single value not in the current categories set
- with pytest.raises(ValueError):
- df = orig.copy()
- df.loc["j", df.columns[0]] = "c"
- # - assign a complete row (mixed values) -> exp_single_row
- df = orig.copy()
- df.loc["j", :] = ["b", 2]
- tm.assert_frame_equal(df, exp_single_row)
- # - assign a complete row (mixed values) not in categories set
- with pytest.raises(ValueError):
- df = orig.copy()
- df.loc["j", :] = ["c", 2]
- # - assign multiple rows (mixed values) -> exp_multi_row
- df = orig.copy()
- df.loc["j":"k", :] = [["b", 2], ["b", 2]]
- tm.assert_frame_equal(df, exp_multi_row)
- with pytest.raises(ValueError):
- df = orig.copy()
- df.loc["j":"k", :] = [["c", 2], ["c", 2]]
- # assign a part of a column with dtype == categorical ->
- # exp_parts_cats_col
- df = orig.copy()
- df.loc["j":"k", df.columns[0]] = Categorical(
- ["b", "b"], categories=["a", "b"])
- tm.assert_frame_equal(df, exp_parts_cats_col)
- with pytest.raises(ValueError):
- # different categories -> not sure if this should fail or pass
- df = orig.copy()
- df.loc["j":"k", df.columns[0]] = Categorical(
- ["b", "b"], categories=["a", "b", "c"])
- with pytest.raises(ValueError):
- # different values
- df = orig.copy()
- df.loc["j":"k", df.columns[0]] = Categorical(
- ["c", "c"], categories=["a", "b", "c"])
- # assign a part of a column with dtype != categorical ->
- # exp_parts_cats_col
- df = orig.copy()
- df.loc["j":"k", df.columns[0]] = ["b", "b"]
- tm.assert_frame_equal(df, exp_parts_cats_col)
- with pytest.raises(ValueError):
- df.loc["j":"k", df.columns[0]] = ["c", "c"]
- # iat
- df = orig.copy()
- df.iat[2, 0] = "b"
- tm.assert_frame_equal(df, exp_single_cats_value)
- # - assign a single value not in the current categories set
- with pytest.raises(ValueError):
- df = orig.copy()
- df.iat[2, 0] = "c"
- # at
- # - assign a single value -> exp_single_cats_value
- df = orig.copy()
- df.at["j", "cats"] = "b"
- tm.assert_frame_equal(df, exp_single_cats_value)
- # - assign a single value not in the current categories set
- with pytest.raises(ValueError):
- df = orig.copy()
- df.at["j", "cats"] = "c"
- # fancy indexing
- catsf = Categorical(["a", "a", "c", "c", "a", "a", "a"],
- categories=["a", "b", "c"])
- idxf = Index(["h", "i", "j", "k", "l", "m", "n"])
- valuesf = [1, 1, 3, 3, 1, 1, 1]
- df = DataFrame({"cats": catsf, "values": valuesf}, index=idxf)
- exp_fancy = exp_multi_row.copy()
- exp_fancy["cats"].cat.set_categories(["a", "b", "c"], inplace=True)
- df[df["cats"] == "c"] = ["b", 2]
- # category c is kept in .categories
- tm.assert_frame_equal(df, exp_fancy)
- # set_value
- df = orig.copy()
- df.at["j", "cats"] = "b"
- tm.assert_frame_equal(df, exp_single_cats_value)
- with pytest.raises(ValueError):
- df = orig.copy()
- df.at["j", "cats"] = "c"
- # Assigning a Category to parts of a int/... column uses the values of
- # the Catgorical
- df = DataFrame({"a": [1, 1, 1, 1, 1], "b": list("aaaaa")})
- exp = DataFrame({"a": [1, "b", "b", 1, 1], "b": list("aabba")})
- df.loc[1:2, "a"] = Categorical(["b", "b"], categories=["a", "b"])
- df.loc[2:3, "b"] = Categorical(["b", "b"], categories=["a", "b"])
- tm.assert_frame_equal(df, exp)
- def test_functions_no_warnings(self):
- df = DataFrame({'value': np.random.randint(0, 100, 20)})
- labels = ["{0} - {1}".format(i, i + 9) for i in range(0, 100, 10)]
- with tm.assert_produces_warning(False):
- df['group'] = pd.cut(df.value, range(0, 105, 10), right=False,
- labels=labels)
|