123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477 |
- # -*- coding: utf-8 -*-
- from __future__ import print_function
- import numpy as np
- import pytest
- from pandas.compat import lrange, u
- import pandas as pd
- from pandas import DataFrame, MultiIndex, Series, date_range
- from pandas.tests.frame.common import TestData
- import pandas.util.testing as tm
- from pandas.util.testing import assert_frame_equal, assert_series_equal
- class TestDataFrameNonuniqueIndexes(TestData):
- def test_column_dups_operations(self):
- def check(result, expected=None):
- if expected is not None:
- assert_frame_equal(result, expected)
- result.dtypes
- str(result)
- # assignment
- # GH 3687
- arr = np.random.randn(3, 2)
- idx = lrange(2)
- df = DataFrame(arr, columns=['A', 'A'])
- df.columns = idx
- expected = DataFrame(arr, columns=idx)
- check(df, expected)
- idx = date_range('20130101', periods=4, freq='Q-NOV')
- df = DataFrame([[1, 1, 1, 5], [1, 1, 2, 5], [2, 1, 3, 5]],
- columns=['a', 'a', 'a', 'a'])
- df.columns = idx
- expected = DataFrame(
- [[1, 1, 1, 5], [1, 1, 2, 5], [2, 1, 3, 5]], columns=idx)
- check(df, expected)
- # insert
- df = DataFrame([[1, 1, 1, 5], [1, 1, 2, 5], [2, 1, 3, 5]],
- columns=['foo', 'bar', 'foo', 'hello'])
- df['string'] = 'bah'
- expected = DataFrame([[1, 1, 1, 5, 'bah'], [1, 1, 2, 5, 'bah'],
- [2, 1, 3, 5, 'bah']],
- columns=['foo', 'bar', 'foo', 'hello', 'string'])
- check(df, expected)
- with pytest.raises(ValueError, match='Length of value'):
- df.insert(0, 'AnotherColumn', range(len(df.index) - 1))
- # insert same dtype
- df['foo2'] = 3
- expected = DataFrame([[1, 1, 1, 5, 'bah', 3], [1, 1, 2, 5, 'bah', 3],
- [2, 1, 3, 5, 'bah', 3]],
- columns=['foo', 'bar', 'foo', 'hello',
- 'string', 'foo2'])
- check(df, expected)
- # set (non-dup)
- df['foo2'] = 4
- expected = DataFrame([[1, 1, 1, 5, 'bah', 4], [1, 1, 2, 5, 'bah', 4],
- [2, 1, 3, 5, 'bah', 4]],
- columns=['foo', 'bar', 'foo', 'hello',
- 'string', 'foo2'])
- check(df, expected)
- df['foo2'] = 3
- # delete (non dup)
- del df['bar']
- expected = DataFrame([[1, 1, 5, 'bah', 3], [1, 2, 5, 'bah', 3],
- [2, 3, 5, 'bah', 3]],
- columns=['foo', 'foo', 'hello', 'string', 'foo2'])
- check(df, expected)
- # try to delete again (its not consolidated)
- del df['hello']
- expected = DataFrame([[1, 1, 'bah', 3], [1, 2, 'bah', 3],
- [2, 3, 'bah', 3]],
- columns=['foo', 'foo', 'string', 'foo2'])
- check(df, expected)
- # consolidate
- df = df._consolidate()
- expected = DataFrame([[1, 1, 'bah', 3], [1, 2, 'bah', 3],
- [2, 3, 'bah', 3]],
- columns=['foo', 'foo', 'string', 'foo2'])
- check(df, expected)
- # insert
- df.insert(2, 'new_col', 5.)
- expected = DataFrame([[1, 1, 5., 'bah', 3], [1, 2, 5., 'bah', 3],
- [2, 3, 5., 'bah', 3]],
- columns=['foo', 'foo', 'new_col', 'string',
- 'foo2'])
- check(df, expected)
- # insert a dup
- with pytest.raises(ValueError, match='cannot insert'):
- df.insert(2, 'new_col', 4.)
- df.insert(2, 'new_col', 4., allow_duplicates=True)
- expected = DataFrame([[1, 1, 4., 5., 'bah', 3],
- [1, 2, 4., 5., 'bah', 3],
- [2, 3, 4., 5., 'bah', 3]],
- columns=['foo', 'foo', 'new_col',
- 'new_col', 'string', 'foo2'])
- check(df, expected)
- # delete (dup)
- del df['foo']
- expected = DataFrame([[4., 5., 'bah', 3], [4., 5., 'bah', 3],
- [4., 5., 'bah', 3]],
- columns=['new_col', 'new_col', 'string', 'foo2'])
- assert_frame_equal(df, expected)
- # dup across dtypes
- df = DataFrame([[1, 1, 1., 5], [1, 1, 2., 5], [2, 1, 3., 5]],
- columns=['foo', 'bar', 'foo', 'hello'])
- check(df)
- df['foo2'] = 7.
- expected = DataFrame([[1, 1, 1., 5, 7.], [1, 1, 2., 5, 7.],
- [2, 1, 3., 5, 7.]],
- columns=['foo', 'bar', 'foo', 'hello', 'foo2'])
- check(df, expected)
- result = df['foo']
- expected = DataFrame([[1, 1.], [1, 2.], [2, 3.]],
- columns=['foo', 'foo'])
- check(result, expected)
- # multiple replacements
- df['foo'] = 'string'
- expected = DataFrame([['string', 1, 'string', 5, 7.],
- ['string', 1, 'string', 5, 7.],
- ['string', 1, 'string', 5, 7.]],
- columns=['foo', 'bar', 'foo', 'hello', 'foo2'])
- check(df, expected)
- del df['foo']
- expected = DataFrame([[1, 5, 7.], [1, 5, 7.], [1, 5, 7.]], columns=[
- 'bar', 'hello', 'foo2'])
- check(df, expected)
- # values
- df = DataFrame([[1, 2.5], [3, 4.5]], index=[1, 2], columns=['x', 'x'])
- result = df.values
- expected = np.array([[1, 2.5], [3, 4.5]])
- assert (result == expected).all().all()
- # rename, GH 4403
- df4 = DataFrame(
- {'RT': [0.0454],
- 'TClose': [22.02],
- 'TExg': [0.0422]},
- index=MultiIndex.from_tuples([(600809, 20130331)],
- names=['STK_ID', 'RPT_Date']))
- df5 = DataFrame({'RPT_Date': [20120930, 20121231, 20130331],
- 'STK_ID': [600809] * 3,
- 'STK_Name': [u('饡驦'), u('饡驦'), u('饡驦')],
- 'TClose': [38.05, 41.66, 30.01]},
- index=MultiIndex.from_tuples(
- [(600809, 20120930),
- (600809, 20121231),
- (600809, 20130331)],
- names=['STK_ID', 'RPT_Date']))
- k = pd.merge(df4, df5, how='inner', left_index=True, right_index=True)
- result = k.rename(
- columns={'TClose_x': 'TClose', 'TClose_y': 'QT_Close'})
- str(result)
- result.dtypes
- expected = (DataFrame([[0.0454, 22.02, 0.0422, 20130331, 600809,
- u('饡驦'), 30.01]],
- columns=['RT', 'TClose', 'TExg',
- 'RPT_Date', 'STK_ID', 'STK_Name',
- 'QT_Close'])
- .set_index(['STK_ID', 'RPT_Date'], drop=False))
- assert_frame_equal(result, expected)
- # reindex is invalid!
- df = DataFrame([[1, 5, 7.], [1, 5, 7.], [1, 5, 7.]],
- columns=['bar', 'a', 'a'])
- pytest.raises(ValueError, df.reindex, columns=['bar'])
- pytest.raises(ValueError, df.reindex, columns=['bar', 'foo'])
- # drop
- df = DataFrame([[1, 5, 7.], [1, 5, 7.], [1, 5, 7.]],
- columns=['bar', 'a', 'a'])
- result = df.drop(['a'], axis=1)
- expected = DataFrame([[1], [1], [1]], columns=['bar'])
- check(result, expected)
- result = df.drop('a', axis=1)
- check(result, expected)
- # describe
- df = DataFrame([[1, 1, 1], [2, 2, 2], [3, 3, 3]],
- columns=['bar', 'a', 'a'], dtype='float64')
- result = df.describe()
- s = df.iloc[:, 0].describe()
- expected = pd.concat([s, s, s], keys=df.columns, axis=1)
- check(result, expected)
- # check column dups with index equal and not equal to df's index
- df = DataFrame(np.random.randn(5, 3), index=['a', 'b', 'c', 'd', 'e'],
- columns=['A', 'B', 'A'])
- for index in [df.index, pd.Index(list('edcba'))]:
- this_df = df.copy()
- expected_ser = pd.Series(index.values, index=this_df.index)
- expected_df = DataFrame({'A': expected_ser,
- 'B': this_df['B'],
- 'A': expected_ser},
- columns=['A', 'B', 'A'])
- this_df['A'] = index
- check(this_df, expected_df)
- # operations
- for op in ['__add__', '__mul__', '__sub__', '__truediv__']:
- df = DataFrame(dict(A=np.arange(10), B=np.random.rand(10)))
- expected = getattr(df, op)(df)
- expected.columns = ['A', 'A']
- df.columns = ['A', 'A']
- result = getattr(df, op)(df)
- check(result, expected)
- # multiple assignments that change dtypes
- # the location indexer is a slice
- # GH 6120
- df = DataFrame(np.random.randn(5, 2), columns=['that', 'that'])
- expected = DataFrame(1.0, index=range(5), columns=['that', 'that'])
- df['that'] = 1.0
- check(df, expected)
- df = DataFrame(np.random.rand(5, 2), columns=['that', 'that'])
- expected = DataFrame(1, index=range(5), columns=['that', 'that'])
- df['that'] = 1
- check(df, expected)
- def test_column_dups2(self):
- # drop buggy GH 6240
- df = DataFrame({'A': np.random.randn(5),
- 'B': np.random.randn(5),
- 'C': np.random.randn(5),
- 'D': ['a', 'b', 'c', 'd', 'e']})
- expected = df.take([0, 1, 1], axis=1)
- df2 = df.take([2, 0, 1, 2, 1], axis=1)
- result = df2.drop('C', axis=1)
- assert_frame_equal(result, expected)
- # dropna
- df = DataFrame({'A': np.random.randn(5),
- 'B': np.random.randn(5),
- 'C': np.random.randn(5),
- 'D': ['a', 'b', 'c', 'd', 'e']})
- df.iloc[2, [0, 1, 2]] = np.nan
- df.iloc[0, 0] = np.nan
- df.iloc[1, 1] = np.nan
- df.iloc[:, 3] = np.nan
- expected = df.dropna(subset=['A', 'B', 'C'], how='all')
- expected.columns = ['A', 'A', 'B', 'C']
- df.columns = ['A', 'A', 'B', 'C']
- result = df.dropna(subset=['A', 'C'], how='all')
- assert_frame_equal(result, expected)
- def test_column_dups_indexing(self):
- def check(result, expected=None):
- if expected is not None:
- assert_frame_equal(result, expected)
- result.dtypes
- str(result)
- # boolean indexing
- # GH 4879
- dups = ['A', 'A', 'C', 'D']
- df = DataFrame(np.arange(12).reshape(3, 4), columns=[
- 'A', 'B', 'C', 'D'], dtype='float64')
- expected = df[df.C > 6]
- expected.columns = dups
- df = DataFrame(np.arange(12).reshape(3, 4),
- columns=dups, dtype='float64')
- result = df[df.C > 6]
- check(result, expected)
- # where
- df = DataFrame(np.arange(12).reshape(3, 4), columns=[
- 'A', 'B', 'C', 'D'], dtype='float64')
- expected = df[df > 6]
- expected.columns = dups
- df = DataFrame(np.arange(12).reshape(3, 4),
- columns=dups, dtype='float64')
- result = df[df > 6]
- check(result, expected)
- # boolean with the duplicate raises
- df = DataFrame(np.arange(12).reshape(3, 4),
- columns=dups, dtype='float64')
- pytest.raises(ValueError, lambda: df[df.A > 6])
- # dup aligining operations should work
- # GH 5185
- df1 = DataFrame([1, 2, 3, 4, 5], index=[1, 2, 1, 2, 3])
- df2 = DataFrame([1, 2, 3], index=[1, 2, 3])
- expected = DataFrame([0, 2, 0, 2, 2], index=[1, 1, 2, 2, 3])
- result = df1.sub(df2)
- assert_frame_equal(result, expected)
- # equality
- df1 = DataFrame([[1, 2], [2, np.nan], [3, 4], [4, 4]],
- columns=['A', 'B'])
- df2 = DataFrame([[0, 1], [2, 4], [2, np.nan], [4, 5]],
- columns=['A', 'A'])
- # not-comparing like-labelled
- pytest.raises(ValueError, lambda: df1 == df2)
- df1r = df1.reindex_like(df2)
- result = df1r == df2
- expected = DataFrame([[False, True], [True, False], [False, False], [
- True, False]], columns=['A', 'A'])
- assert_frame_equal(result, expected)
- # mixed column selection
- # GH 5639
- dfbool = DataFrame({'one': Series([True, True, False],
- index=['a', 'b', 'c']),
- 'two': Series([False, False, True, False],
- index=['a', 'b', 'c', 'd']),
- 'three': Series([False, True, True, True],
- index=['a', 'b', 'c', 'd'])})
- expected = pd.concat(
- [dfbool['one'], dfbool['three'], dfbool['one']], axis=1)
- result = dfbool[['one', 'three', 'one']]
- check(result, expected)
- # multi-axis dups
- # GH 6121
- df = DataFrame(np.arange(25.).reshape(5, 5),
- index=['a', 'b', 'c', 'd', 'e'],
- columns=['A', 'B', 'C', 'D', 'E'])
- z = df[['A', 'C', 'A']].copy()
- expected = z.loc[['a', 'c', 'a']]
- df = DataFrame(np.arange(25.).reshape(5, 5),
- index=['a', 'b', 'c', 'd', 'e'],
- columns=['A', 'B', 'C', 'D', 'E'])
- z = df[['A', 'C', 'A']]
- result = z.loc[['a', 'c', 'a']]
- check(result, expected)
- def test_column_dups_indexing2(self):
- # GH 8363
- # datetime ops with a non-unique index
- df = DataFrame({'A': np.arange(5, dtype='int64'),
- 'B': np.arange(1, 6, dtype='int64')},
- index=[2, 2, 3, 3, 4])
- result = df.B - df.A
- expected = Series(1, index=[2, 2, 3, 3, 4])
- assert_series_equal(result, expected)
- df = DataFrame({'A': date_range('20130101', periods=5),
- 'B': date_range('20130101 09:00:00', periods=5)},
- index=[2, 2, 3, 3, 4])
- result = df.B - df.A
- expected = Series(pd.Timedelta('9 hours'), index=[2, 2, 3, 3, 4])
- assert_series_equal(result, expected)
- def test_columns_with_dups(self):
- # GH 3468 related
- # basic
- df = DataFrame([[1, 2]], columns=['a', 'a'])
- df.columns = ['a', 'a.1']
- str(df)
- expected = DataFrame([[1, 2]], columns=['a', 'a.1'])
- assert_frame_equal(df, expected)
- df = DataFrame([[1, 2, 3]], columns=['b', 'a', 'a'])
- df.columns = ['b', 'a', 'a.1']
- str(df)
- expected = DataFrame([[1, 2, 3]], columns=['b', 'a', 'a.1'])
- assert_frame_equal(df, expected)
- # with a dup index
- df = DataFrame([[1, 2]], columns=['a', 'a'])
- df.columns = ['b', 'b']
- str(df)
- expected = DataFrame([[1, 2]], columns=['b', 'b'])
- assert_frame_equal(df, expected)
- # multi-dtype
- df = DataFrame([[1, 2, 1., 2., 3., 'foo', 'bar']],
- columns=['a', 'a', 'b', 'b', 'd', 'c', 'c'])
- df.columns = list('ABCDEFG')
- str(df)
- expected = DataFrame(
- [[1, 2, 1., 2., 3., 'foo', 'bar']], columns=list('ABCDEFG'))
- assert_frame_equal(df, expected)
- # this is an error because we cannot disambiguate the dup columns
- pytest.raises(Exception, lambda x: DataFrame(
- [[1, 2, 'foo', 'bar']], columns=['a', 'a', 'a', 'a']))
- # dups across blocks
- df_float = DataFrame(np.random.randn(10, 3), dtype='float64')
- df_int = DataFrame(np.random.randn(10, 3), dtype='int64')
- df_bool = DataFrame(True, index=df_float.index,
- columns=df_float.columns)
- df_object = DataFrame('foo', index=df_float.index,
- columns=df_float.columns)
- df_dt = DataFrame(pd.Timestamp('20010101'),
- index=df_float.index,
- columns=df_float.columns)
- df = pd.concat([df_float, df_int, df_bool, df_object, df_dt], axis=1)
- assert len(df._data._blknos) == len(df.columns)
- assert len(df._data._blklocs) == len(df.columns)
- # testing iloc
- for i in range(len(df.columns)):
- df.iloc[:, i]
- # dup columns across dtype GH 2079/2194
- vals = [[1, -1, 2.], [2, -2, 3.]]
- rs = DataFrame(vals, columns=['A', 'A', 'B'])
- xp = DataFrame(vals)
- xp.columns = ['A', 'A', 'B']
- assert_frame_equal(rs, xp)
- def test_values_duplicates(self):
- df = DataFrame([[1, 2, 'a', 'b'],
- [1, 2, 'a', 'b']],
- columns=['one', 'one', 'two', 'two'])
- result = df.values
- expected = np.array([[1, 2, 'a', 'b'], [1, 2, 'a', 'b']],
- dtype=object)
- tm.assert_numpy_array_equal(result, expected)
- def test_set_value_by_index(self):
- # See gh-12344
- df = DataFrame(np.arange(9).reshape(3, 3).T)
- df.columns = list('AAA')
- expected = df.iloc[:, 2]
- df.iloc[:, 0] = 3
- assert_series_equal(df.iloc[:, 2], expected)
- df = DataFrame(np.arange(9).reshape(3, 3).T)
- df.columns = [2, float(2), str(2)]
- expected = df.iloc[:, 1]
- df.iloc[:, 0] = 3
- assert_series_equal(df.iloc[:, 1], expected)
- def test_insert_with_columns_dups(self):
- # GH 14291
- df = pd.DataFrame()
- df.insert(0, 'A', ['g', 'h', 'i'], allow_duplicates=True)
- df.insert(0, 'A', ['d', 'e', 'f'], allow_duplicates=True)
- df.insert(0, 'A', ['a', 'b', 'c'], allow_duplicates=True)
- exp = pd.DataFrame([['a', 'd', 'g'], ['b', 'e', 'h'],
- ['c', 'f', 'i']], columns=['A', 'A', 'A'])
- assert_frame_equal(df, exp)
|