123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224 |
- # -*- coding: utf-8 -*-
- from __future__ import print_function
- import numpy as np
- import pytest
- from pandas.compat import product as cart_product, range
- from pandas import DataFrame, MultiIndex, Period, Series, Timedelta, Timestamp
- from pandas.util.testing import assert_frame_equal, assert_series_equal
- class TestCounting(object):
- def test_cumcount(self):
- df = DataFrame([['a'], ['a'], ['a'], ['b'], ['a']], columns=['A'])
- g = df.groupby('A')
- sg = g.A
- expected = Series([0, 1, 2, 0, 3])
- assert_series_equal(expected, g.cumcount())
- assert_series_equal(expected, sg.cumcount())
- def test_cumcount_empty(self):
- ge = DataFrame().groupby(level=0)
- se = Series().groupby(level=0)
- # edge case, as this is usually considered float
- e = Series(dtype='int64')
- assert_series_equal(e, ge.cumcount())
- assert_series_equal(e, se.cumcount())
- def test_cumcount_dupe_index(self):
- df = DataFrame([['a'], ['a'], ['a'], ['b'], ['a']], columns=['A'],
- index=[0] * 5)
- g = df.groupby('A')
- sg = g.A
- expected = Series([0, 1, 2, 0, 3], index=[0] * 5)
- assert_series_equal(expected, g.cumcount())
- assert_series_equal(expected, sg.cumcount())
- def test_cumcount_mi(self):
- mi = MultiIndex.from_tuples([[0, 1], [1, 2], [2, 2], [2, 2], [1, 0]])
- df = DataFrame([['a'], ['a'], ['a'], ['b'], ['a']], columns=['A'],
- index=mi)
- g = df.groupby('A')
- sg = g.A
- expected = Series([0, 1, 2, 0, 3], index=mi)
- assert_series_equal(expected, g.cumcount())
- assert_series_equal(expected, sg.cumcount())
- def test_cumcount_groupby_not_col(self):
- df = DataFrame([['a'], ['a'], ['a'], ['b'], ['a']], columns=['A'],
- index=[0] * 5)
- g = df.groupby([0, 0, 0, 1, 0])
- sg = g.A
- expected = Series([0, 1, 2, 0, 3], index=[0] * 5)
- assert_series_equal(expected, g.cumcount())
- assert_series_equal(expected, sg.cumcount())
- def test_ngroup(self):
- df = DataFrame({'A': list('aaaba')})
- g = df.groupby('A')
- sg = g.A
- expected = Series([0, 0, 0, 1, 0])
- assert_series_equal(expected, g.ngroup())
- assert_series_equal(expected, sg.ngroup())
- def test_ngroup_distinct(self):
- df = DataFrame({'A': list('abcde')})
- g = df.groupby('A')
- sg = g.A
- expected = Series(range(5), dtype='int64')
- assert_series_equal(expected, g.ngroup())
- assert_series_equal(expected, sg.ngroup())
- def test_ngroup_one_group(self):
- df = DataFrame({'A': [0] * 5})
- g = df.groupby('A')
- sg = g.A
- expected = Series([0] * 5)
- assert_series_equal(expected, g.ngroup())
- assert_series_equal(expected, sg.ngroup())
- def test_ngroup_empty(self):
- ge = DataFrame().groupby(level=0)
- se = Series().groupby(level=0)
- # edge case, as this is usually considered float
- e = Series(dtype='int64')
- assert_series_equal(e, ge.ngroup())
- assert_series_equal(e, se.ngroup())
- def test_ngroup_series_matches_frame(self):
- df = DataFrame({'A': list('aaaba')})
- s = Series(list('aaaba'))
- assert_series_equal(df.groupby(s).ngroup(),
- s.groupby(s).ngroup())
- def test_ngroup_dupe_index(self):
- df = DataFrame({'A': list('aaaba')}, index=[0] * 5)
- g = df.groupby('A')
- sg = g.A
- expected = Series([0, 0, 0, 1, 0], index=[0] * 5)
- assert_series_equal(expected, g.ngroup())
- assert_series_equal(expected, sg.ngroup())
- def test_ngroup_mi(self):
- mi = MultiIndex.from_tuples([[0, 1], [1, 2], [2, 2], [2, 2], [1, 0]])
- df = DataFrame({'A': list('aaaba')}, index=mi)
- g = df.groupby('A')
- sg = g.A
- expected = Series([0, 0, 0, 1, 0], index=mi)
- assert_series_equal(expected, g.ngroup())
- assert_series_equal(expected, sg.ngroup())
- def test_ngroup_groupby_not_col(self):
- df = DataFrame({'A': list('aaaba')}, index=[0] * 5)
- g = df.groupby([0, 0, 0, 1, 0])
- sg = g.A
- expected = Series([0, 0, 0, 1, 0], index=[0] * 5)
- assert_series_equal(expected, g.ngroup())
- assert_series_equal(expected, sg.ngroup())
- def test_ngroup_descending(self):
- df = DataFrame(['a', 'a', 'b', 'a', 'b'], columns=['A'])
- g = df.groupby(['A'])
- ascending = Series([0, 0, 1, 0, 1])
- descending = Series([1, 1, 0, 1, 0])
- assert_series_equal(descending, (g.ngroups - 1) - ascending)
- assert_series_equal(ascending, g.ngroup(ascending=True))
- assert_series_equal(descending, g.ngroup(ascending=False))
- def test_ngroup_matches_cumcount(self):
- # verify one manually-worked out case works
- df = DataFrame([['a', 'x'], ['a', 'y'], ['b', 'x'],
- ['a', 'x'], ['b', 'y']], columns=['A', 'X'])
- g = df.groupby(['A', 'X'])
- g_ngroup = g.ngroup()
- g_cumcount = g.cumcount()
- expected_ngroup = Series([0, 1, 2, 0, 3])
- expected_cumcount = Series([0, 0, 0, 1, 0])
- assert_series_equal(g_ngroup, expected_ngroup)
- assert_series_equal(g_cumcount, expected_cumcount)
- def test_ngroup_cumcount_pair(self):
- # brute force comparison for all small series
- for p in cart_product(range(3), repeat=4):
- df = DataFrame({'a': p})
- g = df.groupby(['a'])
- order = sorted(set(p))
- ngroupd = [order.index(val) for val in p]
- cumcounted = [p[:i].count(val) for i, val in enumerate(p)]
- assert_series_equal(g.ngroup(), Series(ngroupd))
- assert_series_equal(g.cumcount(), Series(cumcounted))
- def test_ngroup_respects_groupby_order(self):
- np.random.seed(0)
- df = DataFrame({'a': np.random.choice(list('abcdef'), 100)})
- for sort_flag in (False, True):
- g = df.groupby(['a'], sort=sort_flag)
- df['group_id'] = -1
- df['group_index'] = -1
- for i, (_, group) in enumerate(g):
- df.loc[group.index, 'group_id'] = i
- for j, ind in enumerate(group.index):
- df.loc[ind, 'group_index'] = j
- assert_series_equal(Series(df['group_id'].values),
- g.ngroup())
- assert_series_equal(Series(df['group_index'].values),
- g.cumcount())
- @pytest.mark.parametrize('datetimelike', [
- [Timestamp('2016-05-%02d 20:09:25+00:00' % i) for i in range(1, 4)],
- [Timestamp('2016-05-%02d 20:09:25' % i) for i in range(1, 4)],
- [Timedelta(x, unit="h") for x in range(1, 4)],
- [Period(freq="2W", year=2017, month=x) for x in range(1, 4)]])
- def test_count_with_datetimelike(self, datetimelike):
- # test for #13393, where DataframeGroupBy.count() fails
- # when counting a datetimelike column.
- df = DataFrame({'x': ['a', 'a', 'b'], 'y': datetimelike})
- res = df.groupby('x').count()
- expected = DataFrame({'y': [2, 1]}, index=['a', 'b'])
- expected.index.name = "x"
- assert_frame_equal(expected, res)
- def test_count_with_only_nans_in_first_group(self):
- # GH21956
- df = DataFrame({'A': [np.nan, np.nan], 'B': ['a', 'b'], 'C': [1, 2]})
- result = df.groupby(['A', 'B']).C.count()
- mi = MultiIndex(levels=[[], ['a', 'b']],
- codes=[[], []],
- names=['A', 'B'])
- expected = Series([], index=mi, dtype=np.int64, name='C')
- assert_series_equal(result, expected, check_index_type=False)
|