123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306 |
- import numpy as np
- import pytest
- import pandas as pd
- from pandas import DataFrame, Series, concat
- from pandas.util import testing as tm
- def test_rank_apply():
- lev1 = tm.rands_array(10, 100)
- lev2 = tm.rands_array(10, 130)
- lab1 = np.random.randint(0, 100, size=500)
- lab2 = np.random.randint(0, 130, size=500)
- df = DataFrame({'value': np.random.randn(500),
- 'key1': lev1.take(lab1),
- 'key2': lev2.take(lab2)})
- result = df.groupby(['key1', 'key2']).value.rank()
- expected = [piece.value.rank()
- for key, piece in df.groupby(['key1', 'key2'])]
- expected = concat(expected, axis=0)
- expected = expected.reindex(result.index)
- tm.assert_series_equal(result, expected)
- result = df.groupby(['key1', 'key2']).value.rank(pct=True)
- expected = [piece.value.rank(pct=True)
- for key, piece in df.groupby(['key1', 'key2'])]
- expected = concat(expected, axis=0)
- expected = expected.reindex(result.index)
- tm.assert_series_equal(result, expected)
- @pytest.mark.parametrize("grps", [
- ['qux'], ['qux', 'quux']])
- @pytest.mark.parametrize("vals", [
- [2, 2, 8, 2, 6],
- [pd.Timestamp('2018-01-02'), pd.Timestamp('2018-01-02'),
- pd.Timestamp('2018-01-08'), pd.Timestamp('2018-01-02'),
- pd.Timestamp('2018-01-06')]])
- @pytest.mark.parametrize("ties_method,ascending,pct,exp", [
- ('average', True, False, [2., 2., 5., 2., 4.]),
- ('average', True, True, [0.4, 0.4, 1.0, 0.4, 0.8]),
- ('average', False, False, [4., 4., 1., 4., 2.]),
- ('average', False, True, [.8, .8, .2, .8, .4]),
- ('min', True, False, [1., 1., 5., 1., 4.]),
- ('min', True, True, [0.2, 0.2, 1.0, 0.2, 0.8]),
- ('min', False, False, [3., 3., 1., 3., 2.]),
- ('min', False, True, [.6, .6, .2, .6, .4]),
- ('max', True, False, [3., 3., 5., 3., 4.]),
- ('max', True, True, [0.6, 0.6, 1.0, 0.6, 0.8]),
- ('max', False, False, [5., 5., 1., 5., 2.]),
- ('max', False, True, [1., 1., .2, 1., .4]),
- ('first', True, False, [1., 2., 5., 3., 4.]),
- ('first', True, True, [0.2, 0.4, 1.0, 0.6, 0.8]),
- ('first', False, False, [3., 4., 1., 5., 2.]),
- ('first', False, True, [.6, .8, .2, 1., .4]),
- ('dense', True, False, [1., 1., 3., 1., 2.]),
- ('dense', True, True, [1. / 3., 1. / 3., 3. / 3., 1. / 3., 2. / 3.]),
- ('dense', False, False, [3., 3., 1., 3., 2.]),
- ('dense', False, True, [3. / 3., 3. / 3., 1. / 3., 3. / 3., 2. / 3.]),
- ])
- def test_rank_args(grps, vals, ties_method, ascending, pct, exp):
- key = np.repeat(grps, len(vals))
- vals = vals * len(grps)
- df = DataFrame({'key': key, 'val': vals})
- result = df.groupby('key').rank(method=ties_method,
- ascending=ascending, pct=pct)
- exp_df = DataFrame(exp * len(grps), columns=['val'])
- tm.assert_frame_equal(result, exp_df)
- @pytest.mark.parametrize("grps", [
- ['qux'], ['qux', 'quux']])
- @pytest.mark.parametrize("vals", [
- [-np.inf, -np.inf, np.nan, 1., np.nan, np.inf, np.inf],
- ])
- @pytest.mark.parametrize("ties_method,ascending,na_option,exp", [
- ('average', True, 'keep', [1.5, 1.5, np.nan, 3, np.nan, 4.5, 4.5]),
- ('average', True, 'top', [3.5, 3.5, 1.5, 5., 1.5, 6.5, 6.5]),
- ('average', True, 'bottom', [1.5, 1.5, 6.5, 3., 6.5, 4.5, 4.5]),
- ('average', False, 'keep', [4.5, 4.5, np.nan, 3, np.nan, 1.5, 1.5]),
- ('average', False, 'top', [6.5, 6.5, 1.5, 5., 1.5, 3.5, 3.5]),
- ('average', False, 'bottom', [4.5, 4.5, 6.5, 3., 6.5, 1.5, 1.5]),
- ('min', True, 'keep', [1., 1., np.nan, 3., np.nan, 4., 4.]),
- ('min', True, 'top', [3., 3., 1., 5., 1., 6., 6.]),
- ('min', True, 'bottom', [1., 1., 6., 3., 6., 4., 4.]),
- ('min', False, 'keep', [4., 4., np.nan, 3., np.nan, 1., 1.]),
- ('min', False, 'top', [6., 6., 1., 5., 1., 3., 3.]),
- ('min', False, 'bottom', [4., 4., 6., 3., 6., 1., 1.]),
- ('max', True, 'keep', [2., 2., np.nan, 3., np.nan, 5., 5.]),
- ('max', True, 'top', [4., 4., 2., 5., 2., 7., 7.]),
- ('max', True, 'bottom', [2., 2., 7., 3., 7., 5., 5.]),
- ('max', False, 'keep', [5., 5., np.nan, 3., np.nan, 2., 2.]),
- ('max', False, 'top', [7., 7., 2., 5., 2., 4., 4.]),
- ('max', False, 'bottom', [5., 5., 7., 3., 7., 2., 2.]),
- ('first', True, 'keep', [1., 2., np.nan, 3., np.nan, 4., 5.]),
- ('first', True, 'top', [3., 4., 1., 5., 2., 6., 7.]),
- ('first', True, 'bottom', [1., 2., 6., 3., 7., 4., 5.]),
- ('first', False, 'keep', [4., 5., np.nan, 3., np.nan, 1., 2.]),
- ('first', False, 'top', [6., 7., 1., 5., 2., 3., 4.]),
- ('first', False, 'bottom', [4., 5., 6., 3., 7., 1., 2.]),
- ('dense', True, 'keep', [1., 1., np.nan, 2., np.nan, 3., 3.]),
- ('dense', True, 'top', [2., 2., 1., 3., 1., 4., 4.]),
- ('dense', True, 'bottom', [1., 1., 4., 2., 4., 3., 3.]),
- ('dense', False, 'keep', [3., 3., np.nan, 2., np.nan, 1., 1.]),
- ('dense', False, 'top', [4., 4., 1., 3., 1., 2., 2.]),
- ('dense', False, 'bottom', [3., 3., 4., 2., 4., 1., 1.])
- ])
- def test_infs_n_nans(grps, vals, ties_method, ascending, na_option, exp):
- # GH 20561
- key = np.repeat(grps, len(vals))
- vals = vals * len(grps)
- df = DataFrame({'key': key, 'val': vals})
- result = df.groupby('key').rank(method=ties_method,
- ascending=ascending,
- na_option=na_option)
- exp_df = DataFrame(exp * len(grps), columns=['val'])
- tm.assert_frame_equal(result, exp_df)
- @pytest.mark.parametrize("grps", [
- ['qux'], ['qux', 'quux']])
- @pytest.mark.parametrize("vals", [
- [2, 2, np.nan, 8, 2, 6, np.nan, np.nan],
- [pd.Timestamp('2018-01-02'), pd.Timestamp('2018-01-02'), np.nan,
- pd.Timestamp('2018-01-08'), pd.Timestamp('2018-01-02'),
- pd.Timestamp('2018-01-06'), np.nan, np.nan]
- ])
- @pytest.mark.parametrize("ties_method,ascending,na_option,pct,exp", [
- ('average', True, 'keep', False,
- [2., 2., np.nan, 5., 2., 4., np.nan, np.nan]),
- ('average', True, 'keep', True,
- [0.4, 0.4, np.nan, 1.0, 0.4, 0.8, np.nan, np.nan]),
- ('average', False, 'keep', False,
- [4., 4., np.nan, 1., 4., 2., np.nan, np.nan]),
- ('average', False, 'keep', True,
- [.8, 0.8, np.nan, 0.2, 0.8, 0.4, np.nan, np.nan]),
- ('min', True, 'keep', False,
- [1., 1., np.nan, 5., 1., 4., np.nan, np.nan]),
- ('min', True, 'keep', True,
- [0.2, 0.2, np.nan, 1.0, 0.2, 0.8, np.nan, np.nan]),
- ('min', False, 'keep', False,
- [3., 3., np.nan, 1., 3., 2., np.nan, np.nan]),
- ('min', False, 'keep', True,
- [.6, 0.6, np.nan, 0.2, 0.6, 0.4, np.nan, np.nan]),
- ('max', True, 'keep', False,
- [3., 3., np.nan, 5., 3., 4., np.nan, np.nan]),
- ('max', True, 'keep', True,
- [0.6, 0.6, np.nan, 1.0, 0.6, 0.8, np.nan, np.nan]),
- ('max', False, 'keep', False,
- [5., 5., np.nan, 1., 5., 2., np.nan, np.nan]),
- ('max', False, 'keep', True,
- [1., 1., np.nan, 0.2, 1., 0.4, np.nan, np.nan]),
- ('first', True, 'keep', False,
- [1., 2., np.nan, 5., 3., 4., np.nan, np.nan]),
- ('first', True, 'keep', True,
- [0.2, 0.4, np.nan, 1.0, 0.6, 0.8, np.nan, np.nan]),
- ('first', False, 'keep', False,
- [3., 4., np.nan, 1., 5., 2., np.nan, np.nan]),
- ('first', False, 'keep', True,
- [.6, 0.8, np.nan, 0.2, 1., 0.4, np.nan, np.nan]),
- ('dense', True, 'keep', False,
- [1., 1., np.nan, 3., 1., 2., np.nan, np.nan]),
- ('dense', True, 'keep', True,
- [1. / 3., 1. / 3., np.nan, 3. / 3., 1. / 3., 2. / 3., np.nan, np.nan]),
- ('dense', False, 'keep', False,
- [3., 3., np.nan, 1., 3., 2., np.nan, np.nan]),
- ('dense', False, 'keep', True,
- [3. / 3., 3. / 3., np.nan, 1. / 3., 3. / 3., 2. / 3., np.nan, np.nan]),
- ('average', True, 'bottom', False, [2., 2., 7., 5., 2., 4., 7., 7.]),
- ('average', True, 'bottom', True,
- [0.25, 0.25, 0.875, 0.625, 0.25, 0.5, 0.875, 0.875]),
- ('average', False, 'bottom', False, [4., 4., 7., 1., 4., 2., 7., 7.]),
- ('average', False, 'bottom', True,
- [0.5, 0.5, 0.875, 0.125, 0.5, 0.25, 0.875, 0.875]),
- ('min', True, 'bottom', False, [1., 1., 6., 5., 1., 4., 6., 6.]),
- ('min', True, 'bottom', True,
- [0.125, 0.125, 0.75, 0.625, 0.125, 0.5, 0.75, 0.75]),
- ('min', False, 'bottom', False, [3., 3., 6., 1., 3., 2., 6., 6.]),
- ('min', False, 'bottom', True,
- [0.375, 0.375, 0.75, 0.125, 0.375, 0.25, 0.75, 0.75]),
- ('max', True, 'bottom', False, [3., 3., 8., 5., 3., 4., 8., 8.]),
- ('max', True, 'bottom', True,
- [0.375, 0.375, 1., 0.625, 0.375, 0.5, 1., 1.]),
- ('max', False, 'bottom', False, [5., 5., 8., 1., 5., 2., 8., 8.]),
- ('max', False, 'bottom', True,
- [0.625, 0.625, 1., 0.125, 0.625, 0.25, 1., 1.]),
- ('first', True, 'bottom', False, [1., 2., 6., 5., 3., 4., 7., 8.]),
- ('first', True, 'bottom', True,
- [0.125, 0.25, 0.75, 0.625, 0.375, 0.5, 0.875, 1.]),
- ('first', False, 'bottom', False, [3., 4., 6., 1., 5., 2., 7., 8.]),
- ('first', False, 'bottom', True,
- [0.375, 0.5, 0.75, 0.125, 0.625, 0.25, 0.875, 1.]),
- ('dense', True, 'bottom', False, [1., 1., 4., 3., 1., 2., 4., 4.]),
- ('dense', True, 'bottom', True,
- [0.25, 0.25, 1., 0.75, 0.25, 0.5, 1., 1.]),
- ('dense', False, 'bottom', False, [3., 3., 4., 1., 3., 2., 4., 4.]),
- ('dense', False, 'bottom', True,
- [0.75, 0.75, 1., 0.25, 0.75, 0.5, 1., 1.])
- ])
- def test_rank_args_missing(grps, vals, ties_method, ascending,
- na_option, pct, exp):
- key = np.repeat(grps, len(vals))
- vals = vals * len(grps)
- df = DataFrame({'key': key, 'val': vals})
- result = df.groupby('key').rank(method=ties_method,
- ascending=ascending,
- na_option=na_option, pct=pct)
- exp_df = DataFrame(exp * len(grps), columns=['val'])
- tm.assert_frame_equal(result, exp_df)
- @pytest.mark.parametrize("pct,exp", [
- (False, [3., 3., 3., 3., 3.]),
- (True, [.6, .6, .6, .6, .6])])
- def test_rank_resets_each_group(pct, exp):
- df = DataFrame(
- {'key': ['a', 'a', 'a', 'a', 'a', 'b', 'b', 'b', 'b', 'b'],
- 'val': [1] * 10}
- )
- result = df.groupby('key').rank(pct=pct)
- exp_df = DataFrame(exp * 2, columns=['val'])
- tm.assert_frame_equal(result, exp_df)
- def test_rank_avg_even_vals():
- df = DataFrame({'key': ['a'] * 4, 'val': [1] * 4})
- result = df.groupby('key').rank()
- exp_df = DataFrame([2.5, 2.5, 2.5, 2.5], columns=['val'])
- tm.assert_frame_equal(result, exp_df)
- @pytest.mark.parametrize("ties_method", [
- 'average', 'min', 'max', 'first', 'dense'])
- @pytest.mark.parametrize("ascending", [True, False])
- @pytest.mark.parametrize("na_option", ["keep", "top", "bottom"])
- @pytest.mark.parametrize("pct", [True, False])
- @pytest.mark.parametrize("vals", [
- ['bar', 'bar', 'foo', 'bar', 'baz'],
- ['bar', np.nan, 'foo', np.nan, 'baz']
- ])
- def test_rank_object_raises(ties_method, ascending, na_option,
- pct, vals):
- df = DataFrame({'key': ['foo'] * 5, 'val': vals})
- with pytest.raises(TypeError, match="not callable"):
- df.groupby('key').rank(method=ties_method,
- ascending=ascending,
- na_option=na_option, pct=pct)
- @pytest.mark.parametrize("na_option", [True, "bad", 1])
- @pytest.mark.parametrize("ties_method", [
- 'average', 'min', 'max', 'first', 'dense'])
- @pytest.mark.parametrize("ascending", [True, False])
- @pytest.mark.parametrize("pct", [True, False])
- @pytest.mark.parametrize("vals", [
- ['bar', 'bar', 'foo', 'bar', 'baz'],
- ['bar', np.nan, 'foo', np.nan, 'baz'],
- [1, np.nan, 2, np.nan, 3]
- ])
- def test_rank_naoption_raises(ties_method, ascending, na_option, pct, vals):
- df = DataFrame({'key': ['foo'] * 5, 'val': vals})
- msg = "na_option must be one of 'keep', 'top', or 'bottom'"
- with pytest.raises(ValueError, match=msg):
- df.groupby('key').rank(method=ties_method,
- ascending=ascending,
- na_option=na_option, pct=pct)
- def test_rank_empty_group():
- # see gh-22519
- column = "A"
- df = DataFrame({
- "A": [0, 1, 0],
- "B": [1., np.nan, 2.]
- })
- result = df.groupby(column).B.rank(pct=True)
- expected = Series([0.5, np.nan, 1.0], name="B")
- tm.assert_series_equal(result, expected)
- result = df.groupby(column).rank(pct=True)
- expected = DataFrame({"B": [0.5, np.nan, 1.0]})
- tm.assert_frame_equal(result, expected)
- @pytest.mark.parametrize("input_key,input_value,output_value", [
- ([1, 2], [1, 1], [1.0, 1.0]),
- ([1, 1, 2, 2], [1, 2, 1, 2], [0.5, 1.0, 0.5, 1.0]),
- ([1, 1, 2, 2], [1, 2, 1, np.nan], [0.5, 1.0, 1.0, np.nan]),
- ([1, 1, 2], [1, 2, np.nan], [0.5, 1.0, np.nan])
- ])
- def test_rank_zero_div(input_key, input_value, output_value):
- # GH 23666
- df = DataFrame({"A": input_key, "B": input_value})
- result = df.groupby("A").rank(method="dense", pct=True)
- expected = DataFrame({"B": output_value})
- tm.assert_frame_equal(result, expected)
|