123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218 |
- # -*- coding: utf-8 -*-
- """
- test cython .agg behavior
- """
- from __future__ import print_function
- import numpy as np
- import pytest
- import pandas as pd
- from pandas import (
- DataFrame, Index, NaT, Series, Timedelta, Timestamp, bdate_range)
- from pandas.core.groupby.groupby import DataError
- import pandas.util.testing as tm
- @pytest.mark.parametrize('op_name', [
- 'count',
- 'sum',
- 'std',
- 'var',
- 'sem',
- 'mean',
- pytest.param('median',
- # ignore mean of empty slice
- # and all-NaN
- marks=[pytest.mark.filterwarnings(
- "ignore::RuntimeWarning"
- )]),
- 'prod',
- 'min',
- 'max',
- ])
- def test_cythonized_aggers(op_name):
- data = {'A': [0, 0, 0, 0, 1, 1, 1, 1, 1, 1., np.nan, np.nan],
- 'B': ['A', 'B'] * 6,
- 'C': np.random.randn(12)}
- df = DataFrame(data)
- df.loc[2:10:2, 'C'] = np.nan
- op = lambda x: getattr(x, op_name)()
- # single column
- grouped = df.drop(['B'], axis=1).groupby('A')
- exp = {cat: op(group['C']) for cat, group in grouped}
- exp = DataFrame({'C': exp})
- exp.index.name = 'A'
- result = op(grouped)
- tm.assert_frame_equal(result, exp)
- # multiple columns
- grouped = df.groupby(['A', 'B'])
- expd = {}
- for (cat1, cat2), group in grouped:
- expd.setdefault(cat1, {})[cat2] = op(group['C'])
- exp = DataFrame(expd).T.stack(dropna=False)
- exp.index.names = ['A', 'B']
- exp.name = 'C'
- result = op(grouped)['C']
- if op_name in ['sum', 'prod']:
- tm.assert_series_equal(result, exp)
- def test_cython_agg_boolean():
- frame = DataFrame({'a': np.random.randint(0, 5, 50),
- 'b': np.random.randint(0, 2, 50).astype('bool')})
- result = frame.groupby('a')['b'].mean()
- expected = frame.groupby('a')['b'].agg(np.mean)
- tm.assert_series_equal(result, expected)
- def test_cython_agg_nothing_to_agg():
- frame = DataFrame({'a': np.random.randint(0, 5, 50),
- 'b': ['foo', 'bar'] * 25})
- msg = "No numeric types to aggregate"
- with pytest.raises(DataError, match=msg):
- frame.groupby('a')['b'].mean()
- frame = DataFrame({'a': np.random.randint(0, 5, 50),
- 'b': ['foo', 'bar'] * 25})
- with pytest.raises(DataError, match=msg):
- frame[['b']].groupby(frame['a']).mean()
- def test_cython_agg_nothing_to_agg_with_dates():
- frame = DataFrame({'a': np.random.randint(0, 5, 50),
- 'b': ['foo', 'bar'] * 25,
- 'dates': pd.date_range('now', periods=50, freq='T')})
- msg = "No numeric types to aggregate"
- with pytest.raises(DataError, match=msg):
- frame.groupby('b').dates.mean()
- def test_cython_agg_frame_columns():
- # #2113
- df = DataFrame({'x': [1, 2, 3], 'y': [3, 4, 5]})
- df.groupby(level=0, axis='columns').mean()
- df.groupby(level=0, axis='columns').mean()
- df.groupby(level=0, axis='columns').mean()
- df.groupby(level=0, axis='columns').mean()
- def test_cython_agg_return_dict():
- # GH 16741
- df = DataFrame(
- {'A': ['foo', 'bar', 'foo', 'bar', 'foo', 'bar', 'foo', 'foo'],
- 'B': ['one', 'one', 'two', 'three', 'two', 'two', 'one', 'three'],
- 'C': np.random.randn(8),
- 'D': np.random.randn(8)})
- ts = df.groupby('A')['B'].agg(lambda x: x.value_counts().to_dict())
- expected = Series([{'two': 1, 'one': 1, 'three': 1},
- {'two': 2, 'one': 2, 'three': 1}],
- index=Index(['bar', 'foo'], name='A'),
- name='B')
- tm.assert_series_equal(ts, expected)
- def test_cython_fail_agg():
- dr = bdate_range('1/1/2000', periods=50)
- ts = Series(['A', 'B', 'C', 'D', 'E'] * 10, index=dr)
- grouped = ts.groupby(lambda x: x.month)
- summed = grouped.sum()
- expected = grouped.agg(np.sum)
- tm.assert_series_equal(summed, expected)
- @pytest.mark.parametrize('op, targop', [
- ('mean', np.mean),
- ('median', np.median),
- ('var', np.var),
- ('add', np.sum),
- ('prod', np.prod),
- ('min', np.min),
- ('max', np.max),
- ('first', lambda x: x.iloc[0]),
- ('last', lambda x: x.iloc[-1]),
- ])
- def test__cython_agg_general(op, targop):
- df = DataFrame(np.random.randn(1000))
- labels = np.random.randint(0, 50, size=1000).astype(float)
- result = df.groupby(labels)._cython_agg_general(op)
- expected = df.groupby(labels).agg(targop)
- tm.assert_frame_equal(result, expected)
- @pytest.mark.parametrize('op, targop', [
- ('mean', np.mean),
- ('median', lambda x: np.median(x) if len(x) > 0 else np.nan),
- ('var', lambda x: np.var(x, ddof=1)),
- ('min', np.min),
- ('max', np.max), ]
- )
- def test_cython_agg_empty_buckets(op, targop, observed):
- df = pd.DataFrame([11, 12, 13])
- grps = range(0, 55, 5)
- # calling _cython_agg_general directly, instead of via the user API
- # which sets different values for min_count, so do that here.
- g = df.groupby(pd.cut(df[0], grps), observed=observed)
- result = g._cython_agg_general(op)
- g = df.groupby(pd.cut(df[0], grps), observed=observed)
- expected = g.agg(lambda x: targop(x))
- tm.assert_frame_equal(result, expected)
- def test_cython_agg_empty_buckets_nanops(observed):
- # GH-18869 can't call nanops on empty groups, so hardcode expected
- # for these
- df = pd.DataFrame([11, 12, 13], columns=['a'])
- grps = range(0, 25, 5)
- # add / sum
- result = df.groupby(pd.cut(df['a'], grps),
- observed=observed)._cython_agg_general('add')
- intervals = pd.interval_range(0, 20, freq=5)
- expected = pd.DataFrame(
- {"a": [0, 0, 36, 0]},
- index=pd.CategoricalIndex(intervals, name='a', ordered=True))
- if observed:
- expected = expected[expected.a != 0]
- tm.assert_frame_equal(result, expected)
- # prod
- result = df.groupby(pd.cut(df['a'], grps),
- observed=observed)._cython_agg_general('prod')
- expected = pd.DataFrame(
- {"a": [1, 1, 1716, 1]},
- index=pd.CategoricalIndex(intervals, name='a', ordered=True))
- if observed:
- expected = expected[expected.a != 1]
- tm.assert_frame_equal(result, expected)
- @pytest.mark.parametrize('op', ['first', 'last', 'max', 'min'])
- @pytest.mark.parametrize('data', [
- Timestamp('2016-10-14 21:00:44.557'),
- Timedelta('17088 days 21:00:44.557'), ])
- def test_cython_with_timestamp_and_nat(op, data):
- # https://github.com/pandas-dev/pandas/issues/19526
- df = DataFrame({'a': [0, 1], 'b': [data, NaT]})
- index = Index([0, 1], name='a')
- # We will group by a and test the cython aggregations
- expected = DataFrame({'b': [data, NaT]}, index=index)
- result = df.groupby('a').aggregate(op)
- tm.assert_frame_equal(expected, result)
|