123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936 |
- # -*- coding: utf-8 -*-
- from __future__ import print_function
- from datetime import datetime
- import numpy as np
- import pytest
- from pandas.compat import PY37
- import pandas as pd
- from pandas import (
- Categorical, CategoricalIndex, DataFrame, Index, MultiIndex, Series, qcut)
- import pandas.util.testing as tm
- from pandas.util.testing import (
- assert_equal, assert_frame_equal, assert_series_equal)
- def cartesian_product_for_groupers(result, args, names):
- """ Reindex to a cartesian production for the groupers,
- preserving the nature (Categorical) of each grouper """
- def f(a):
- if isinstance(a, (CategoricalIndex, Categorical)):
- categories = a.categories
- a = Categorical.from_codes(np.arange(len(categories)),
- categories=categories,
- ordered=a.ordered)
- return a
- index = pd.MultiIndex.from_product(map(f, args), names=names)
- return result.reindex(index).sort_index()
- def test_apply_use_categorical_name(df):
- cats = qcut(df.C, 4)
- def get_stats(group):
- return {'min': group.min(),
- 'max': group.max(),
- 'count': group.count(),
- 'mean': group.mean()}
- result = df.groupby(cats, observed=False).D.apply(get_stats)
- assert result.index.names[0] == 'C'
- def test_basic():
- cats = Categorical(["a", "a", "a", "b", "b", "b", "c", "c", "c"],
- categories=["a", "b", "c", "d"], ordered=True)
- data = DataFrame({"a": [1, 1, 1, 2, 2, 2, 3, 4, 5], "b": cats})
- exp_index = CategoricalIndex(list('abcd'), name='b', ordered=True)
- expected = DataFrame({'a': [1, 2, 4, np.nan]}, index=exp_index)
- result = data.groupby("b", observed=False).mean()
- tm.assert_frame_equal(result, expected)
- cat1 = Categorical(["a", "a", "b", "b"],
- categories=["a", "b", "z"], ordered=True)
- cat2 = Categorical(["c", "d", "c", "d"],
- categories=["c", "d", "y"], ordered=True)
- df = DataFrame({"A": cat1, "B": cat2, "values": [1, 2, 3, 4]})
- # single grouper
- gb = df.groupby("A", observed=False)
- exp_idx = CategoricalIndex(['a', 'b', 'z'], name='A', ordered=True)
- expected = DataFrame({'values': Series([3, 7, 0], index=exp_idx)})
- result = gb.sum()
- tm.assert_frame_equal(result, expected)
- # GH 8623
- x = DataFrame([[1, 'John P. Doe'], [2, 'Jane Dove'],
- [1, 'John P. Doe']],
- columns=['person_id', 'person_name'])
- x['person_name'] = Categorical(x.person_name)
- g = x.groupby(['person_id'], observed=False)
- result = g.transform(lambda x: x)
- tm.assert_frame_equal(result, x[['person_name']])
- result = x.drop_duplicates('person_name')
- expected = x.iloc[[0, 1]]
- tm.assert_frame_equal(result, expected)
- def f(x):
- return x.drop_duplicates('person_name').iloc[0]
- result = g.apply(f)
- expected = x.iloc[[0, 1]].copy()
- expected.index = Index([1, 2], name='person_id')
- expected['person_name'] = expected['person_name'].astype('object')
- tm.assert_frame_equal(result, expected)
- # GH 9921
- # Monotonic
- df = DataFrame({"a": [5, 15, 25]})
- c = pd.cut(df.a, bins=[0, 10, 20, 30, 40])
- result = df.a.groupby(c, observed=False).transform(sum)
- tm.assert_series_equal(result, df['a'])
- tm.assert_series_equal(
- df.a.groupby(c, observed=False).transform(lambda xs: np.sum(xs)),
- df['a'])
- tm.assert_frame_equal(
- df.groupby(c, observed=False).transform(sum),
- df[['a']])
- tm.assert_frame_equal(
- df.groupby(c, observed=False).transform(lambda xs: np.max(xs)),
- df[['a']])
- # Filter
- tm.assert_series_equal(
- df.a.groupby(c, observed=False).filter(np.all),
- df['a'])
- tm.assert_frame_equal(
- df.groupby(c, observed=False).filter(np.all),
- df)
- # Non-monotonic
- df = DataFrame({"a": [5, 15, 25, -5]})
- c = pd.cut(df.a, bins=[-10, 0, 10, 20, 30, 40])
- result = df.a.groupby(c, observed=False).transform(sum)
- tm.assert_series_equal(result, df['a'])
- tm.assert_series_equal(
- df.a.groupby(c, observed=False).transform(lambda xs: np.sum(xs)),
- df['a'])
- tm.assert_frame_equal(
- df.groupby(c, observed=False).transform(sum),
- df[['a']])
- tm.assert_frame_equal(
- df.groupby(c, observed=False).transform(lambda xs: np.sum(xs)),
- df[['a']])
- # GH 9603
- df = DataFrame({'a': [1, 0, 0, 0]})
- c = pd.cut(df.a, [0, 1, 2, 3, 4], labels=Categorical(list('abcd')))
- result = df.groupby(c, observed=False).apply(len)
- exp_index = CategoricalIndex(
- c.values.categories, ordered=c.values.ordered)
- expected = Series([1, 0, 0, 0], index=exp_index)
- expected.index.name = 'a'
- tm.assert_series_equal(result, expected)
- # more basic
- levels = ['foo', 'bar', 'baz', 'qux']
- codes = np.random.randint(0, 4, size=100)
- cats = Categorical.from_codes(codes, levels, ordered=True)
- data = DataFrame(np.random.randn(100, 4))
- result = data.groupby(cats, observed=False).mean()
- expected = data.groupby(np.asarray(cats), observed=False).mean()
- exp_idx = CategoricalIndex(levels, categories=cats.categories,
- ordered=True)
- expected = expected.reindex(exp_idx)
- assert_frame_equal(result, expected)
- grouped = data.groupby(cats, observed=False)
- desc_result = grouped.describe()
- idx = cats.codes.argsort()
- ord_labels = np.asarray(cats).take(idx)
- ord_data = data.take(idx)
- exp_cats = Categorical(ord_labels, ordered=True,
- categories=['foo', 'bar', 'baz', 'qux'])
- expected = ord_data.groupby(
- exp_cats, sort=False, observed=False).describe()
- assert_frame_equal(desc_result, expected)
- # GH 10460
- expc = Categorical.from_codes(np.arange(4).repeat(8),
- levels, ordered=True)
- exp = CategoricalIndex(expc)
- tm.assert_index_equal((desc_result.stack().index
- .get_level_values(0)), exp)
- exp = Index(['count', 'mean', 'std', 'min', '25%', '50%',
- '75%', 'max'] * 4)
- tm.assert_index_equal((desc_result.stack().index
- .get_level_values(1)), exp)
- def test_level_get_group(observed):
- # GH15155
- df = DataFrame(data=np.arange(2, 22, 2),
- index=MultiIndex(
- levels=[pd.CategoricalIndex(["a", "b"]), range(10)],
- codes=[[0] * 5 + [1] * 5, range(10)],
- names=["Index1", "Index2"]))
- g = df.groupby(level=["Index1"], observed=observed)
- # expected should equal test.loc[["a"]]
- # GH15166
- expected = DataFrame(data=np.arange(2, 12, 2),
- index=pd.MultiIndex(levels=[pd.CategoricalIndex(
- ["a", "b"]), range(5)],
- codes=[[0] * 5, range(5)],
- names=["Index1", "Index2"]))
- result = g.get_group('a')
- assert_frame_equal(result, expected)
- @pytest.mark.xfail(PY37, reason="flaky on 3.7, xref gh-21636", strict=False)
- @pytest.mark.parametrize('ordered', [True, False])
- def test_apply(ordered):
- # GH 10138
- dense = Categorical(list('abc'), ordered=ordered)
- # 'b' is in the categories but not in the list
- missing = Categorical(
- list('aaa'), categories=['a', 'b'], ordered=ordered)
- values = np.arange(len(dense))
- df = DataFrame({'missing': missing,
- 'dense': dense,
- 'values': values})
- grouped = df.groupby(['missing', 'dense'], observed=True)
- # missing category 'b' should still exist in the output index
- idx = MultiIndex.from_arrays(
- [missing, dense], names=['missing', 'dense'])
- expected = DataFrame([0, 1, 2.],
- index=idx,
- columns=['values'])
- result = grouped.apply(lambda x: np.mean(x))
- assert_frame_equal(result, expected)
- # we coerce back to ints
- expected = expected.astype('int')
- result = grouped.mean()
- assert_frame_equal(result, expected)
- result = grouped.agg(np.mean)
- assert_frame_equal(result, expected)
- # but for transform we should still get back the original index
- idx = MultiIndex.from_arrays([missing, dense],
- names=['missing', 'dense'])
- expected = Series(1, index=idx)
- result = grouped.apply(lambda x: 1)
- assert_series_equal(result, expected)
- def test_observed(observed):
- # multiple groupers, don't re-expand the output space
- # of the grouper
- # gh-14942 (implement)
- # gh-10132 (back-compat)
- # gh-8138 (back-compat)
- # gh-8869
- cat1 = Categorical(["a", "a", "b", "b"],
- categories=["a", "b", "z"], ordered=True)
- cat2 = Categorical(["c", "d", "c", "d"],
- categories=["c", "d", "y"], ordered=True)
- df = DataFrame({"A": cat1, "B": cat2, "values": [1, 2, 3, 4]})
- df['C'] = ['foo', 'bar'] * 2
- # multiple groupers with a non-cat
- gb = df.groupby(['A', 'B', 'C'], observed=observed)
- exp_index = pd.MultiIndex.from_arrays(
- [cat1, cat2, ['foo', 'bar'] * 2],
- names=['A', 'B', 'C'])
- expected = DataFrame({'values': Series(
- [1, 2, 3, 4], index=exp_index)}).sort_index()
- result = gb.sum()
- if not observed:
- expected = cartesian_product_for_groupers(
- expected,
- [cat1, cat2, ['foo', 'bar']],
- list('ABC'))
- tm.assert_frame_equal(result, expected)
- gb = df.groupby(['A', 'B'], observed=observed)
- exp_index = pd.MultiIndex.from_arrays(
- [cat1, cat2],
- names=['A', 'B'])
- expected = DataFrame({'values': [1, 2, 3, 4]},
- index=exp_index)
- result = gb.sum()
- if not observed:
- expected = cartesian_product_for_groupers(
- expected,
- [cat1, cat2],
- list('AB'))
- tm.assert_frame_equal(result, expected)
- # https://github.com/pandas-dev/pandas/issues/8138
- d = {'cat':
- pd.Categorical(["a", "b", "a", "b"], categories=["a", "b", "c"],
- ordered=True),
- 'ints': [1, 1, 2, 2],
- 'val': [10, 20, 30, 40]}
- df = pd.DataFrame(d)
- # Grouping on a single column
- groups_single_key = df.groupby("cat", observed=observed)
- result = groups_single_key.mean()
- exp_index = pd.CategoricalIndex(list('ab'), name="cat",
- categories=list('abc'),
- ordered=True)
- expected = DataFrame({"ints": [1.5, 1.5], "val": [20., 30]},
- index=exp_index)
- if not observed:
- index = pd.CategoricalIndex(list('abc'), name="cat",
- categories=list('abc'),
- ordered=True)
- expected = expected.reindex(index)
- tm.assert_frame_equal(result, expected)
- # Grouping on two columns
- groups_double_key = df.groupby(["cat", "ints"], observed=observed)
- result = groups_double_key.agg('mean')
- expected = DataFrame(
- {"val": [10, 30, 20, 40],
- "cat": pd.Categorical(['a', 'a', 'b', 'b'],
- categories=['a', 'b', 'c'],
- ordered=True),
- "ints": [1, 2, 1, 2]}).set_index(["cat", "ints"])
- if not observed:
- expected = cartesian_product_for_groupers(
- expected,
- [df.cat.values, [1, 2]],
- ['cat', 'ints'])
- tm.assert_frame_equal(result, expected)
- # GH 10132
- for key in [('a', 1), ('b', 2), ('b', 1), ('a', 2)]:
- c, i = key
- result = groups_double_key.get_group(key)
- expected = df[(df.cat == c) & (df.ints == i)]
- assert_frame_equal(result, expected)
- # gh-8869
- # with as_index
- d = {'foo': [10, 8, 4, 8, 4, 1, 1], 'bar': [10, 20, 30, 40, 50, 60, 70],
- 'baz': ['d', 'c', 'e', 'a', 'a', 'd', 'c']}
- df = pd.DataFrame(d)
- cat = pd.cut(df['foo'], np.linspace(0, 10, 3))
- df['range'] = cat
- groups = df.groupby(['range', 'baz'], as_index=False, observed=observed)
- result = groups.agg('mean')
- groups2 = df.groupby(['range', 'baz'], as_index=True, observed=observed)
- expected = groups2.agg('mean').reset_index()
- tm.assert_frame_equal(result, expected)
- def test_observed_codes_remap(observed):
- d = {'C1': [3, 3, 4, 5], 'C2': [1, 2, 3, 4], 'C3': [10, 100, 200, 34]}
- df = pd.DataFrame(d)
- values = pd.cut(df['C1'], [1, 2, 3, 6])
- values.name = "cat"
- groups_double_key = df.groupby([values, 'C2'], observed=observed)
- idx = MultiIndex.from_arrays([values, [1, 2, 3, 4]],
- names=["cat", "C2"])
- expected = DataFrame({"C1": [3, 3, 4, 5],
- "C3": [10, 100, 200, 34]}, index=idx)
- if not observed:
- expected = cartesian_product_for_groupers(
- expected,
- [values.values, [1, 2, 3, 4]],
- ['cat', 'C2'])
- result = groups_double_key.agg('mean')
- tm.assert_frame_equal(result, expected)
- def test_observed_perf():
- # we create a cartesian product, so this is
- # non-performant if we don't use observed values
- # gh-14942
- df = DataFrame({
- 'cat': np.random.randint(0, 255, size=30000),
- 'int_id': np.random.randint(0, 255, size=30000),
- 'other_id': np.random.randint(0, 10000, size=30000),
- 'foo': 0})
- df['cat'] = df.cat.astype(str).astype('category')
- grouped = df.groupby(['cat', 'int_id', 'other_id'], observed=True)
- result = grouped.count()
- assert result.index.levels[0].nunique() == df.cat.nunique()
- assert result.index.levels[1].nunique() == df.int_id.nunique()
- assert result.index.levels[2].nunique() == df.other_id.nunique()
- def test_observed_groups(observed):
- # gh-20583
- # test that we have the appropriate groups
- cat = pd.Categorical(['a', 'c', 'a'], categories=['a', 'b', 'c'])
- df = pd.DataFrame({'cat': cat, 'vals': [1, 2, 3]})
- g = df.groupby('cat', observed=observed)
- result = g.groups
- if observed:
- expected = {'a': Index([0, 2], dtype='int64'),
- 'c': Index([1], dtype='int64')}
- else:
- expected = {'a': Index([0, 2], dtype='int64'),
- 'b': Index([], dtype='int64'),
- 'c': Index([1], dtype='int64')}
- tm.assert_dict_equal(result, expected)
- def test_observed_groups_with_nan(observed):
- # GH 24740
- df = pd.DataFrame({'cat': pd.Categorical(['a', np.nan, 'a'],
- categories=['a', 'b', 'd']),
- 'vals': [1, 2, 3]})
- g = df.groupby('cat', observed=observed)
- result = g.groups
- if observed:
- expected = {'a': Index([0, 2], dtype='int64')}
- else:
- expected = {'a': Index([0, 2], dtype='int64'),
- 'b': Index([], dtype='int64'),
- 'd': Index([], dtype='int64')}
- tm.assert_dict_equal(result, expected)
- def test_dataframe_categorical_with_nan(observed):
- # GH 21151
- s1 = pd.Categorical([np.nan, 'a', np.nan, 'a'],
- categories=['a', 'b', 'c'])
- s2 = pd.Series([1, 2, 3, 4])
- df = pd.DataFrame({'s1': s1, 's2': s2})
- result = df.groupby('s1', observed=observed).first().reset_index()
- if observed:
- expected = DataFrame({'s1': pd.Categorical(['a'],
- categories=['a', 'b', 'c']), 's2': [2]})
- else:
- expected = DataFrame({'s1': pd.Categorical(['a', 'b', 'c'],
- categories=['a', 'b', 'c']),
- 's2': [2, np.nan, np.nan]})
- tm.assert_frame_equal(result, expected)
- def test_datetime():
- # GH9049: ensure backward compatibility
- levels = pd.date_range('2014-01-01', periods=4)
- codes = np.random.randint(0, 4, size=100)
- cats = Categorical.from_codes(codes, levels, ordered=True)
- data = DataFrame(np.random.randn(100, 4))
- result = data.groupby(cats, observed=False).mean()
- expected = data.groupby(np.asarray(cats), observed=False).mean()
- expected = expected.reindex(levels)
- expected.index = CategoricalIndex(expected.index,
- categories=expected.index,
- ordered=True)
- assert_frame_equal(result, expected)
- grouped = data.groupby(cats, observed=False)
- desc_result = grouped.describe()
- idx = cats.codes.argsort()
- ord_labels = cats.take_nd(idx)
- ord_data = data.take(idx)
- expected = ord_data.groupby(ord_labels, observed=False).describe()
- assert_frame_equal(desc_result, expected)
- tm.assert_index_equal(desc_result.index, expected.index)
- tm.assert_index_equal(
- desc_result.index.get_level_values(0),
- expected.index.get_level_values(0))
- # GH 10460
- expc = Categorical.from_codes(
- np.arange(4).repeat(8), levels, ordered=True)
- exp = CategoricalIndex(expc)
- tm.assert_index_equal((desc_result.stack().index
- .get_level_values(0)), exp)
- exp = Index(['count', 'mean', 'std', 'min', '25%', '50%',
- '75%', 'max'] * 4)
- tm.assert_index_equal((desc_result.stack().index
- .get_level_values(1)), exp)
- def test_categorical_index():
- s = np.random.RandomState(12345)
- levels = ['foo', 'bar', 'baz', 'qux']
- codes = s.randint(0, 4, size=20)
- cats = Categorical.from_codes(codes, levels, ordered=True)
- df = DataFrame(
- np.repeat(
- np.arange(20), 4).reshape(-1, 4), columns=list('abcd'))
- df['cats'] = cats
- # with a cat index
- result = df.set_index('cats').groupby(level=0, observed=False).sum()
- expected = df[list('abcd')].groupby(cats.codes, observed=False).sum()
- expected.index = CategoricalIndex(
- Categorical.from_codes(
- [0, 1, 2, 3], levels, ordered=True), name='cats')
- assert_frame_equal(result, expected)
- # with a cat column, should produce a cat index
- result = df.groupby('cats', observed=False).sum()
- expected = df[list('abcd')].groupby(cats.codes, observed=False).sum()
- expected.index = CategoricalIndex(
- Categorical.from_codes(
- [0, 1, 2, 3], levels, ordered=True), name='cats')
- assert_frame_equal(result, expected)
- def test_describe_categorical_columns():
- # GH 11558
- cats = pd.CategoricalIndex(['qux', 'foo', 'baz', 'bar'],
- categories=['foo', 'bar', 'baz', 'qux'],
- ordered=True)
- df = DataFrame(np.random.randn(20, 4), columns=cats)
- result = df.groupby([1, 2, 3, 4] * 5).describe()
- tm.assert_index_equal(result.stack().columns, cats)
- tm.assert_categorical_equal(result.stack().columns.values, cats.values)
- def test_unstack_categorical():
- # GH11558 (example is taken from the original issue)
- df = pd.DataFrame({'a': range(10),
- 'medium': ['A', 'B'] * 5,
- 'artist': list('XYXXY') * 2})
- df['medium'] = df['medium'].astype('category')
- gcat = df.groupby(
- ['artist', 'medium'], observed=False)['a'].count().unstack()
- result = gcat.describe()
- exp_columns = pd.CategoricalIndex(['A', 'B'], ordered=False,
- name='medium')
- tm.assert_index_equal(result.columns, exp_columns)
- tm.assert_categorical_equal(result.columns.values, exp_columns.values)
- result = gcat['A'] + gcat['B']
- expected = pd.Series([6, 4], index=pd.Index(['X', 'Y'], name='artist'))
- tm.assert_series_equal(result, expected)
- def test_bins_unequal_len():
- # GH3011
- series = Series([np.nan, np.nan, 1, 1, 2, 2, 3, 3, 4, 4])
- bins = pd.cut(series.dropna().values, 4)
- # len(bins) != len(series) here
- with pytest.raises(ValueError):
- series.groupby(bins).mean()
- def test_as_index():
- # GH13204
- df = DataFrame({'cat': Categorical([1, 2, 2], [1, 2, 3]),
- 'A': [10, 11, 11],
- 'B': [101, 102, 103]})
- result = df.groupby(['cat', 'A'], as_index=False, observed=True).sum()
- expected = DataFrame(
- {'cat': Categorical([1, 2], categories=df.cat.cat.categories),
- 'A': [10, 11],
- 'B': [101, 205]},
- columns=['cat', 'A', 'B'])
- tm.assert_frame_equal(result, expected)
- # function grouper
- f = lambda r: df.loc[r, 'A']
- result = df.groupby(['cat', f], as_index=False, observed=True).sum()
- expected = DataFrame(
- {'cat': Categorical([1, 2], categories=df.cat.cat.categories),
- 'A': [10, 22],
- 'B': [101, 205]},
- columns=['cat', 'A', 'B'])
- tm.assert_frame_equal(result, expected)
- # another not in-axis grouper (conflicting names in index)
- s = Series(['a', 'b', 'b'], name='cat')
- result = df.groupby(['cat', s], as_index=False, observed=True).sum()
- tm.assert_frame_equal(result, expected)
- # is original index dropped?
- group_columns = ['cat', 'A']
- expected = DataFrame(
- {'cat': Categorical([1, 2], categories=df.cat.cat.categories),
- 'A': [10, 11],
- 'B': [101, 205]},
- columns=['cat', 'A', 'B'])
- for name in [None, 'X', 'B']:
- df.index = Index(list("abc"), name=name)
- result = df.groupby(group_columns, as_index=False, observed=True).sum()
- tm.assert_frame_equal(result, expected)
- def test_preserve_categories():
- # GH-13179
- categories = list('abc')
- # ordered=True
- df = DataFrame({'A': pd.Categorical(list('ba'),
- categories=categories,
- ordered=True)})
- index = pd.CategoricalIndex(categories, categories, ordered=True)
- tm.assert_index_equal(
- df.groupby('A', sort=True, observed=False).first().index, index)
- tm.assert_index_equal(
- df.groupby('A', sort=False, observed=False).first().index, index)
- # ordered=False
- df = DataFrame({'A': pd.Categorical(list('ba'),
- categories=categories,
- ordered=False)})
- sort_index = pd.CategoricalIndex(categories, categories, ordered=False)
- nosort_index = pd.CategoricalIndex(list('bac'), list('bac'),
- ordered=False)
- tm.assert_index_equal(
- df.groupby('A', sort=True, observed=False).first().index,
- sort_index)
- tm.assert_index_equal(
- df.groupby('A', sort=False, observed=False).first().index,
- nosort_index)
- def test_preserve_categorical_dtype():
- # GH13743, GH13854
- df = DataFrame({'A': [1, 2, 1, 1, 2],
- 'B': [10, 16, 22, 28, 34],
- 'C1': Categorical(list("abaab"),
- categories=list("bac"),
- ordered=False),
- 'C2': Categorical(list("abaab"),
- categories=list("bac"),
- ordered=True)})
- # single grouper
- exp_full = DataFrame({'A': [2.0, 1.0, np.nan],
- 'B': [25.0, 20.0, np.nan],
- 'C1': Categorical(list("bac"),
- categories=list("bac"),
- ordered=False),
- 'C2': Categorical(list("bac"),
- categories=list("bac"),
- ordered=True)})
- for col in ['C1', 'C2']:
- result1 = df.groupby(by=col, as_index=False, observed=False).mean()
- result2 = df.groupby(
- by=col, as_index=True, observed=False).mean().reset_index()
- expected = exp_full.reindex(columns=result1.columns)
- tm.assert_frame_equal(result1, expected)
- tm.assert_frame_equal(result2, expected)
- def test_categorical_no_compress():
- data = Series(np.random.randn(9))
- codes = np.array([0, 0, 0, 1, 1, 1, 2, 2, 2])
- cats = Categorical.from_codes(codes, [0, 1, 2], ordered=True)
- result = data.groupby(cats, observed=False).mean()
- exp = data.groupby(codes, observed=False).mean()
- exp.index = CategoricalIndex(exp.index, categories=cats.categories,
- ordered=cats.ordered)
- assert_series_equal(result, exp)
- codes = np.array([0, 0, 0, 1, 1, 1, 3, 3, 3])
- cats = Categorical.from_codes(codes, [0, 1, 2, 3], ordered=True)
- result = data.groupby(cats, observed=False).mean()
- exp = data.groupby(codes, observed=False).mean().reindex(cats.categories)
- exp.index = CategoricalIndex(exp.index, categories=cats.categories,
- ordered=cats.ordered)
- assert_series_equal(result, exp)
- cats = Categorical(["a", "a", "a", "b", "b", "b", "c", "c", "c"],
- categories=["a", "b", "c", "d"], ordered=True)
- data = DataFrame({"a": [1, 1, 1, 2, 2, 2, 3, 4, 5], "b": cats})
- result = data.groupby("b", observed=False).mean()
- result = result["a"].values
- exp = np.array([1, 2, 4, np.nan])
- tm.assert_numpy_array_equal(result, exp)
- def test_sort():
- # http://stackoverflow.com/questions/23814368/sorting-pandas-categorical-labels-after-groupby # noqa: flake8
- # This should result in a properly sorted Series so that the plot
- # has a sorted x axis
- # self.cat.groupby(['value_group'])['value_group'].count().plot(kind='bar')
- df = DataFrame({'value': np.random.randint(0, 10000, 100)})
- labels = ["{0} - {1}".format(i, i + 499) for i in range(0, 10000, 500)]
- cat_labels = Categorical(labels, labels)
- df = df.sort_values(by=['value'], ascending=True)
- df['value_group'] = pd.cut(df.value, range(0, 10500, 500),
- right=False, labels=cat_labels)
- res = df.groupby(['value_group'], observed=False)['value_group'].count()
- exp = res[sorted(res.index, key=lambda x: float(x.split()[0]))]
- exp.index = CategoricalIndex(exp.index, name=exp.index.name)
- tm.assert_series_equal(res, exp)
- def test_sort2():
- # dataframe groupby sort was being ignored # GH 8868
- df = DataFrame([['(7.5, 10]', 10, 10],
- ['(7.5, 10]', 8, 20],
- ['(2.5, 5]', 5, 30],
- ['(5, 7.5]', 6, 40],
- ['(2.5, 5]', 4, 50],
- ['(0, 2.5]', 1, 60],
- ['(5, 7.5]', 7, 70]], columns=['range', 'foo', 'bar'])
- df['range'] = Categorical(df['range'], ordered=True)
- index = CategoricalIndex(['(0, 2.5]', '(2.5, 5]', '(5, 7.5]',
- '(7.5, 10]'], name='range', ordered=True)
- expected_sort = DataFrame([[1, 60], [5, 30], [6, 40], [10, 10]],
- columns=['foo', 'bar'], index=index)
- col = 'range'
- result_sort = df.groupby(col, sort=True, observed=False).first()
- assert_frame_equal(result_sort, expected_sort)
- # when categories is ordered, group is ordered by category's order
- expected_sort = result_sort
- result_sort = df.groupby(col, sort=False, observed=False).first()
- assert_frame_equal(result_sort, expected_sort)
- df['range'] = Categorical(df['range'], ordered=False)
- index = CategoricalIndex(['(0, 2.5]', '(2.5, 5]', '(5, 7.5]',
- '(7.5, 10]'], name='range')
- expected_sort = DataFrame([[1, 60], [5, 30], [6, 40], [10, 10]],
- columns=['foo', 'bar'], index=index)
- index = CategoricalIndex(['(7.5, 10]', '(2.5, 5]', '(5, 7.5]',
- '(0, 2.5]'],
- categories=['(7.5, 10]', '(2.5, 5]',
- '(5, 7.5]', '(0, 2.5]'],
- name='range')
- expected_nosort = DataFrame([[10, 10], [5, 30], [6, 40], [1, 60]],
- index=index, columns=['foo', 'bar'])
- col = 'range'
- # this is an unordered categorical, but we allow this ####
- result_sort = df.groupby(col, sort=True, observed=False).first()
- assert_frame_equal(result_sort, expected_sort)
- result_nosort = df.groupby(col, sort=False, observed=False).first()
- assert_frame_equal(result_nosort, expected_nosort)
- def test_sort_datetimelike():
- # GH10505
- # use same data as test_groupby_sort_categorical, which category is
- # corresponding to datetime.month
- df = DataFrame({'dt': [datetime(2011, 7, 1), datetime(2011, 7, 1),
- datetime(2011, 2, 1), datetime(2011, 5, 1),
- datetime(2011, 2, 1), datetime(2011, 1, 1),
- datetime(2011, 5, 1)],
- 'foo': [10, 8, 5, 6, 4, 1, 7],
- 'bar': [10, 20, 30, 40, 50, 60, 70]},
- columns=['dt', 'foo', 'bar'])
- # ordered=True
- df['dt'] = Categorical(df['dt'], ordered=True)
- index = [datetime(2011, 1, 1), datetime(2011, 2, 1),
- datetime(2011, 5, 1), datetime(2011, 7, 1)]
- result_sort = DataFrame(
- [[1, 60], [5, 30], [6, 40], [10, 10]], columns=['foo', 'bar'])
- result_sort.index = CategoricalIndex(index, name='dt', ordered=True)
- index = [datetime(2011, 7, 1), datetime(2011, 2, 1),
- datetime(2011, 5, 1), datetime(2011, 1, 1)]
- result_nosort = DataFrame([[10, 10], [5, 30], [6, 40], [1, 60]],
- columns=['foo', 'bar'])
- result_nosort.index = CategoricalIndex(index, categories=index,
- name='dt', ordered=True)
- col = 'dt'
- assert_frame_equal(
- result_sort, df.groupby(col, sort=True, observed=False).first())
- # when categories is ordered, group is ordered by category's order
- assert_frame_equal(
- result_sort, df.groupby(col, sort=False, observed=False).first())
- # ordered = False
- df['dt'] = Categorical(df['dt'], ordered=False)
- index = [datetime(2011, 1, 1), datetime(2011, 2, 1),
- datetime(2011, 5, 1), datetime(2011, 7, 1)]
- result_sort = DataFrame(
- [[1, 60], [5, 30], [6, 40], [10, 10]], columns=['foo', 'bar'])
- result_sort.index = CategoricalIndex(index, name='dt')
- index = [datetime(2011, 7, 1), datetime(2011, 2, 1),
- datetime(2011, 5, 1), datetime(2011, 1, 1)]
- result_nosort = DataFrame([[10, 10], [5, 30], [6, 40], [1, 60]],
- columns=['foo', 'bar'])
- result_nosort.index = CategoricalIndex(index, categories=index,
- name='dt')
- col = 'dt'
- assert_frame_equal(
- result_sort, df.groupby(col, sort=True, observed=False).first())
- assert_frame_equal(
- result_nosort, df.groupby(col, sort=False, observed=False).first())
- def test_empty_sum():
- # https://github.com/pandas-dev/pandas/issues/18678
- df = pd.DataFrame({"A": pd.Categorical(['a', 'a', 'b'],
- categories=['a', 'b', 'c']),
- 'B': [1, 2, 1]})
- expected_idx = pd.CategoricalIndex(['a', 'b', 'c'], name='A')
- # 0 by default
- result = df.groupby("A", observed=False).B.sum()
- expected = pd.Series([3, 1, 0], expected_idx, name='B')
- tm.assert_series_equal(result, expected)
- # min_count=0
- result = df.groupby("A", observed=False).B.sum(min_count=0)
- expected = pd.Series([3, 1, 0], expected_idx, name='B')
- tm.assert_series_equal(result, expected)
- # min_count=1
- result = df.groupby("A", observed=False).B.sum(min_count=1)
- expected = pd.Series([3, 1, np.nan], expected_idx, name='B')
- tm.assert_series_equal(result, expected)
- # min_count>1
- result = df.groupby("A", observed=False).B.sum(min_count=2)
- expected = pd.Series([3, np.nan, np.nan], expected_idx, name='B')
- tm.assert_series_equal(result, expected)
- def test_empty_prod():
- # https://github.com/pandas-dev/pandas/issues/18678
- df = pd.DataFrame({"A": pd.Categorical(['a', 'a', 'b'],
- categories=['a', 'b', 'c']),
- 'B': [1, 2, 1]})
- expected_idx = pd.CategoricalIndex(['a', 'b', 'c'], name='A')
- # 1 by default
- result = df.groupby("A", observed=False).B.prod()
- expected = pd.Series([2, 1, 1], expected_idx, name='B')
- tm.assert_series_equal(result, expected)
- # min_count=0
- result = df.groupby("A", observed=False).B.prod(min_count=0)
- expected = pd.Series([2, 1, 1], expected_idx, name='B')
- tm.assert_series_equal(result, expected)
- # min_count=1
- result = df.groupby("A", observed=False).B.prod(min_count=1)
- expected = pd.Series([2, 1, np.nan], expected_idx, name='B')
- tm.assert_series_equal(result, expected)
- def test_groupby_multiindex_categorical_datetime():
- # https://github.com/pandas-dev/pandas/issues/21390
- df = pd.DataFrame({
- 'key1': pd.Categorical(list('abcbabcba')),
- 'key2': pd.Categorical(
- list(pd.date_range('2018-06-01 00', freq='1T', periods=3)) * 3),
- 'values': np.arange(9),
- })
- result = df.groupby(['key1', 'key2']).mean()
- idx = pd.MultiIndex.from_product(
- [pd.Categorical(['a', 'b', 'c']),
- pd.Categorical(pd.date_range('2018-06-01 00', freq='1T', periods=3))],
- names=['key1', 'key2'])
- expected = pd.DataFrame(
- {'values': [0, 4, 8, 3, 4, 5, 6, np.nan, 2]}, index=idx)
- assert_frame_equal(result, expected)
- @pytest.mark.parametrize("as_index, expected", [
- (True, pd.Series(
- index=pd.MultiIndex.from_arrays(
- [pd.Series([1, 1, 2], dtype='category'),
- [1, 2, 2]], names=['a', 'b']
- ),
- data=[1, 2, 3], name='x'
- )),
- (False, pd.DataFrame({
- 'a': pd.Series([1, 1, 2], dtype='category'),
- 'b': [1, 2, 2],
- 'x': [1, 2, 3]
- }))
- ])
- def test_groupby_agg_observed_true_single_column(as_index, expected):
- # GH-23970
- df = pd.DataFrame({
- 'a': pd.Series([1, 1, 2], dtype='category'),
- 'b': [1, 2, 2],
- 'x': [1, 2, 3]
- })
- result = df.groupby(
- ['a', 'b'], as_index=as_index, observed=True)['x'].sum()
- assert_equal(result, expected)
- @pytest.mark.parametrize('fill_value', [None, np.nan, pd.NaT])
- def test_shift(fill_value):
- ct = pd.Categorical(['a', 'b', 'c', 'd'],
- categories=['a', 'b', 'c', 'd'], ordered=False)
- expected = pd.Categorical([None, 'a', 'b', 'c'],
- categories=['a', 'b', 'c', 'd'], ordered=False)
- res = ct.shift(1, fill_value=fill_value)
- assert_equal(res, expected)
|