123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847 |
- """ test with the .transform """
- import numpy as np
- import pytest
- from pandas._libs import groupby
- from pandas.compat import StringIO
- from pandas.core.dtypes.common import ensure_platform_int, is_timedelta64_dtype
- import pandas as pd
- from pandas import DataFrame, MultiIndex, Series, Timestamp, concat, date_range
- from pandas.core.config import option_context
- from pandas.core.groupby.groupby import DataError
- from pandas.util import testing as tm
- from pandas.util.testing import assert_frame_equal, assert_series_equal
- def assert_fp_equal(a, b):
- assert (np.abs(a - b) < 1e-12).all()
- def test_transform():
- data = Series(np.arange(9) // 3, index=np.arange(9))
- index = np.arange(9)
- np.random.shuffle(index)
- data = data.reindex(index)
- grouped = data.groupby(lambda x: x // 3)
- transformed = grouped.transform(lambda x: x * x.sum())
- assert transformed[7] == 12
- # GH 8046
- # make sure that we preserve the input order
- df = DataFrame(
- np.arange(6, dtype='int64').reshape(
- 3, 2), columns=["a", "b"], index=[0, 2, 1])
- key = [0, 0, 1]
- expected = df.sort_index().groupby(key).transform(
- lambda x: x - x.mean()).groupby(key).mean()
- result = df.groupby(key).transform(lambda x: x - x.mean()).groupby(
- key).mean()
- assert_frame_equal(result, expected)
- def demean(arr):
- return arr - arr.mean()
- people = DataFrame(np.random.randn(5, 5),
- columns=['a', 'b', 'c', 'd', 'e'],
- index=['Joe', 'Steve', 'Wes', 'Jim', 'Travis'])
- key = ['one', 'two', 'one', 'two', 'one']
- result = people.groupby(key).transform(demean).groupby(key).mean()
- expected = people.groupby(key).apply(demean).groupby(key).mean()
- assert_frame_equal(result, expected)
- # GH 8430
- df = tm.makeTimeDataFrame()
- g = df.groupby(pd.Grouper(freq='M'))
- g.transform(lambda x: x - 1)
- # GH 9700
- df = DataFrame({'a': range(5, 10), 'b': range(5)})
- result = df.groupby('a').transform(max)
- expected = DataFrame({'b': range(5)})
- tm.assert_frame_equal(result, expected)
- def test_transform_fast():
- df = DataFrame({'id': np.arange(100000) / 3,
- 'val': np.random.randn(100000)})
- grp = df.groupby('id')['val']
- values = np.repeat(grp.mean().values,
- ensure_platform_int(grp.count().values))
- expected = pd.Series(values, index=df.index, name='val')
- result = grp.transform(np.mean)
- assert_series_equal(result, expected)
- result = grp.transform('mean')
- assert_series_equal(result, expected)
- # GH 12737
- df = pd.DataFrame({'grouping': [0, 1, 1, 3], 'f': [1.1, 2.1, 3.1, 4.5],
- 'd': pd.date_range('2014-1-1', '2014-1-4'),
- 'i': [1, 2, 3, 4]},
- columns=['grouping', 'f', 'i', 'd'])
- result = df.groupby('grouping').transform('first')
- dates = [pd.Timestamp('2014-1-1'), pd.Timestamp('2014-1-2'),
- pd.Timestamp('2014-1-2'), pd.Timestamp('2014-1-4')]
- expected = pd.DataFrame({'f': [1.1, 2.1, 2.1, 4.5],
- 'd': dates,
- 'i': [1, 2, 2, 4]},
- columns=['f', 'i', 'd'])
- assert_frame_equal(result, expected)
- # selection
- result = df.groupby('grouping')[['f', 'i']].transform('first')
- expected = expected[['f', 'i']]
- assert_frame_equal(result, expected)
- # dup columns
- df = pd.DataFrame([[1, 2, 3], [4, 5, 6]], columns=['g', 'a', 'a'])
- result = df.groupby('g').transform('first')
- expected = df.drop('g', axis=1)
- assert_frame_equal(result, expected)
- def test_transform_broadcast(tsframe, ts):
- grouped = ts.groupby(lambda x: x.month)
- result = grouped.transform(np.mean)
- tm.assert_index_equal(result.index, ts.index)
- for _, gp in grouped:
- assert_fp_equal(result.reindex(gp.index), gp.mean())
- grouped = tsframe.groupby(lambda x: x.month)
- result = grouped.transform(np.mean)
- tm.assert_index_equal(result.index, tsframe.index)
- for _, gp in grouped:
- agged = gp.mean()
- res = result.reindex(gp.index)
- for col in tsframe:
- assert_fp_equal(res[col], agged[col])
- # group columns
- grouped = tsframe.groupby({'A': 0, 'B': 0, 'C': 1, 'D': 1},
- axis=1)
- result = grouped.transform(np.mean)
- tm.assert_index_equal(result.index, tsframe.index)
- tm.assert_index_equal(result.columns, tsframe.columns)
- for _, gp in grouped:
- agged = gp.mean(1)
- res = result.reindex(columns=gp.columns)
- for idx in gp.index:
- assert_fp_equal(res.xs(idx), agged[idx])
- def test_transform_axis(tsframe):
- # make sure that we are setting the axes
- # correctly when on axis=0 or 1
- # in the presence of a non-monotonic indexer
- # GH12713
- base = tsframe.iloc[0:5]
- r = len(base.index)
- c = len(base.columns)
- tso = DataFrame(np.random.randn(r, c),
- index=base.index,
- columns=base.columns,
- dtype='float64')
- # monotonic
- ts = tso
- grouped = ts.groupby(lambda x: x.weekday())
- result = ts - grouped.transform('mean')
- expected = grouped.apply(lambda x: x - x.mean())
- assert_frame_equal(result, expected)
- ts = ts.T
- grouped = ts.groupby(lambda x: x.weekday(), axis=1)
- result = ts - grouped.transform('mean')
- expected = grouped.apply(lambda x: (x.T - x.mean(1)).T)
- assert_frame_equal(result, expected)
- # non-monotonic
- ts = tso.iloc[[1, 0] + list(range(2, len(base)))]
- grouped = ts.groupby(lambda x: x.weekday())
- result = ts - grouped.transform('mean')
- expected = grouped.apply(lambda x: x - x.mean())
- assert_frame_equal(result, expected)
- ts = ts.T
- grouped = ts.groupby(lambda x: x.weekday(), axis=1)
- result = ts - grouped.transform('mean')
- expected = grouped.apply(lambda x: (x.T - x.mean(1)).T)
- assert_frame_equal(result, expected)
- def test_transform_dtype():
- # GH 9807
- # Check transform dtype output is preserved
- df = DataFrame([[1, 3], [2, 3]])
- result = df.groupby(1).transform('mean')
- expected = DataFrame([[1.5], [1.5]])
- assert_frame_equal(result, expected)
- def test_transform_bug():
- # GH 5712
- # transforming on a datetime column
- df = DataFrame(dict(A=Timestamp('20130101'), B=np.arange(5)))
- result = df.groupby('A')['B'].transform(
- lambda x: x.rank(ascending=False))
- expected = Series(np.arange(5, 0, step=-1), name='B')
- assert_series_equal(result, expected)
- def test_transform_numeric_to_boolean():
- # GH 16875
- # inconsistency in transforming boolean values
- expected = pd.Series([True, True], name='A')
- df = pd.DataFrame({'A': [1.1, 2.2], 'B': [1, 2]})
- result = df.groupby('B').A.transform(lambda x: True)
- assert_series_equal(result, expected)
- df = pd.DataFrame({'A': [1, 2], 'B': [1, 2]})
- result = df.groupby('B').A.transform(lambda x: True)
- assert_series_equal(result, expected)
- def test_transform_datetime_to_timedelta():
- # GH 15429
- # transforming a datetime to timedelta
- df = DataFrame(dict(A=Timestamp('20130101'), B=np.arange(5)))
- expected = pd.Series([
- Timestamp('20130101') - Timestamp('20130101')] * 5, name='A')
- # this does date math without changing result type in transform
- base_time = df['A'][0]
- result = df.groupby('A')['A'].transform(
- lambda x: x.max() - x.min() + base_time) - base_time
- assert_series_equal(result, expected)
- # this does date math and causes the transform to return timedelta
- result = df.groupby('A')['A'].transform(lambda x: x.max() - x.min())
- assert_series_equal(result, expected)
- def test_transform_datetime_to_numeric():
- # GH 10972
- # convert dt to float
- df = DataFrame({
- 'a': 1, 'b': date_range('2015-01-01', periods=2, freq='D')})
- result = df.groupby('a').b.transform(
- lambda x: x.dt.dayofweek - x.dt.dayofweek.mean())
- expected = Series([-0.5, 0.5], name='b')
- assert_series_equal(result, expected)
- # convert dt to int
- df = DataFrame({
- 'a': 1, 'b': date_range('2015-01-01', periods=2, freq='D')})
- result = df.groupby('a').b.transform(
- lambda x: x.dt.dayofweek - x.dt.dayofweek.min())
- expected = Series([0, 1], name='b')
- assert_series_equal(result, expected)
- def test_transform_casting():
- # 13046
- data = """
- idx A ID3 DATETIME
- 0 B-028 b76cd912ff "2014-10-08 13:43:27"
- 1 B-054 4a57ed0b02 "2014-10-08 14:26:19"
- 2 B-076 1a682034f8 "2014-10-08 14:29:01"
- 3 B-023 b76cd912ff "2014-10-08 18:39:34"
- 4 B-023 f88g8d7sds "2014-10-08 18:40:18"
- 5 B-033 b76cd912ff "2014-10-08 18:44:30"
- 6 B-032 b76cd912ff "2014-10-08 18:46:00"
- 7 B-037 b76cd912ff "2014-10-08 18:52:15"
- 8 B-046 db959faf02 "2014-10-08 18:59:59"
- 9 B-053 b76cd912ff "2014-10-08 19:17:48"
- 10 B-065 b76cd912ff "2014-10-08 19:21:38"
- """
- df = pd.read_csv(StringIO(data), sep=r'\s+',
- index_col=[0], parse_dates=['DATETIME'])
- result = df.groupby('ID3')['DATETIME'].transform(lambda x: x.diff())
- assert is_timedelta64_dtype(result.dtype)
- result = df[['ID3', 'DATETIME']].groupby('ID3').transform(
- lambda x: x.diff())
- assert is_timedelta64_dtype(result.DATETIME.dtype)
- def test_transform_multiple(ts):
- grouped = ts.groupby([lambda x: x.year, lambda x: x.month])
- grouped.transform(lambda x: x * 2)
- grouped.transform(np.mean)
- def test_dispatch_transform(tsframe):
- df = tsframe[::5].reindex(tsframe.index)
- grouped = df.groupby(lambda x: x.month)
- filled = grouped.fillna(method='pad')
- fillit = lambda x: x.fillna(method='pad')
- expected = df.groupby(lambda x: x.month).transform(fillit)
- assert_frame_equal(filled, expected)
- def test_transform_select_columns(df):
- f = lambda x: x.mean()
- result = df.groupby('A')['C', 'D'].transform(f)
- selection = df[['C', 'D']]
- expected = selection.groupby(df['A']).transform(f)
- assert_frame_equal(result, expected)
- def test_transform_exclude_nuisance(df):
- # this also tests orderings in transform between
- # series/frame to make sure it's consistent
- expected = {}
- grouped = df.groupby('A')
- expected['C'] = grouped['C'].transform(np.mean)
- expected['D'] = grouped['D'].transform(np.mean)
- expected = DataFrame(expected)
- result = df.groupby('A').transform(np.mean)
- assert_frame_equal(result, expected)
- def test_transform_function_aliases(df):
- result = df.groupby('A').transform('mean')
- expected = df.groupby('A').transform(np.mean)
- assert_frame_equal(result, expected)
- result = df.groupby('A')['C'].transform('mean')
- expected = df.groupby('A')['C'].transform(np.mean)
- assert_series_equal(result, expected)
- def test_series_fast_transform_date():
- # GH 13191
- df = pd.DataFrame({'grouping': [np.nan, 1, 1, 3],
- 'd': pd.date_range('2014-1-1', '2014-1-4')})
- result = df.groupby('grouping')['d'].transform('first')
- dates = [pd.NaT, pd.Timestamp('2014-1-2'), pd.Timestamp('2014-1-2'),
- pd.Timestamp('2014-1-4')]
- expected = pd.Series(dates, name='d')
- assert_series_equal(result, expected)
- def test_transform_length():
- # GH 9697
- df = pd.DataFrame({'col1': [1, 1, 2, 2], 'col2': [1, 2, 3, np.nan]})
- expected = pd.Series([3.0] * 4)
- def nsum(x):
- return np.nansum(x)
- results = [df.groupby('col1').transform(sum)['col2'],
- df.groupby('col1')['col2'].transform(sum),
- df.groupby('col1').transform(nsum)['col2'],
- df.groupby('col1')['col2'].transform(nsum)]
- for result in results:
- assert_series_equal(result, expected, check_names=False)
- def test_transform_coercion():
- # 14457
- # when we are transforming be sure to not coerce
- # via assignment
- df = pd.DataFrame(dict(A=['a', 'a'], B=[0, 1]))
- g = df.groupby('A')
- expected = g.transform(np.mean)
- result = g.transform(lambda x: np.mean(x))
- assert_frame_equal(result, expected)
- def test_groupby_transform_with_int():
- # GH 3740, make sure that we might upcast on item-by-item transform
- # floats
- df = DataFrame(dict(A=[1, 1, 1, 2, 2, 2], B=Series(1, dtype='float64'),
- C=Series(
- [1, 2, 3, 1, 2, 3], dtype='float64'), D='foo'))
- with np.errstate(all='ignore'):
- result = df.groupby('A').transform(
- lambda x: (x - x.mean()) / x.std())
- expected = DataFrame(dict(B=np.nan, C=Series(
- [-1, 0, 1, -1, 0, 1], dtype='float64')))
- assert_frame_equal(result, expected)
- # int case
- df = DataFrame(dict(A=[1, 1, 1, 2, 2, 2], B=1,
- C=[1, 2, 3, 1, 2, 3], D='foo'))
- with np.errstate(all='ignore'):
- result = df.groupby('A').transform(
- lambda x: (x - x.mean()) / x.std())
- expected = DataFrame(dict(B=np.nan, C=[-1, 0, 1, -1, 0, 1]))
- assert_frame_equal(result, expected)
- # int that needs float conversion
- s = Series([2, 3, 4, 10, 5, -1])
- df = DataFrame(dict(A=[1, 1, 1, 2, 2, 2], B=1, C=s, D='foo'))
- with np.errstate(all='ignore'):
- result = df.groupby('A').transform(
- lambda x: (x - x.mean()) / x.std())
- s1 = s.iloc[0:3]
- s1 = (s1 - s1.mean()) / s1.std()
- s2 = s.iloc[3:6]
- s2 = (s2 - s2.mean()) / s2.std()
- expected = DataFrame(dict(B=np.nan, C=concat([s1, s2])))
- assert_frame_equal(result, expected)
- # int downcasting
- result = df.groupby('A').transform(lambda x: x * 2 / 2)
- expected = DataFrame(dict(B=1, C=[2, 3, 4, 10, 5, -1]))
- assert_frame_equal(result, expected)
- def test_groupby_transform_with_nan_group():
- # GH 9941
- df = pd.DataFrame({'a': range(10),
- 'b': [1, 1, 2, 3, np.nan, 4, 4, 5, 5, 5]})
- result = df.groupby(df.b)['a'].transform(max)
- expected = pd.Series([1., 1., 2., 3., np.nan, 6., 6., 9., 9., 9.],
- name='a')
- assert_series_equal(result, expected)
- def test_transform_mixed_type():
- index = MultiIndex.from_arrays([[0, 0, 0, 1, 1, 1], [1, 2, 3, 1, 2, 3]
- ])
- df = DataFrame({'d': [1., 1., 1., 2., 2., 2.],
- 'c': np.tile(['a', 'b', 'c'], 2),
- 'v': np.arange(1., 7.)}, index=index)
- def f(group):
- group['g'] = group['d'] * 2
- return group[:1]
- grouped = df.groupby('c')
- result = grouped.apply(f)
- assert result['d'].dtype == np.float64
- # this is by definition a mutating operation!
- with option_context('mode.chained_assignment', None):
- for key, group in grouped:
- res = f(group)
- assert_frame_equal(res, result.loc[key])
- def _check_cython_group_transform_cumulative(pd_op, np_op, dtype):
- """
- Check a group transform that executes a cumulative function.
- Parameters
- ----------
- pd_op : callable
- The pandas cumulative function.
- np_op : callable
- The analogous one in NumPy.
- dtype : type
- The specified dtype of the data.
- """
- is_datetimelike = False
- data = np.array([[1], [2], [3], [4]], dtype=dtype)
- ans = np.zeros_like(data)
- labels = np.array([0, 0, 0, 0], dtype=np.int64)
- pd_op(ans, data, labels, is_datetimelike)
- tm.assert_numpy_array_equal(np_op(data), ans[:, 0],
- check_dtype=False)
- def test_cython_group_transform_cumsum(any_real_dtype):
- # see gh-4095
- dtype = np.dtype(any_real_dtype).type
- pd_op, np_op = groupby.group_cumsum, np.cumsum
- _check_cython_group_transform_cumulative(pd_op, np_op, dtype)
- def test_cython_group_transform_cumprod():
- # see gh-4095
- dtype = np.float64
- pd_op, np_op = groupby.group_cumprod_float64, np.cumproduct
- _check_cython_group_transform_cumulative(pd_op, np_op, dtype)
- def test_cython_group_transform_algos():
- # see gh-4095
- is_datetimelike = False
- # with nans
- labels = np.array([0, 0, 0, 0, 0], dtype=np.int64)
- data = np.array([[1], [2], [3], [np.nan], [4]], dtype='float64')
- actual = np.zeros_like(data)
- actual.fill(np.nan)
- groupby.group_cumprod_float64(actual, data, labels, is_datetimelike)
- expected = np.array([1, 2, 6, np.nan, 24], dtype='float64')
- tm.assert_numpy_array_equal(actual[:, 0], expected)
- actual = np.zeros_like(data)
- actual.fill(np.nan)
- groupby.group_cumsum(actual, data, labels, is_datetimelike)
- expected = np.array([1, 3, 6, np.nan, 10], dtype='float64')
- tm.assert_numpy_array_equal(actual[:, 0], expected)
- # timedelta
- is_datetimelike = True
- data = np.array([np.timedelta64(1, 'ns')] * 5, dtype='m8[ns]')[:, None]
- actual = np.zeros_like(data, dtype='int64')
- groupby.group_cumsum(actual, data.view('int64'), labels,
- is_datetimelike)
- expected = np.array([np.timedelta64(1, 'ns'), np.timedelta64(
- 2, 'ns'), np.timedelta64(3, 'ns'), np.timedelta64(4, 'ns'),
- np.timedelta64(5, 'ns')])
- tm.assert_numpy_array_equal(actual[:, 0].view('m8[ns]'), expected)
- @pytest.mark.parametrize(
- "op, args, targop",
- [('cumprod', (), lambda x: x.cumprod()),
- ('cumsum', (), lambda x: x.cumsum()),
- ('shift', (-1, ), lambda x: x.shift(-1)),
- ('shift', (1, ), lambda x: x.shift())])
- def test_cython_transform_series(op, args, targop):
- # GH 4095
- s = Series(np.random.randn(1000))
- s_missing = s.copy()
- s_missing.iloc[2:10] = np.nan
- labels = np.random.randint(0, 50, size=1000).astype(float)
- # series
- for data in [s, s_missing]:
- # print(data.head())
- expected = data.groupby(labels).transform(targop)
- tm.assert_series_equal(
- expected,
- data.groupby(labels).transform(op, *args))
- tm.assert_series_equal(expected, getattr(
- data.groupby(labels), op)(*args))
- @pytest.mark.parametrize("op", ['cumprod', 'cumsum'])
- @pytest.mark.parametrize("skipna", [False, True])
- @pytest.mark.parametrize('input, exp', [
- # When everything is NaN
- ({'key': ['b'] * 10, 'value': np.nan},
- pd.Series([np.nan] * 10, name='value')),
- # When there is a single NaN
- ({'key': ['b'] * 10 + ['a'] * 2,
- 'value': [3] * 3 + [np.nan] + [3] * 8},
- {('cumprod', False): [3.0, 9.0, 27.0] + [np.nan] * 7 + [3.0, 9.0],
- ('cumprod', True): [3.0, 9.0, 27.0, np.nan, 81., 243., 729.,
- 2187., 6561., 19683., 3.0, 9.0],
- ('cumsum', False): [3.0, 6.0, 9.0] + [np.nan] * 7 + [3.0, 6.0],
- ('cumsum', True): [3.0, 6.0, 9.0, np.nan, 12., 15., 18.,
- 21., 24., 27., 3.0, 6.0]})])
- def test_groupby_cum_skipna(op, skipna, input, exp):
- df = pd.DataFrame(input)
- result = df.groupby('key')['value'].transform(op, skipna=skipna)
- if isinstance(exp, dict):
- expected = exp[(op, skipna)]
- else:
- expected = exp
- expected = pd.Series(expected, name='value')
- tm.assert_series_equal(expected, result)
- @pytest.mark.parametrize(
- "op, args, targop",
- [('cumprod', (), lambda x: x.cumprod()),
- ('cumsum', (), lambda x: x.cumsum()),
- ('shift', (-1, ), lambda x: x.shift(-1)),
- ('shift', (1, ), lambda x: x.shift())])
- def test_cython_transform_frame(op, args, targop):
- s = Series(np.random.randn(1000))
- s_missing = s.copy()
- s_missing.iloc[2:10] = np.nan
- labels = np.random.randint(0, 50, size=1000).astype(float)
- strings = list('qwertyuiopasdfghjklz')
- strings_missing = strings[:]
- strings_missing[5] = np.nan
- df = DataFrame({'float': s,
- 'float_missing': s_missing,
- 'int': [1, 1, 1, 1, 2] * 200,
- 'datetime': pd.date_range('1990-1-1', periods=1000),
- 'timedelta': pd.timedelta_range(1, freq='s',
- periods=1000),
- 'string': strings * 50,
- 'string_missing': strings_missing * 50},
- columns=['float', 'float_missing', 'int', 'datetime',
- 'timedelta', 'string', 'string_missing'])
- df['cat'] = df['string'].astype('category')
- df2 = df.copy()
- df2.index = pd.MultiIndex.from_product([range(100), range(10)])
- # DataFrame - Single and MultiIndex,
- # group by values, index level, columns
- for df in [df, df2]:
- for gb_target in [dict(by=labels), dict(level=0), dict(by='string')
- ]: # dict(by='string_missing')]:
- # dict(by=['int','string'])]:
- gb = df.groupby(**gb_target)
- # whitelisted methods set the selection before applying
- # bit a of hack to make sure the cythonized shift
- # is equivalent to pre 0.17.1 behavior
- if op == 'shift':
- gb._set_group_selection()
- if op != 'shift' and 'int' not in gb_target:
- # numeric apply fastpath promotes dtype so have
- # to apply separately and concat
- i = gb[['int']].apply(targop)
- f = gb[['float', 'float_missing']].apply(targop)
- expected = pd.concat([f, i], axis=1)
- else:
- expected = gb.apply(targop)
- expected = expected.sort_index(axis=1)
- tm.assert_frame_equal(expected,
- gb.transform(op, *args).sort_index(
- axis=1))
- tm.assert_frame_equal(
- expected,
- getattr(gb, op)(*args).sort_index(axis=1))
- # individual columns
- for c in df:
- if c not in ['float', 'int', 'float_missing'
- ] and op != 'shift':
- msg = "No numeric types to aggregate"
- with pytest.raises(DataError, match=msg):
- gb[c].transform(op)
- with pytest.raises(DataError, match=msg):
- getattr(gb[c], op)()
- else:
- expected = gb[c].apply(targop)
- expected.name = c
- tm.assert_series_equal(expected,
- gb[c].transform(op, *args))
- tm.assert_series_equal(expected,
- getattr(gb[c], op)(*args))
- def test_transform_with_non_scalar_group():
- # GH 10165
- cols = pd.MultiIndex.from_tuples([
- ('syn', 'A'), ('mis', 'A'), ('non', 'A'),
- ('syn', 'C'), ('mis', 'C'), ('non', 'C'),
- ('syn', 'T'), ('mis', 'T'), ('non', 'T'),
- ('syn', 'G'), ('mis', 'G'), ('non', 'G')])
- df = pd.DataFrame(np.random.randint(1, 10, (4, 12)),
- columns=cols,
- index=['A', 'C', 'G', 'T'])
- msg = 'transform must return a scalar value for each group.*'
- with pytest.raises(ValueError, match=msg):
- df.groupby(axis=1, level=1).transform(
- lambda z: z.div(z.sum(axis=1), axis=0))
- @pytest.mark.parametrize('cols,exp,comp_func', [
- ('a', pd.Series([1, 1, 1], name='a'), tm.assert_series_equal),
- (['a', 'c'], pd.DataFrame({'a': [1, 1, 1], 'c': [1, 1, 1]}),
- tm.assert_frame_equal)
- ])
- @pytest.mark.parametrize('agg_func', [
- 'count', 'rank', 'size'])
- def test_transform_numeric_ret(cols, exp, comp_func, agg_func):
- if agg_func == 'size' and isinstance(cols, list):
- pytest.xfail("'size' transformation not supported with "
- "NDFrameGroupy")
- # GH 19200
- df = pd.DataFrame(
- {'a': pd.date_range('2018-01-01', periods=3),
- 'b': range(3),
- 'c': range(7, 10)})
- result = df.groupby('b')[cols].transform(agg_func)
- if agg_func == 'rank':
- exp = exp.astype('float')
- comp_func(result, exp)
- @pytest.mark.parametrize("mix_groupings", [True, False])
- @pytest.mark.parametrize("as_series", [True, False])
- @pytest.mark.parametrize("val1,val2", [
- ('foo', 'bar'), (1, 2), (1., 2.)])
- @pytest.mark.parametrize("fill_method,limit,exp_vals", [
- ("ffill", None,
- [np.nan, np.nan, 'val1', 'val1', 'val1', 'val2', 'val2', 'val2']),
- ("ffill", 1,
- [np.nan, np.nan, 'val1', 'val1', np.nan, 'val2', 'val2', np.nan]),
- ("bfill", None,
- ['val1', 'val1', 'val1', 'val2', 'val2', 'val2', np.nan, np.nan]),
- ("bfill", 1,
- [np.nan, 'val1', 'val1', np.nan, 'val2', 'val2', np.nan, np.nan])
- ])
- def test_group_fill_methods(mix_groupings, as_series, val1, val2,
- fill_method, limit, exp_vals):
- vals = [np.nan, np.nan, val1, np.nan, np.nan, val2, np.nan, np.nan]
- _exp_vals = list(exp_vals)
- # Overwrite placeholder values
- for index, exp_val in enumerate(_exp_vals):
- if exp_val == 'val1':
- _exp_vals[index] = val1
- elif exp_val == 'val2':
- _exp_vals[index] = val2
- # Need to modify values and expectations depending on the
- # Series / DataFrame that we ultimately want to generate
- if mix_groupings: # ['a', 'b', 'a, 'b', ...]
- keys = ['a', 'b'] * len(vals)
- def interweave(list_obj):
- temp = list()
- for x in list_obj:
- temp.extend([x, x])
- return temp
- _exp_vals = interweave(_exp_vals)
- vals = interweave(vals)
- else: # ['a', 'a', 'a', ... 'b', 'b', 'b']
- keys = ['a'] * len(vals) + ['b'] * len(vals)
- _exp_vals = _exp_vals * 2
- vals = vals * 2
- df = DataFrame({'key': keys, 'val': vals})
- if as_series:
- result = getattr(
- df.groupby('key')['val'], fill_method)(limit=limit)
- exp = Series(_exp_vals, name='val')
- assert_series_equal(result, exp)
- else:
- result = getattr(df.groupby('key'), fill_method)(limit=limit)
- exp = DataFrame({'key': keys, 'val': _exp_vals})
- assert_frame_equal(result, exp)
- @pytest.mark.parametrize("fill_method", ['ffill', 'bfill'])
- def test_pad_stable_sorting(fill_method):
- # GH 21207
- x = [0] * 20
- y = [np.nan] * 10 + [1] * 10
- if fill_method == 'bfill':
- y = y[::-1]
- df = pd.DataFrame({'x': x, 'y': y})
- expected = df.copy()
- result = getattr(df.groupby('x'), fill_method)()
- tm.assert_frame_equal(result, expected)
- @pytest.mark.parametrize("test_series", [True, False])
- @pytest.mark.parametrize("freq", [
- None,
- pytest.param('D', marks=pytest.mark.xfail(
- reason='GH#23918 before method uses freq in vectorized approach'))])
- @pytest.mark.parametrize("periods,fill_method,limit", [
- (1, 'ffill', None), (1, 'ffill', 1),
- (1, 'bfill', None), (1, 'bfill', 1),
- (-1, 'ffill', None), (-1, 'ffill', 1),
- (-1, 'bfill', None), (-1, 'bfill', 1),
- ])
- def test_pct_change(test_series, freq, periods, fill_method, limit):
- # GH 21200, 21621
- vals = [3, np.nan, np.nan, np.nan, 1, 2, 4, 10, np.nan, 4]
- keys = ['a', 'b']
- key_v = np.repeat(keys, len(vals))
- df = DataFrame({'key': key_v, 'vals': vals * 2})
- df_g = getattr(df.groupby('key'), fill_method)(limit=limit)
- grp = df_g.groupby('key')
- expected = grp['vals'].obj / grp['vals'].shift(periods) - 1
- if test_series:
- result = df.groupby('key')['vals'].pct_change(
- periods=periods, fill_method=fill_method, limit=limit, freq=freq)
- tm.assert_series_equal(result, expected)
- else:
- result = df.groupby('key').pct_change(
- periods=periods, fill_method=fill_method, limit=limit, freq=freq)
- tm.assert_frame_equal(result, expected.to_frame('vals'))
- @pytest.mark.parametrize("func", [np.any, np.all])
- def test_any_all_np_func(func):
- # GH 20653
- df = pd.DataFrame([['foo', True],
- [np.nan, True],
- ['foo', True]], columns=['key', 'val'])
- exp = pd.Series([True, np.nan, True], name='val')
- res = df.groupby('key')['val'].transform(func)
- tm.assert_series_equal(res, exp)
- def test_groupby_transform_rename():
- # https://github.com/pandas-dev/pandas/issues/23461
- def demean_rename(x):
- result = x - x.mean()
- if isinstance(x, pd.Series):
- return result
- result = result.rename(
- columns={c: '{}_demeaned'.format(c) for c in result.columns})
- return result
- df = pd.DataFrame({'group': list('ababa'),
- 'value': [1, 1, 1, 2, 2]})
- expected = pd.DataFrame({'value': [-1. / 3, -0.5, -1. / 3, 0.5, 2. / 3]})
- result = df.groupby('group').transform(demean_rename)
- tm.assert_frame_equal(result, expected)
- result_single = df.groupby('group').value.transform(demean_rename)
- tm.assert_series_equal(result_single, expected['value'])
- @pytest.mark.parametrize('func', [min, max, np.min, np.max, 'first', 'last'])
- def test_groupby_transform_timezone_column(func):
- # GH 24198
- ts = pd.to_datetime('now', utc=True).tz_convert('Asia/Singapore')
- result = pd.DataFrame({'end_time': [ts], 'id': [1]})
- result['max_end_time'] = result.groupby('id').end_time.transform(func)
- expected = pd.DataFrame([[ts, 1, ts]], columns=['end_time', 'id',
- 'max_end_time'])
- tm.assert_frame_equal(result, expected)
|