123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278 |
- # -*- coding: utf-8 -*-
- from itertools import product
- import numpy as np
- import pytest
- from pandas._libs import hashtable
- from pandas.compat import range, u
- from pandas import DatetimeIndex, MultiIndex
- import pandas.util.testing as tm
- @pytest.mark.parametrize('names', [None, ['first', 'second']])
- def test_unique(names):
- mi = MultiIndex.from_arrays([[1, 2, 1, 2], [1, 1, 1, 2]], names=names)
- res = mi.unique()
- exp = MultiIndex.from_arrays([[1, 2, 2], [1, 1, 2]], names=mi.names)
- tm.assert_index_equal(res, exp)
- mi = MultiIndex.from_arrays([list('aaaa'), list('abab')],
- names=names)
- res = mi.unique()
- exp = MultiIndex.from_arrays([list('aa'), list('ab')], names=mi.names)
- tm.assert_index_equal(res, exp)
- mi = MultiIndex.from_arrays([list('aaaa'), list('aaaa')], names=names)
- res = mi.unique()
- exp = MultiIndex.from_arrays([['a'], ['a']], names=mi.names)
- tm.assert_index_equal(res, exp)
- # GH #20568 - empty MI
- mi = MultiIndex.from_arrays([[], []], names=names)
- res = mi.unique()
- tm.assert_index_equal(mi, res)
- def test_unique_datetimelike():
- idx1 = DatetimeIndex(['2015-01-01', '2015-01-01', '2015-01-01',
- '2015-01-01', 'NaT', 'NaT'])
- idx2 = DatetimeIndex(['2015-01-01', '2015-01-01', '2015-01-02',
- '2015-01-02', 'NaT', '2015-01-01'],
- tz='Asia/Tokyo')
- result = MultiIndex.from_arrays([idx1, idx2]).unique()
- eidx1 = DatetimeIndex(['2015-01-01', '2015-01-01', 'NaT', 'NaT'])
- eidx2 = DatetimeIndex(['2015-01-01', '2015-01-02',
- 'NaT', '2015-01-01'],
- tz='Asia/Tokyo')
- exp = MultiIndex.from_arrays([eidx1, eidx2])
- tm.assert_index_equal(result, exp)
- @pytest.mark.parametrize('level', [0, 'first', 1, 'second'])
- def test_unique_level(idx, level):
- # GH #17896 - with level= argument
- result = idx.unique(level=level)
- expected = idx.get_level_values(level).unique()
- tm.assert_index_equal(result, expected)
- # With already unique level
- mi = MultiIndex.from_arrays([[1, 3, 2, 4], [1, 3, 2, 5]],
- names=['first', 'second'])
- result = mi.unique(level=level)
- expected = mi.get_level_values(level)
- tm.assert_index_equal(result, expected)
- # With empty MI
- mi = MultiIndex.from_arrays([[], []], names=['first', 'second'])
- result = mi.unique(level=level)
- expected = mi.get_level_values(level)
- @pytest.mark.parametrize('dropna', [True, False])
- def test_get_unique_index(idx, dropna):
- mi = idx[[0, 1, 0, 1, 1, 0, 0]]
- expected = mi._shallow_copy(mi[[0, 1]])
- result = mi._get_unique_index(dropna=dropna)
- assert result.unique
- tm.assert_index_equal(result, expected)
- def test_duplicate_multiindex_codes():
- # GH 17464
- # Make sure that a MultiIndex with duplicate levels throws a ValueError
- with pytest.raises(ValueError):
- mi = MultiIndex([['A'] * 10, range(10)], [[0] * 10, range(10)])
- # And that using set_levels with duplicate levels fails
- mi = MultiIndex.from_arrays([['A', 'A', 'B', 'B', 'B'],
- [1, 2, 1, 2, 3]])
- with pytest.raises(ValueError):
- mi.set_levels([['A', 'B', 'A', 'A', 'B'], [2, 1, 3, -2, 5]],
- inplace=True)
- @pytest.mark.parametrize('names', [['a', 'b', 'a'], [1, 1, 2],
- [1, 'a', 1]])
- def test_duplicate_level_names(names):
- # GH18872, GH19029
- mi = MultiIndex.from_product([[0, 1]] * 3, names=names)
- assert mi.names == names
- # With .rename()
- mi = MultiIndex.from_product([[0, 1]] * 3)
- mi = mi.rename(names)
- assert mi.names == names
- # With .rename(., level=)
- mi.rename(names[1], level=1, inplace=True)
- mi = mi.rename([names[0], names[2]], level=[0, 2])
- assert mi.names == names
- def test_duplicate_meta_data():
- # GH 10115
- mi = MultiIndex(
- levels=[[0, 1], [0, 1, 2]],
- codes=[[0, 0, 0, 0, 1, 1, 1],
- [0, 1, 2, 0, 0, 1, 2]])
- for idx in [mi,
- mi.set_names([None, None]),
- mi.set_names([None, 'Num']),
- mi.set_names(['Upper', 'Num']), ]:
- assert idx.has_duplicates
- assert idx.drop_duplicates().names == idx.names
- def test_has_duplicates(idx, idx_dup):
- # see fixtures
- assert idx.is_unique is True
- assert idx.has_duplicates is False
- assert idx_dup.is_unique is False
- assert idx_dup.has_duplicates is True
- mi = MultiIndex(levels=[[0, 1], [0, 1, 2]],
- codes=[[0, 0, 0, 0, 1, 1, 1],
- [0, 1, 2, 0, 0, 1, 2]])
- assert mi.is_unique is False
- assert mi.has_duplicates is True
- # single instance of NaN
- mi_nan = MultiIndex(levels=[['a', 'b'], [0, 1]],
- codes=[[-1, 0, 0, 1, 1], [-1, 0, 1, 0, 1]])
- assert mi_nan.is_unique is True
- assert mi_nan.has_duplicates is False
- # multiple instances of NaN
- mi_nan_dup = MultiIndex(levels=[['a', 'b'], [0, 1]],
- codes=[[-1, -1, 0, 0, 1, 1], [-1, -1, 0, 1, 0, 1]])
- assert mi_nan_dup.is_unique is False
- assert mi_nan_dup.has_duplicates is True
- def test_has_duplicates_from_tuples():
- # GH 9075
- t = [(u('x'), u('out'), u('z'), 5, u('y'), u('in'), u('z'), 169),
- (u('x'), u('out'), u('z'), 7, u('y'), u('in'), u('z'), 119),
- (u('x'), u('out'), u('z'), 9, u('y'), u('in'), u('z'), 135),
- (u('x'), u('out'), u('z'), 13, u('y'), u('in'), u('z'), 145),
- (u('x'), u('out'), u('z'), 14, u('y'), u('in'), u('z'), 158),
- (u('x'), u('out'), u('z'), 16, u('y'), u('in'), u('z'), 122),
- (u('x'), u('out'), u('z'), 17, u('y'), u('in'), u('z'), 160),
- (u('x'), u('out'), u('z'), 18, u('y'), u('in'), u('z'), 180),
- (u('x'), u('out'), u('z'), 20, u('y'), u('in'), u('z'), 143),
- (u('x'), u('out'), u('z'), 21, u('y'), u('in'), u('z'), 128),
- (u('x'), u('out'), u('z'), 22, u('y'), u('in'), u('z'), 129),
- (u('x'), u('out'), u('z'), 25, u('y'), u('in'), u('z'), 111),
- (u('x'), u('out'), u('z'), 28, u('y'), u('in'), u('z'), 114),
- (u('x'), u('out'), u('z'), 29, u('y'), u('in'), u('z'), 121),
- (u('x'), u('out'), u('z'), 31, u('y'), u('in'), u('z'), 126),
- (u('x'), u('out'), u('z'), 32, u('y'), u('in'), u('z'), 155),
- (u('x'), u('out'), u('z'), 33, u('y'), u('in'), u('z'), 123),
- (u('x'), u('out'), u('z'), 12, u('y'), u('in'), u('z'), 144)]
- mi = MultiIndex.from_tuples(t)
- assert not mi.has_duplicates
- def test_has_duplicates_overflow():
- # handle int64 overflow if possible
- def check(nlevels, with_nulls):
- codes = np.tile(np.arange(500), 2)
- level = np.arange(500)
- if with_nulls: # inject some null values
- codes[500] = -1 # common nan value
- codes = [codes.copy() for i in range(nlevels)]
- for i in range(nlevels):
- codes[i][500 + i - nlevels // 2] = -1
- codes += [np.array([-1, 1]).repeat(500)]
- else:
- codes = [codes] * nlevels + [np.arange(2).repeat(500)]
- levels = [level] * nlevels + [[0, 1]]
- # no dups
- mi = MultiIndex(levels=levels, codes=codes)
- assert not mi.has_duplicates
- # with a dup
- if with_nulls:
- def f(a):
- return np.insert(a, 1000, a[0])
- codes = list(map(f, codes))
- mi = MultiIndex(levels=levels, codes=codes)
- else:
- values = mi.values.tolist()
- mi = MultiIndex.from_tuples(values + [values[0]])
- assert mi.has_duplicates
- # no overflow
- check(4, False)
- check(4, True)
- # overflow possible
- check(8, False)
- check(8, True)
- @pytest.mark.parametrize('keep, expected', [
- ('first', np.array([False, False, False, True, True, False])),
- ('last', np.array([False, True, True, False, False, False])),
- (False, np.array([False, True, True, True, True, False]))
- ])
- def test_duplicated(idx_dup, keep, expected):
- result = idx_dup.duplicated(keep=keep)
- tm.assert_numpy_array_equal(result, expected)
- @pytest.mark.parametrize('keep', ['first', 'last', False])
- def test_duplicated_large(keep):
- # GH 9125
- n, k = 200, 5000
- levels = [np.arange(n), tm.makeStringIndex(n), 1000 + np.arange(n)]
- codes = [np.random.choice(n, k * n) for lev in levels]
- mi = MultiIndex(levels=levels, codes=codes)
- result = mi.duplicated(keep=keep)
- expected = hashtable.duplicated_object(mi.values, keep=keep)
- tm.assert_numpy_array_equal(result, expected)
- def test_get_duplicates():
- # GH5873
- for a in [101, 102]:
- mi = MultiIndex.from_arrays([[101, a], [3.5, np.nan]])
- assert not mi.has_duplicates
- with tm.assert_produces_warning(FutureWarning):
- # Deprecated - see GH20239
- assert mi.get_duplicates().equals(MultiIndex.from_arrays([[], []]))
- tm.assert_numpy_array_equal(mi.duplicated(),
- np.zeros(2, dtype='bool'))
- for n in range(1, 6): # 1st level shape
- for m in range(1, 5): # 2nd level shape
- # all possible unique combinations, including nan
- codes = product(range(-1, n), range(-1, m))
- mi = MultiIndex(levels=[list('abcde')[:n], list('WXYZ')[:m]],
- codes=np.random.permutation(list(codes)).T)
- assert len(mi) == (n + 1) * (m + 1)
- assert not mi.has_duplicates
- with tm.assert_produces_warning(FutureWarning):
- # Deprecated - see GH20239
- assert mi.get_duplicates().equals(MultiIndex.from_arrays(
- [[], []]))
- tm.assert_numpy_array_equal(mi.duplicated(),
- np.zeros(len(mi), dtype='bool'))
|