123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542 |
- from datetime import datetime
- import numpy as np
- import pytest
- import pandas as pd
- from pandas import DataFrame, Index, MultiIndex, Series, bdate_range, compat
- from pandas.util import testing as tm
- def test_apply_issues():
- # GH 5788
- s = """2011.05.16,00:00,1.40893
- 2011.05.16,01:00,1.40760
- 2011.05.16,02:00,1.40750
- 2011.05.16,03:00,1.40649
- 2011.05.17,02:00,1.40893
- 2011.05.17,03:00,1.40760
- 2011.05.17,04:00,1.40750
- 2011.05.17,05:00,1.40649
- 2011.05.18,02:00,1.40893
- 2011.05.18,03:00,1.40760
- 2011.05.18,04:00,1.40750
- 2011.05.18,05:00,1.40649"""
- df = pd.read_csv(
- compat.StringIO(s), header=None, names=['date', 'time', 'value'],
- parse_dates=[['date', 'time']])
- df = df.set_index('date_time')
- expected = df.groupby(df.index.date).idxmax()
- result = df.groupby(df.index.date).apply(lambda x: x.idxmax())
- tm.assert_frame_equal(result, expected)
- # GH 5789
- # don't auto coerce dates
- df = pd.read_csv(
- compat.StringIO(s), header=None, names=['date', 'time', 'value'])
- exp_idx = pd.Index(
- ['2011.05.16', '2011.05.17', '2011.05.18'
- ], dtype=object, name='date')
- expected = Series(['00:00', '02:00', '02:00'], index=exp_idx)
- result = df.groupby('date').apply(
- lambda x: x['time'][x['value'].idxmax()])
- tm.assert_series_equal(result, expected)
- def test_apply_trivial():
- # GH 20066
- # trivial apply: ignore input and return a constant dataframe.
- df = pd.DataFrame({'key': ['a', 'a', 'b', 'b', 'a'],
- 'data': [1.0, 2.0, 3.0, 4.0, 5.0]},
- columns=['key', 'data'])
- expected = pd.concat([df.iloc[1:], df.iloc[1:]],
- axis=1, keys=['float64', 'object'])
- result = df.groupby([str(x) for x in df.dtypes],
- axis=1).apply(lambda x: df.iloc[1:])
- tm.assert_frame_equal(result, expected)
- @pytest.mark.xfail(reason="GH#20066; function passed into apply "
- "returns a DataFrame with the same index "
- "as the one to create GroupBy object.")
- def test_apply_trivial_fail():
- # GH 20066
- # trivial apply fails if the constant dataframe has the same index
- # with the one used to create GroupBy object.
- df = pd.DataFrame({'key': ['a', 'a', 'b', 'b', 'a'],
- 'data': [1.0, 2.0, 3.0, 4.0, 5.0]},
- columns=['key', 'data'])
- expected = pd.concat([df, df],
- axis=1, keys=['float64', 'object'])
- result = df.groupby([str(x) for x in df.dtypes],
- axis=1).apply(lambda x: df)
- tm.assert_frame_equal(result, expected)
- def test_fast_apply():
- # make sure that fast apply is correctly called
- # rather than raising any kind of error
- # otherwise the python path will be callsed
- # which slows things down
- N = 1000
- labels = np.random.randint(0, 2000, size=N)
- labels2 = np.random.randint(0, 3, size=N)
- df = DataFrame({'key': labels,
- 'key2': labels2,
- 'value1': np.random.randn(N),
- 'value2': ['foo', 'bar', 'baz', 'qux'] * (N // 4)})
- def f(g):
- return 1
- g = df.groupby(['key', 'key2'])
- grouper = g.grouper
- splitter = grouper._get_splitter(g._selected_obj, axis=g.axis)
- group_keys = grouper._get_group_keys()
- values, mutated = splitter.fast_apply(f, group_keys)
- assert not mutated
- def test_apply_with_mixed_dtype():
- # GH3480, apply with mixed dtype on axis=1 breaks in 0.11
- df = DataFrame({'foo1': np.random.randn(6),
- 'foo2': ['one', 'two', 'two', 'three', 'one', 'two']})
- result = df.apply(lambda x: x, axis=1)
- tm.assert_series_equal(df.get_dtype_counts(), result.get_dtype_counts())
- # GH 3610 incorrect dtype conversion with as_index=False
- df = DataFrame({"c1": [1, 2, 6, 6, 8]})
- df["c2"] = df.c1 / 2.0
- result1 = df.groupby("c2").mean().reset_index().c2
- result2 = df.groupby("c2", as_index=False).mean().c2
- tm.assert_series_equal(result1, result2)
- def test_groupby_as_index_apply(df):
- # GH #4648 and #3417
- df = DataFrame({'item_id': ['b', 'b', 'a', 'c', 'a', 'b'],
- 'user_id': [1, 2, 1, 1, 3, 1],
- 'time': range(6)})
- g_as = df.groupby('user_id', as_index=True)
- g_not_as = df.groupby('user_id', as_index=False)
- res_as = g_as.head(2).index
- res_not_as = g_not_as.head(2).index
- exp = Index([0, 1, 2, 4])
- tm.assert_index_equal(res_as, exp)
- tm.assert_index_equal(res_not_as, exp)
- res_as_apply = g_as.apply(lambda x: x.head(2)).index
- res_not_as_apply = g_not_as.apply(lambda x: x.head(2)).index
- # apply doesn't maintain the original ordering
- # changed in GH5610 as the as_index=False returns a MI here
- exp_not_as_apply = MultiIndex.from_tuples([(0, 0), (0, 2), (1, 1), (
- 2, 4)])
- tp = [(1, 0), (1, 2), (2, 1), (3, 4)]
- exp_as_apply = MultiIndex.from_tuples(tp, names=['user_id', None])
- tm.assert_index_equal(res_as_apply, exp_as_apply)
- tm.assert_index_equal(res_not_as_apply, exp_not_as_apply)
- ind = Index(list('abcde'))
- df = DataFrame([[1, 2], [2, 3], [1, 4], [1, 5], [2, 6]], index=ind)
- res = df.groupby(0, as_index=False).apply(lambda x: x).index
- tm.assert_index_equal(res, ind)
- def test_apply_concat_preserve_names(three_group):
- grouped = three_group.groupby(['A', 'B'])
- def desc(group):
- result = group.describe()
- result.index.name = 'stat'
- return result
- def desc2(group):
- result = group.describe()
- result.index.name = 'stat'
- result = result[:len(group)]
- # weirdo
- return result
- def desc3(group):
- result = group.describe()
- # names are different
- result.index.name = 'stat_%d' % len(group)
- result = result[:len(group)]
- # weirdo
- return result
- result = grouped.apply(desc)
- assert result.index.names == ('A', 'B', 'stat')
- result2 = grouped.apply(desc2)
- assert result2.index.names == ('A', 'B', 'stat')
- result3 = grouped.apply(desc3)
- assert result3.index.names == ('A', 'B', None)
- def test_apply_series_to_frame():
- def f(piece):
- with np.errstate(invalid='ignore'):
- logged = np.log(piece)
- return DataFrame({'value': piece,
- 'demeaned': piece - piece.mean(),
- 'logged': logged})
- dr = bdate_range('1/1/2000', periods=100)
- ts = Series(np.random.randn(100), index=dr)
- grouped = ts.groupby(lambda x: x.month)
- result = grouped.apply(f)
- assert isinstance(result, DataFrame)
- tm.assert_index_equal(result.index, ts.index)
- def test_apply_series_yield_constant(df):
- result = df.groupby(['A', 'B'])['C'].apply(len)
- assert result.index.names[:2] == ('A', 'B')
- def test_apply_frame_yield_constant(df):
- # GH13568
- result = df.groupby(['A', 'B']).apply(len)
- assert isinstance(result, Series)
- assert result.name is None
- result = df.groupby(['A', 'B'])[['C', 'D']].apply(len)
- assert isinstance(result, Series)
- assert result.name is None
- def test_apply_frame_to_series(df):
- grouped = df.groupby(['A', 'B'])
- result = grouped.apply(len)
- expected = grouped.count()['C']
- tm.assert_index_equal(result.index, expected.index)
- tm.assert_numpy_array_equal(result.values, expected.values)
- def test_apply_frame_concat_series():
- def trans(group):
- return group.groupby('B')['C'].sum().sort_values()[:2]
- def trans2(group):
- grouped = group.groupby(df.reindex(group.index)['B'])
- return grouped.sum().sort_values()[:2]
- df = DataFrame({'A': np.random.randint(0, 5, 1000),
- 'B': np.random.randint(0, 5, 1000),
- 'C': np.random.randn(1000)})
- result = df.groupby('A').apply(trans)
- exp = df.groupby('A')['C'].apply(trans2)
- tm.assert_series_equal(result, exp, check_names=False)
- assert result.name == 'C'
- def test_apply_transform(ts):
- grouped = ts.groupby(lambda x: x.month)
- result = grouped.apply(lambda x: x * 2)
- expected = grouped.transform(lambda x: x * 2)
- tm.assert_series_equal(result, expected)
- def test_apply_multikey_corner(tsframe):
- grouped = tsframe.groupby([lambda x: x.year, lambda x: x.month])
- def f(group):
- return group.sort_values('A')[-5:]
- result = grouped.apply(f)
- for key, group in grouped:
- tm.assert_frame_equal(result.loc[key], f(group))
- def test_apply_chunk_view():
- # Low level tinkering could be unsafe, make sure not
- df = DataFrame({'key': [1, 1, 1, 2, 2, 2, 3, 3, 3],
- 'value': compat.lrange(9)})
- result = df.groupby('key', group_keys=False).apply(lambda x: x[:2])
- expected = df.take([0, 1, 3, 4, 6, 7])
- tm.assert_frame_equal(result, expected)
- def test_apply_no_name_column_conflict():
- df = DataFrame({'name': [1, 1, 1, 1, 1, 1, 2, 2, 2, 2],
- 'name2': [0, 0, 0, 1, 1, 1, 0, 0, 1, 1],
- 'value': compat.lrange(10)[::-1]})
- # it works! #2605
- grouped = df.groupby(['name', 'name2'])
- grouped.apply(lambda x: x.sort_values('value', inplace=True))
- def test_apply_typecast_fail():
- df = DataFrame({'d': [1., 1., 1., 2., 2., 2.],
- 'c': np.tile(
- ['a', 'b', 'c'], 2),
- 'v': np.arange(1., 7.)})
- def f(group):
- v = group['v']
- group['v2'] = (v - v.min()) / (v.max() - v.min())
- return group
- result = df.groupby('d').apply(f)
- expected = df.copy()
- expected['v2'] = np.tile([0., 0.5, 1], 2)
- tm.assert_frame_equal(result, expected)
- def test_apply_multiindex_fail():
- index = MultiIndex.from_arrays([[0, 0, 0, 1, 1, 1], [1, 2, 3, 1, 2, 3]
- ])
- df = DataFrame({'d': [1., 1., 1., 2., 2., 2.],
- 'c': np.tile(['a', 'b', 'c'], 2),
- 'v': np.arange(1., 7.)}, index=index)
- def f(group):
- v = group['v']
- group['v2'] = (v - v.min()) / (v.max() - v.min())
- return group
- result = df.groupby('d').apply(f)
- expected = df.copy()
- expected['v2'] = np.tile([0., 0.5, 1], 2)
- tm.assert_frame_equal(result, expected)
- def test_apply_corner(tsframe):
- result = tsframe.groupby(lambda x: x.year).apply(lambda x: x * 2)
- expected = tsframe * 2
- tm.assert_frame_equal(result, expected)
- def test_apply_without_copy():
- # GH 5545
- # returning a non-copy in an applied function fails
- data = DataFrame({'id_field': [100, 100, 200, 300],
- 'category': ['a', 'b', 'c', 'c'],
- 'value': [1, 2, 3, 4]})
- def filt1(x):
- if x.shape[0] == 1:
- return x.copy()
- else:
- return x[x.category == 'c']
- def filt2(x):
- if x.shape[0] == 1:
- return x
- else:
- return x[x.category == 'c']
- expected = data.groupby('id_field').apply(filt1)
- result = data.groupby('id_field').apply(filt2)
- tm.assert_frame_equal(result, expected)
- def test_apply_corner_cases():
- # #535, can't use sliding iterator
- N = 1000
- labels = np.random.randint(0, 100, size=N)
- df = DataFrame({'key': labels,
- 'value1': np.random.randn(N),
- 'value2': ['foo', 'bar', 'baz', 'qux'] * (N // 4)})
- grouped = df.groupby('key')
- def f(g):
- g['value3'] = g['value1'] * 2
- return g
- result = grouped.apply(f)
- assert 'value3' in result
- def test_apply_numeric_coercion_when_datetime():
- # In the past, group-by/apply operations have been over-eager
- # in converting dtypes to numeric, in the presence of datetime
- # columns. Various GH issues were filed, the reproductions
- # for which are here.
- # GH 15670
- df = pd.DataFrame({'Number': [1, 2],
- 'Date': ["2017-03-02"] * 2,
- 'Str': ["foo", "inf"]})
- expected = df.groupby(['Number']).apply(lambda x: x.iloc[0])
- df.Date = pd.to_datetime(df.Date)
- result = df.groupby(['Number']).apply(lambda x: x.iloc[0])
- tm.assert_series_equal(result['Str'], expected['Str'])
- # GH 15421
- df = pd.DataFrame({'A': [10, 20, 30],
- 'B': ['foo', '3', '4'],
- 'T': [pd.Timestamp("12:31:22")] * 3})
- def get_B(g):
- return g.iloc[0][['B']]
- result = df.groupby('A').apply(get_B)['B']
- expected = df.B
- expected.index = df.A
- tm.assert_series_equal(result, expected)
- # GH 14423
- def predictions(tool):
- out = pd.Series(index=['p1', 'p2', 'useTime'], dtype=object)
- if 'step1' in list(tool.State):
- out['p1'] = str(tool[tool.State == 'step1'].Machine.values[0])
- if 'step2' in list(tool.State):
- out['p2'] = str(tool[tool.State == 'step2'].Machine.values[0])
- out['useTime'] = str(
- tool[tool.State == 'step2'].oTime.values[0])
- return out
- df1 = pd.DataFrame({'Key': ['B', 'B', 'A', 'A'],
- 'State': ['step1', 'step2', 'step1', 'step2'],
- 'oTime': ['', '2016-09-19 05:24:33',
- '', '2016-09-19 23:59:04'],
- 'Machine': ['23', '36L', '36R', '36R']})
- df2 = df1.copy()
- df2.oTime = pd.to_datetime(df2.oTime)
- expected = df1.groupby('Key').apply(predictions).p1
- result = df2.groupby('Key').apply(predictions).p1
- tm.assert_series_equal(expected, result)
- def test_time_field_bug():
- # Test a fix for the following error related to GH issue 11324 When
- # non-key fields in a group-by dataframe contained time-based fields
- # that were not returned by the apply function, an exception would be
- # raised.
- df = pd.DataFrame({'a': 1, 'b': [datetime.now() for nn in range(10)]})
- def func_with_no_date(batch):
- return pd.Series({'c': 2})
- def func_with_date(batch):
- return pd.Series({'b': datetime(2015, 1, 1), 'c': 2})
- dfg_no_conversion = df.groupby(by=['a']).apply(func_with_no_date)
- dfg_no_conversion_expected = pd.DataFrame({'c': 2}, index=[1])
- dfg_no_conversion_expected.index.name = 'a'
- dfg_conversion = df.groupby(by=['a']).apply(func_with_date)
- dfg_conversion_expected = pd.DataFrame(
- {'b': datetime(2015, 1, 1),
- 'c': 2}, index=[1])
- dfg_conversion_expected.index.name = 'a'
- tm.assert_frame_equal(dfg_no_conversion, dfg_no_conversion_expected)
- tm.assert_frame_equal(dfg_conversion, dfg_conversion_expected)
- def test_gb_apply_list_of_unequal_len_arrays():
- # GH1738
- df = DataFrame({'group1': ['a', 'a', 'a', 'b', 'b', 'b', 'a', 'a', 'a',
- 'b', 'b', 'b'],
- 'group2': ['c', 'c', 'd', 'd', 'd', 'e', 'c', 'c', 'd',
- 'd', 'd', 'e'],
- 'weight': [1.1, 2, 3, 4, 5, 6, 2, 4, 6, 8, 1, 2],
- 'value': [7.1, 8, 9, 10, 11, 12, 8, 7, 6, 5, 4, 3]})
- df = df.set_index(['group1', 'group2'])
- df_grouped = df.groupby(level=['group1', 'group2'], sort=True)
- def noddy(value, weight):
- out = np.array(value * weight).repeat(3)
- return out
- # the kernel function returns arrays of unequal length
- # pandas sniffs the first one, sees it's an array and not
- # a list, and assumed the rest are of equal length
- # and so tries a vstack
- # don't die
- df_grouped.apply(lambda x: noddy(x.value, x.weight))
- def test_groupby_apply_all_none():
- # Tests to make sure no errors if apply function returns all None
- # values. Issue 9684.
- test_df = DataFrame({'groups': [0, 0, 1, 1],
- 'random_vars': [8, 7, 4, 5]})
- def test_func(x):
- pass
- result = test_df.groupby('groups').apply(test_func)
- expected = DataFrame()
- tm.assert_frame_equal(result, expected)
- def test_groupby_apply_none_first():
- # GH 12824. Tests if apply returns None first.
- test_df1 = DataFrame({'groups': [1, 1, 1, 2], 'vars': [0, 1, 2, 3]})
- test_df2 = DataFrame({'groups': [1, 2, 2, 2], 'vars': [0, 1, 2, 3]})
- def test_func(x):
- if x.shape[0] < 2:
- return None
- return x.iloc[[0, -1]]
- result1 = test_df1.groupby('groups').apply(test_func)
- result2 = test_df2.groupby('groups').apply(test_func)
- index1 = MultiIndex.from_arrays([[1, 1], [0, 2]],
- names=['groups', None])
- index2 = MultiIndex.from_arrays([[2, 2], [1, 3]],
- names=['groups', None])
- expected1 = DataFrame({'groups': [1, 1], 'vars': [0, 2]},
- index=index1)
- expected2 = DataFrame({'groups': [2, 2], 'vars': [1, 3]},
- index=index2)
- tm.assert_frame_equal(result1, expected1)
- tm.assert_frame_equal(result2, expected2)
- def test_groupby_apply_return_empty_chunk():
- # GH 22221: apply filter which returns some empty groups
- df = pd.DataFrame(dict(value=[0, 1], group=['filled', 'empty']))
- groups = df.groupby('group')
- result = groups.apply(lambda group: group[group.value != 1]['value'])
- expected = pd.Series([0], name='value',
- index=MultiIndex.from_product([['empty', 'filled'],
- [0]],
- names=['group', None]
- ).drop('empty'))
- tm.assert_series_equal(result, expected)
- def test_apply_with_mixed_types():
- # gh-20949
- df = pd.DataFrame({'A': 'a a b'.split(), 'B': [1, 2, 3], 'C': [4, 6, 5]})
- g = df.groupby('A')
- result = g.transform(lambda x: x / x.sum())
- expected = pd.DataFrame({'B': [1 / 3., 2 / 3., 1], 'C': [0.4, 0.6, 1.0]})
- tm.assert_frame_equal(result, expected)
- result = g.apply(lambda x: x / x.sum())
- tm.assert_frame_equal(result, expected)
|