123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289 |
- # -*- coding: utf-8 -*-
- """
- test .agg behavior / note that .apply is tested generally in test_groupby.py
- """
- import numpy as np
- import pytest
- from pandas.compat import OrderedDict
- import pandas as pd
- from pandas import DataFrame, Index, MultiIndex, Series, concat
- from pandas.core.base import SpecificationError
- from pandas.core.groupby.grouper import Grouping
- import pandas.util.testing as tm
- def test_agg_regression1(tsframe):
- grouped = tsframe.groupby([lambda x: x.year, lambda x: x.month])
- result = grouped.agg(np.mean)
- expected = grouped.mean()
- tm.assert_frame_equal(result, expected)
- def test_agg_must_agg(df):
- grouped = df.groupby('A')['C']
- msg = "Must produce aggregated value"
- with pytest.raises(Exception, match=msg):
- grouped.agg(lambda x: x.describe())
- with pytest.raises(Exception, match=msg):
- grouped.agg(lambda x: x.index[:2])
- def test_agg_ser_multi_key(df):
- # TODO(wesm): unused
- ser = df.C # noqa
- f = lambda x: x.sum()
- results = df.C.groupby([df.A, df.B]).aggregate(f)
- expected = df.groupby(['A', 'B']).sum()['C']
- tm.assert_series_equal(results, expected)
- def test_groupby_aggregation_mixed_dtype():
- # GH 6212
- expected = DataFrame({
- 'v1': [5, 5, 7, np.nan, 3, 3, 4, 1],
- 'v2': [55, 55, 77, np.nan, 33, 33, 44, 11]},
- index=MultiIndex.from_tuples([(1, 95), (1, 99), (2, 95), (2, 99),
- ('big', 'damp'),
- ('blue', 'dry'),
- ('red', 'red'), ('red', 'wet')],
- names=['by1', 'by2']))
- df = DataFrame({
- 'v1': [1, 3, 5, 7, 8, 3, 5, np.nan, 4, 5, 7, 9],
- 'v2': [11, 33, 55, 77, 88, 33, 55, np.nan, 44, 55, 77, 99],
- 'by1': ["red", "blue", 1, 2, np.nan, "big", 1, 2, "red", 1, np.nan,
- 12],
- 'by2': ["wet", "dry", 99, 95, np.nan, "damp", 95, 99, "red", 99,
- np.nan, np.nan]
- })
- g = df.groupby(['by1', 'by2'])
- result = g[['v1', 'v2']].mean()
- tm.assert_frame_equal(result, expected)
- def test_agg_apply_corner(ts, tsframe):
- # nothing to group, all NA
- grouped = ts.groupby(ts * np.nan)
- assert ts.dtype == np.float64
- # groupby float64 values results in Float64Index
- exp = Series([], dtype=np.float64,
- index=pd.Index([], dtype=np.float64))
- tm.assert_series_equal(grouped.sum(), exp)
- tm.assert_series_equal(grouped.agg(np.sum), exp)
- tm.assert_series_equal(grouped.apply(np.sum), exp,
- check_index_type=False)
- # DataFrame
- grouped = tsframe.groupby(tsframe['A'] * np.nan)
- exp_df = DataFrame(columns=tsframe.columns, dtype=float,
- index=pd.Index([], dtype=np.float64))
- tm.assert_frame_equal(grouped.sum(), exp_df, check_names=False)
- tm.assert_frame_equal(grouped.agg(np.sum), exp_df, check_names=False)
- tm.assert_frame_equal(grouped.apply(np.sum), exp_df.iloc[:, :0],
- check_names=False)
- def test_agg_grouping_is_list_tuple(ts):
- df = tm.makeTimeDataFrame()
- grouped = df.groupby(lambda x: x.year)
- grouper = grouped.grouper.groupings[0].grouper
- grouped.grouper.groupings[0] = Grouping(ts.index, list(grouper))
- result = grouped.agg(np.mean)
- expected = grouped.mean()
- tm.assert_frame_equal(result, expected)
- grouped.grouper.groupings[0] = Grouping(ts.index, tuple(grouper))
- result = grouped.agg(np.mean)
- expected = grouped.mean()
- tm.assert_frame_equal(result, expected)
- def test_agg_python_multiindex(mframe):
- grouped = mframe.groupby(['A', 'B'])
- result = grouped.agg(np.mean)
- expected = grouped.mean()
- tm.assert_frame_equal(result, expected)
- @pytest.mark.parametrize('groupbyfunc', [
- lambda x: x.weekday(),
- [lambda x: x.month, lambda x: x.weekday()],
- ])
- def test_aggregate_str_func(tsframe, groupbyfunc):
- grouped = tsframe.groupby(groupbyfunc)
- # single series
- result = grouped['A'].agg('std')
- expected = grouped['A'].std()
- tm.assert_series_equal(result, expected)
- # group frame by function name
- result = grouped.aggregate('var')
- expected = grouped.var()
- tm.assert_frame_equal(result, expected)
- # group frame by function dict
- result = grouped.agg(OrderedDict([['A', 'var'],
- ['B', 'std'],
- ['C', 'mean'],
- ['D', 'sem']]))
- expected = DataFrame(OrderedDict([['A', grouped['A'].var()],
- ['B', grouped['B'].std()],
- ['C', grouped['C'].mean()],
- ['D', grouped['D'].sem()]]))
- tm.assert_frame_equal(result, expected)
- def test_aggregate_item_by_item(df):
- grouped = df.groupby('A')
- aggfun = lambda ser: ser.size
- result = grouped.agg(aggfun)
- foo = (df.A == 'foo').sum()
- bar = (df.A == 'bar').sum()
- K = len(result.columns)
- # GH5782
- # odd comparisons can result here, so cast to make easy
- exp = pd.Series(np.array([foo] * K), index=list('BCD'),
- dtype=np.float64, name='foo')
- tm.assert_series_equal(result.xs('foo'), exp)
- exp = pd.Series(np.array([bar] * K), index=list('BCD'),
- dtype=np.float64, name='bar')
- tm.assert_almost_equal(result.xs('bar'), exp)
- def aggfun(ser):
- return ser.size
- result = DataFrame().groupby(df.A).agg(aggfun)
- assert isinstance(result, DataFrame)
- assert len(result) == 0
- def test_wrap_agg_out(three_group):
- grouped = three_group.groupby(['A', 'B'])
- def func(ser):
- if ser.dtype == np.object:
- raise TypeError
- else:
- return ser.sum()
- result = grouped.aggregate(func)
- exp_grouped = three_group.loc[:, three_group.columns != 'C']
- expected = exp_grouped.groupby(['A', 'B']).aggregate(func)
- tm.assert_frame_equal(result, expected)
- def test_agg_multiple_functions_maintain_order(df):
- # GH #610
- funcs = [('mean', np.mean), ('max', np.max), ('min', np.min)]
- result = df.groupby('A')['C'].agg(funcs)
- exp_cols = Index(['mean', 'max', 'min'])
- tm.assert_index_equal(result.columns, exp_cols)
- def test_multiple_functions_tuples_and_non_tuples(df):
- # #1359
- funcs = [('foo', 'mean'), 'std']
- ex_funcs = [('foo', 'mean'), ('std', 'std')]
- result = df.groupby('A')['C'].agg(funcs)
- expected = df.groupby('A')['C'].agg(ex_funcs)
- tm.assert_frame_equal(result, expected)
- result = df.groupby('A').agg(funcs)
- expected = df.groupby('A').agg(ex_funcs)
- tm.assert_frame_equal(result, expected)
- def test_agg_multiple_functions_too_many_lambdas(df):
- grouped = df.groupby('A')
- funcs = ['mean', lambda x: x.mean(), lambda x: x.std()]
- msg = 'Function names must be unique, found multiple named <lambda>'
- with pytest.raises(SpecificationError, match=msg):
- grouped.agg(funcs)
- def test_more_flexible_frame_multi_function(df):
- grouped = df.groupby('A')
- exmean = grouped.agg(OrderedDict([['C', np.mean], ['D', np.mean]]))
- exstd = grouped.agg(OrderedDict([['C', np.std], ['D', np.std]]))
- expected = concat([exmean, exstd], keys=['mean', 'std'], axis=1)
- expected = expected.swaplevel(0, 1, axis=1).sort_index(level=0, axis=1)
- d = OrderedDict([['C', [np.mean, np.std]], ['D', [np.mean, np.std]]])
- result = grouped.aggregate(d)
- tm.assert_frame_equal(result, expected)
- # be careful
- result = grouped.aggregate(OrderedDict([['C', np.mean],
- ['D', [np.mean, np.std]]]))
- expected = grouped.aggregate(OrderedDict([['C', np.mean],
- ['D', [np.mean, np.std]]]))
- tm.assert_frame_equal(result, expected)
- def foo(x):
- return np.mean(x)
- def bar(x):
- return np.std(x, ddof=1)
- # this uses column selection & renaming
- with tm.assert_produces_warning(FutureWarning, check_stacklevel=False):
- d = OrderedDict([['C', np.mean],
- ['D', OrderedDict([['foo', np.mean],
- ['bar', np.std]])]])
- result = grouped.aggregate(d)
- d = OrderedDict([['C', [np.mean]], ['D', [foo, bar]]])
- expected = grouped.aggregate(d)
- tm.assert_frame_equal(result, expected)
- def test_multi_function_flexible_mix(df):
- # GH #1268
- grouped = df.groupby('A')
- # Expected
- d = OrderedDict([['C', OrderedDict([['foo', 'mean'], ['bar', 'std']])],
- ['D', {'sum': 'sum'}]])
- # this uses column selection & renaming
- with tm.assert_produces_warning(FutureWarning, check_stacklevel=False):
- expected = grouped.aggregate(d)
- # Test 1
- d = OrderedDict([['C', OrderedDict([['foo', 'mean'], ['bar', 'std']])],
- ['D', 'sum']])
- # this uses column selection & renaming
- with tm.assert_produces_warning(FutureWarning, check_stacklevel=False):
- result = grouped.aggregate(d)
- tm.assert_frame_equal(result, expected)
- # Test 2
- d = OrderedDict([['C', OrderedDict([['foo', 'mean'], ['bar', 'std']])],
- ['D', ['sum']]])
- # this uses column selection & renaming
- with tm.assert_produces_warning(FutureWarning, check_stacklevel=False):
- result = grouped.aggregate(d)
- tm.assert_frame_equal(result, expected)
|