123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314 |
- """ test indexing with ix """
- from warnings import catch_warnings
- import numpy as np
- import pytest
- from pandas.compat import lrange
- from pandas.core.dtypes.common import is_scalar
- import pandas as pd
- from pandas import DataFrame, Series, option_context
- from pandas.util import testing as tm
- def test_ix_deprecation():
- # GH 15114
- df = DataFrame({'A': [1, 2, 3]})
- with tm.assert_produces_warning(DeprecationWarning,
- check_stacklevel=False):
- df.ix[1, 'A']
- @pytest.mark.filterwarnings("ignore:\\n.ix:DeprecationWarning")
- class TestIX(object):
- def test_ix_loc_setitem_consistency(self):
- # GH 5771
- # loc with slice and series
- s = Series(0, index=[4, 5, 6])
- s.loc[4:5] += 1
- expected = Series([1, 1, 0], index=[4, 5, 6])
- tm.assert_series_equal(s, expected)
- # GH 5928
- # chained indexing assignment
- df = DataFrame({'a': [0, 1, 2]})
- expected = df.copy()
- with catch_warnings(record=True):
- expected.ix[[0, 1, 2], 'a'] = -expected.ix[[0, 1, 2], 'a']
- with catch_warnings(record=True):
- df['a'].ix[[0, 1, 2]] = -df['a'].ix[[0, 1, 2]]
- tm.assert_frame_equal(df, expected)
- df = DataFrame({'a': [0, 1, 2], 'b': [0, 1, 2]})
- with catch_warnings(record=True):
- df['a'].ix[[0, 1, 2]] = -df['a'].ix[[0, 1, 2]].astype(
- 'float64') + 0.5
- expected = DataFrame({'a': [0.5, -0.5, -1.5], 'b': [0, 1, 2]})
- tm.assert_frame_equal(df, expected)
- # GH 8607
- # ix setitem consistency
- df = DataFrame({'delta': [1174, 904, 161],
- 'elapsed': [7673, 9277, 1470],
- 'timestamp': [1413840976, 1413842580, 1413760580]})
- expected = DataFrame({'delta': [1174, 904, 161],
- 'elapsed': [7673, 9277, 1470],
- 'timestamp': pd.to_datetime(
- [1413840976, 1413842580, 1413760580],
- unit='s')
- })
- df2 = df.copy()
- df2['timestamp'] = pd.to_datetime(df['timestamp'], unit='s')
- tm.assert_frame_equal(df2, expected)
- df2 = df.copy()
- df2.loc[:, 'timestamp'] = pd.to_datetime(df['timestamp'], unit='s')
- tm.assert_frame_equal(df2, expected)
- df2 = df.copy()
- with catch_warnings(record=True):
- df2.ix[:, 2] = pd.to_datetime(df['timestamp'], unit='s')
- tm.assert_frame_equal(df2, expected)
- def test_ix_loc_consistency(self):
- # GH 8613
- # some edge cases where ix/loc should return the same
- # this is not an exhaustive case
- def compare(result, expected):
- if is_scalar(expected):
- assert result == expected
- else:
- assert expected.equals(result)
- # failure cases for .loc, but these work for .ix
- df = DataFrame(np.random.randn(5, 4), columns=list('ABCD'))
- for key in [slice(1, 3), tuple([slice(0, 2), slice(0, 2)]),
- tuple([slice(0, 2), df.columns[0:2]])]:
- for index in [tm.makeStringIndex, tm.makeUnicodeIndex,
- tm.makeDateIndex, tm.makePeriodIndex,
- tm.makeTimedeltaIndex]:
- df.index = index(len(df.index))
- with catch_warnings(record=True):
- df.ix[key]
- pytest.raises(TypeError, lambda: df.loc[key])
- df = DataFrame(np.random.randn(5, 4), columns=list('ABCD'),
- index=pd.date_range('2012-01-01', periods=5))
- for key in ['2012-01-03',
- '2012-01-31',
- slice('2012-01-03', '2012-01-03'),
- slice('2012-01-03', '2012-01-04'),
- slice('2012-01-03', '2012-01-06', 2),
- slice('2012-01-03', '2012-01-31'),
- tuple([[True, True, True, False, True]]), ]:
- # getitem
- # if the expected raises, then compare the exceptions
- try:
- with catch_warnings(record=True):
- expected = df.ix[key]
- except KeyError:
- pytest.raises(KeyError, lambda: df.loc[key])
- continue
- result = df.loc[key]
- compare(result, expected)
- # setitem
- df1 = df.copy()
- df2 = df.copy()
- with catch_warnings(record=True):
- df1.ix[key] = 10
- df2.loc[key] = 10
- compare(df2, df1)
- # edge cases
- s = Series([1, 2, 3, 4], index=list('abde'))
- result1 = s['a':'c']
- with catch_warnings(record=True):
- result2 = s.ix['a':'c']
- result3 = s.loc['a':'c']
- tm.assert_series_equal(result1, result2)
- tm.assert_series_equal(result1, result3)
- # now work rather than raising KeyError
- s = Series(range(5), [-2, -1, 1, 2, 3])
- with catch_warnings(record=True):
- result1 = s.ix[-10:3]
- result2 = s.loc[-10:3]
- tm.assert_series_equal(result1, result2)
- with catch_warnings(record=True):
- result1 = s.ix[0:3]
- result2 = s.loc[0:3]
- tm.assert_series_equal(result1, result2)
- def test_ix_weird_slicing(self):
- # http://stackoverflow.com/q/17056560/1240268
- df = DataFrame({'one': [1, 2, 3, np.nan, np.nan],
- 'two': [1, 2, 3, 4, 5]})
- df.loc[df['one'] > 1, 'two'] = -df['two']
- expected = DataFrame({'one': {0: 1.0,
- 1: 2.0,
- 2: 3.0,
- 3: np.nan,
- 4: np.nan},
- 'two': {0: 1,
- 1: -2,
- 2: -3,
- 3: 4,
- 4: 5}})
- tm.assert_frame_equal(df, expected)
- def test_ix_assign_column_mixed(self):
- # GH #1142
- df = DataFrame(tm.getSeriesData())
- df['foo'] = 'bar'
- orig = df.loc[:, 'B'].copy()
- df.loc[:, 'B'] = df.loc[:, 'B'] + 1
- tm.assert_series_equal(df.B, orig + 1)
- # GH 3668, mixed frame with series value
- df = DataFrame({'x': lrange(10), 'y': lrange(10, 20), 'z': 'bar'})
- expected = df.copy()
- for i in range(5):
- indexer = i * 2
- v = 1000 + i * 200
- expected.loc[indexer, 'y'] = v
- assert expected.loc[indexer, 'y'] == v
- df.loc[df.x % 2 == 0, 'y'] = df.loc[df.x % 2 == 0, 'y'] * 100
- tm.assert_frame_equal(df, expected)
- # GH 4508, making sure consistency of assignments
- df = DataFrame({'a': [1, 2, 3], 'b': [0, 1, 2]})
- df.loc[[0, 2, ], 'b'] = [100, -100]
- expected = DataFrame({'a': [1, 2, 3], 'b': [100, 1, -100]})
- tm.assert_frame_equal(df, expected)
- df = DataFrame({'a': lrange(4)})
- df['b'] = np.nan
- df.loc[[1, 3], 'b'] = [100, -100]
- expected = DataFrame({'a': [0, 1, 2, 3],
- 'b': [np.nan, 100, np.nan, -100]})
- tm.assert_frame_equal(df, expected)
- # ok, but chained assignments are dangerous
- # if we turn off chained assignment it will work
- with option_context('chained_assignment', None):
- df = DataFrame({'a': lrange(4)})
- df['b'] = np.nan
- df['b'].loc[[1, 3]] = [100, -100]
- tm.assert_frame_equal(df, expected)
- def test_ix_get_set_consistency(self):
- # GH 4544
- # ix/loc get/set not consistent when
- # a mixed int/string index
- df = DataFrame(np.arange(16).reshape((4, 4)),
- columns=['a', 'b', 8, 'c'],
- index=['e', 7, 'f', 'g'])
- with catch_warnings(record=True):
- assert df.ix['e', 8] == 2
- assert df.loc['e', 8] == 2
- with catch_warnings(record=True):
- df.ix['e', 8] = 42
- assert df.ix['e', 8] == 42
- assert df.loc['e', 8] == 42
- df.loc['e', 8] = 45
- with catch_warnings(record=True):
- assert df.ix['e', 8] == 45
- assert df.loc['e', 8] == 45
- def test_ix_slicing_strings(self):
- # see gh-3836
- data = {'Classification':
- ['SA EQUITY CFD', 'bbb', 'SA EQUITY', 'SA SSF', 'aaa'],
- 'Random': [1, 2, 3, 4, 5],
- 'X': ['correct', 'wrong', 'correct', 'correct', 'wrong']}
- df = DataFrame(data)
- x = df[~df.Classification.isin(['SA EQUITY CFD', 'SA EQUITY', 'SA SSF'
- ])]
- with catch_warnings(record=True):
- df.ix[x.index, 'X'] = df['Classification']
- expected = DataFrame({'Classification': {0: 'SA EQUITY CFD',
- 1: 'bbb',
- 2: 'SA EQUITY',
- 3: 'SA SSF',
- 4: 'aaa'},
- 'Random': {0: 1,
- 1: 2,
- 2: 3,
- 3: 4,
- 4: 5},
- 'X': {0: 'correct',
- 1: 'bbb',
- 2: 'correct',
- 3: 'correct',
- 4: 'aaa'}}) # bug was 4: 'bbb'
- tm.assert_frame_equal(df, expected)
- def test_ix_setitem_out_of_bounds_axis_0(self):
- df = DataFrame(
- np.random.randn(2, 5), index=["row%s" % i for i in range(2)],
- columns=["col%s" % i for i in range(5)])
- with catch_warnings(record=True):
- pytest.raises(ValueError, df.ix.__setitem__, (2, 0), 100)
- def test_ix_setitem_out_of_bounds_axis_1(self):
- df = DataFrame(
- np.random.randn(5, 2), index=["row%s" % i for i in range(5)],
- columns=["col%s" % i for i in range(2)])
- with catch_warnings(record=True):
- pytest.raises(ValueError, df.ix.__setitem__, (0, 2), 100)
- def test_ix_empty_list_indexer_is_ok(self):
- with catch_warnings(record=True):
- from pandas.util.testing import makeCustomDataframe as mkdf
- df = mkdf(5, 2)
- # vertical empty
- tm.assert_frame_equal(df.ix[:, []], df.iloc[:, :0],
- check_index_type=True,
- check_column_type=True)
- # horizontal empty
- tm.assert_frame_equal(df.ix[[], :], df.iloc[:0, :],
- check_index_type=True,
- check_column_type=True)
- # horizontal empty
- tm.assert_frame_equal(df.ix[[]], df.iloc[:0, :],
- check_index_type=True,
- check_column_type=True)
- def test_ix_duplicate_returns_series(self):
- df = DataFrame(np.random.randn(3, 3), index=[0.1, 0.2, 0.2],
- columns=list('abc'))
- with catch_warnings(record=True):
- r = df.ix[0.2, 'a']
- e = df.loc[0.2, 'a']
- tm.assert_series_equal(r, e)
|