123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441 |
- # -*- coding: utf-8 -*-
- """
- Tests that NA values are properly handled during
- parsing for all of the parsers defined in parsers.py
- """
- import numpy as np
- import pytest
- from pandas.compat import StringIO, range
- from pandas import DataFrame, Index, MultiIndex
- import pandas.util.testing as tm
- import pandas.io.common as com
- def test_string_nas(all_parsers):
- parser = all_parsers
- data = """A,B,C
- a,b,c
- d,,f
- ,g,h
- """
- result = parser.read_csv(StringIO(data))
- expected = DataFrame([["a", "b", "c"],
- ["d", np.nan, "f"],
- [np.nan, "g", "h"]],
- columns=["A", "B", "C"])
- tm.assert_frame_equal(result, expected)
- def test_detect_string_na(all_parsers):
- parser = all_parsers
- data = """A,B
- foo,bar
- NA,baz
- NaN,nan
- """
- expected = DataFrame([["foo", "bar"], [np.nan, "baz"],
- [np.nan, np.nan]], columns=["A", "B"])
- result = parser.read_csv(StringIO(data))
- tm.assert_frame_equal(result, expected)
- @pytest.mark.parametrize("na_values", [
- ["-999.0", "-999"],
- [-999, -999.0],
- [-999.0, -999],
- ["-999.0"], ["-999"],
- [-999.0], [-999]
- ])
- @pytest.mark.parametrize("data", [
- """A,B
- -999,1.2
- 2,-999
- 3,4.5
- """,
- """A,B
- -999,1.200
- 2,-999.000
- 3,4.500
- """
- ])
- def test_non_string_na_values(all_parsers, data, na_values):
- # see gh-3611: with an odd float format, we can't match
- # the string "999.0" exactly but still need float matching
- parser = all_parsers
- expected = DataFrame([[np.nan, 1.2], [2.0, np.nan],
- [3.0, 4.5]], columns=["A", "B"])
- result = parser.read_csv(StringIO(data), na_values=na_values)
- tm.assert_frame_equal(result, expected)
- def test_default_na_values(all_parsers):
- _NA_VALUES = {"-1.#IND", "1.#QNAN", "1.#IND", "-1.#QNAN", "#N/A",
- "N/A", "n/a", "NA", "#NA", "NULL", "null", "NaN", "nan",
- "-NaN", "-nan", "#N/A N/A", ""}
- assert _NA_VALUES == com._NA_VALUES
- parser = all_parsers
- nv = len(_NA_VALUES)
- def f(i, v):
- if i == 0:
- buf = ""
- elif i > 0:
- buf = "".join([","] * i)
- buf = "{0}{1}".format(buf, v)
- if i < nv - 1:
- buf = "{0}{1}".format(buf, "".join([","] * (nv - i - 1)))
- return buf
- data = StringIO("\n".join(f(i, v) for i, v in enumerate(_NA_VALUES)))
- expected = DataFrame(np.nan, columns=range(nv), index=range(nv))
- result = parser.read_csv(data, header=None)
- tm.assert_frame_equal(result, expected)
- @pytest.mark.parametrize("na_values", ["baz", ["baz"]])
- def test_custom_na_values(all_parsers, na_values):
- parser = all_parsers
- data = """A,B,C
- ignore,this,row
- 1,NA,3
- -1.#IND,5,baz
- 7,8,NaN
- """
- expected = DataFrame([[1., np.nan, 3], [np.nan, 5, np.nan],
- [7, 8, np.nan]], columns=["A", "B", "C"])
- result = parser.read_csv(StringIO(data), na_values=na_values, skiprows=[1])
- tm.assert_frame_equal(result, expected)
- def test_bool_na_values(all_parsers):
- data = """A,B,C
- True,False,True
- NA,True,False
- False,NA,True"""
- parser = all_parsers
- result = parser.read_csv(StringIO(data))
- expected = DataFrame({"A": np.array([True, np.nan, False], dtype=object),
- "B": np.array([False, True, np.nan], dtype=object),
- "C": [True, False, True]})
- tm.assert_frame_equal(result, expected)
- def test_na_value_dict(all_parsers):
- data = """A,B,C
- foo,bar,NA
- bar,foo,foo
- foo,bar,NA
- bar,foo,foo"""
- parser = all_parsers
- df = parser.read_csv(StringIO(data),
- na_values={"A": ["foo"], "B": ["bar"]})
- expected = DataFrame({"A": [np.nan, "bar", np.nan, "bar"],
- "B": [np.nan, "foo", np.nan, "foo"],
- "C": [np.nan, "foo", np.nan, "foo"]})
- tm.assert_frame_equal(df, expected)
- @pytest.mark.parametrize("index_col,expected", [
- ([0], DataFrame({"b": [np.nan], "c": [1], "d": [5]},
- index=Index([0], name="a"))),
- ([0, 2], DataFrame({"b": [np.nan], "d": [5]},
- index=MultiIndex.from_tuples(
- [(0, 1)], names=["a", "c"]))),
- (["a", "c"], DataFrame({"b": [np.nan], "d": [5]},
- index=MultiIndex.from_tuples(
- [(0, 1)], names=["a", "c"]))),
- ])
- def test_na_value_dict_multi_index(all_parsers, index_col, expected):
- data = """\
- a,b,c,d
- 0,NA,1,5
- """
- parser = all_parsers
- result = parser.read_csv(StringIO(data), na_values=set(),
- index_col=index_col)
- tm.assert_frame_equal(result, expected)
- @pytest.mark.parametrize("kwargs,expected", [
- (dict(), DataFrame({"A": ["a", "b", np.nan, "d", "e", np.nan, "g"],
- "B": [1, 2, 3, 4, 5, 6, 7],
- "C": ["one", "two", "three", np.nan, "five",
- np.nan, "seven"]})),
- (dict(na_values={"A": [], "C": []}, keep_default_na=False),
- DataFrame({"A": ["a", "b", "", "d", "e", "nan", "g"],
- "B": [1, 2, 3, 4, 5, 6, 7],
- "C": ["one", "two", "three", "nan", "five", "", "seven"]})),
- (dict(na_values=["a"], keep_default_na=False),
- DataFrame({"A": [np.nan, "b", "", "d", "e", "nan", "g"],
- "B": [1, 2, 3, 4, 5, 6, 7],
- "C": ["one", "two", "three", "nan", "five", "", "seven"]})),
- (dict(na_values={"A": [], "C": []}),
- DataFrame({"A": ["a", "b", np.nan, "d", "e", np.nan, "g"],
- "B": [1, 2, 3, 4, 5, 6, 7],
- "C": ["one", "two", "three", np.nan,
- "five", np.nan, "seven"]})),
- ])
- def test_na_values_keep_default(all_parsers, kwargs, expected):
- data = """\
- A,B,C
- a,1,one
- b,2,two
- ,3,three
- d,4,nan
- e,5,five
- nan,6,
- g,7,seven
- """
- parser = all_parsers
- result = parser.read_csv(StringIO(data), **kwargs)
- tm.assert_frame_equal(result, expected)
- def test_no_na_values_no_keep_default(all_parsers):
- # see gh-4318: passing na_values=None and
- # keep_default_na=False yields 'None" as a na_value
- data = """\
- A,B,C
- a,1,None
- b,2,two
- ,3,None
- d,4,nan
- e,5,five
- nan,6,
- g,7,seven
- """
- parser = all_parsers
- result = parser.read_csv(StringIO(data), keep_default_na=False)
- expected = DataFrame({"A": ["a", "b", "", "d", "e", "nan", "g"],
- "B": [1, 2, 3, 4, 5, 6, 7],
- "C": ["None", "two", "None", "nan",
- "five", "", "seven"]})
- tm.assert_frame_equal(result, expected)
- def test_no_keep_default_na_dict_na_values(all_parsers):
- # see gh-19227
- data = "a,b\n,2"
- parser = all_parsers
- result = parser.read_csv(StringIO(data), na_values={"b": ["2"]},
- keep_default_na=False)
- expected = DataFrame({"a": [""], "b": [np.nan]})
- tm.assert_frame_equal(result, expected)
- def test_no_keep_default_na_dict_na_scalar_values(all_parsers):
- # see gh-19227
- #
- # Scalar values shouldn't cause the parsing to crash or fail.
- data = "a,b\n1,2"
- parser = all_parsers
- df = parser.read_csv(StringIO(data), na_values={"b": 2},
- keep_default_na=False)
- expected = DataFrame({"a": [1], "b": [np.nan]})
- tm.assert_frame_equal(df, expected)
- @pytest.mark.parametrize("col_zero_na_values", [
- 113125, "113125"
- ])
- def test_no_keep_default_na_dict_na_values_diff_reprs(all_parsers,
- col_zero_na_values):
- # see gh-19227
- data = """\
- 113125,"blah","/blaha",kjsdkj,412.166,225.874,214.008
- 729639,"qwer","",asdfkj,466.681,,252.373
- """
- parser = all_parsers
- expected = DataFrame({0: [np.nan, 729639.0],
- 1: [np.nan, "qwer"],
- 2: ["/blaha", np.nan],
- 3: ["kjsdkj", "asdfkj"],
- 4: [412.166, 466.681],
- 5: ["225.874", ""],
- 6: [np.nan, 252.373]})
- result = parser.read_csv(StringIO(data), header=None,
- keep_default_na=False,
- na_values={2: "", 6: "214.008",
- 1: "blah", 0: col_zero_na_values})
- tm.assert_frame_equal(result, expected)
- @pytest.mark.parametrize("na_filter,row_data", [
- (True, [[1, "A"], [np.nan, np.nan], [3, "C"]]),
- (False, [["1", "A"], ["nan", "B"], ["3", "C"]]),
- ])
- def test_na_values_na_filter_override(all_parsers, na_filter, row_data):
- data = """\
- A,B
- 1,A
- nan,B
- 3,C
- """
- parser = all_parsers
- result = parser.read_csv(StringIO(data), na_values=["B"],
- na_filter=na_filter)
- expected = DataFrame(row_data, columns=["A", "B"])
- tm.assert_frame_equal(result, expected)
- def test_na_trailing_columns(all_parsers):
- parser = all_parsers
- data = """Date,Currency,Symbol,Type,Units,UnitPrice,Cost,Tax
- 2012-03-14,USD,AAPL,BUY,1000
- 2012-05-12,USD,SBUX,SELL,500"""
- # Trailing columns should be all NaN.
- result = parser.read_csv(StringIO(data))
- expected = DataFrame([
- ["2012-03-14", "USD", "AAPL", "BUY", 1000, np.nan, np.nan, np.nan],
- ["2012-05-12", "USD", "SBUX", "SELL", 500, np.nan, np.nan, np.nan],
- ], columns=["Date", "Currency", "Symbol", "Type",
- "Units", "UnitPrice", "Cost", "Tax"])
- tm.assert_frame_equal(result, expected)
- @pytest.mark.parametrize("na_values,row_data", [
- (1, [[np.nan, 2.0], [2.0, np.nan]]),
- ({"a": 2, "b": 1}, [[1.0, 2.0], [np.nan, np.nan]]),
- ])
- def test_na_values_scalar(all_parsers, na_values, row_data):
- # see gh-12224
- parser = all_parsers
- names = ["a", "b"]
- data = "1,2\n2,1"
- result = parser.read_csv(StringIO(data), names=names, na_values=na_values)
- expected = DataFrame(row_data, columns=names)
- tm.assert_frame_equal(result, expected)
- def test_na_values_dict_aliasing(all_parsers):
- parser = all_parsers
- na_values = {"a": 2, "b": 1}
- na_values_copy = na_values.copy()
- names = ["a", "b"]
- data = "1,2\n2,1"
- expected = DataFrame([[1.0, 2.0], [np.nan, np.nan]], columns=names)
- result = parser.read_csv(StringIO(data), names=names, na_values=na_values)
- tm.assert_frame_equal(result, expected)
- tm.assert_dict_equal(na_values, na_values_copy)
- def test_na_values_dict_col_index(all_parsers):
- # see gh-14203
- data = "a\nfoo\n1"
- parser = all_parsers
- na_values = {0: "foo"}
- result = parser.read_csv(StringIO(data), na_values=na_values)
- expected = DataFrame({"a": [np.nan, 1]})
- tm.assert_frame_equal(result, expected)
- @pytest.mark.parametrize("data,kwargs,expected", [
- (str(2**63) + "\n" + str(2**63 + 1),
- dict(na_values=[2**63]), DataFrame([str(2**63), str(2**63 + 1)])),
- (str(2**63) + ",1" + "\n,2",
- dict(), DataFrame([[str(2**63), 1], ['', 2]])),
- (str(2**63) + "\n1",
- dict(na_values=[2**63]), DataFrame([np.nan, 1])),
- ])
- def test_na_values_uint64(all_parsers, data, kwargs, expected):
- # see gh-14983
- parser = all_parsers
- result = parser.read_csv(StringIO(data), header=None, **kwargs)
- tm.assert_frame_equal(result, expected)
- def test_empty_na_values_no_default_with_index(all_parsers):
- # see gh-15835
- data = "a,1\nb,2"
- parser = all_parsers
- expected = DataFrame({"1": [2]}, index=Index(["b"], name="a"))
- result = parser.read_csv(StringIO(data), index_col=0,
- keep_default_na=False)
- tm.assert_frame_equal(result, expected)
- @pytest.mark.parametrize("na_filter,index_data", [
- (False, ["", "5"]),
- (True, [np.nan, 5.0]),
- ])
- def test_no_na_filter_on_index(all_parsers, na_filter, index_data):
- # see gh-5239
- #
- # Don't parse NA-values in index unless na_filter=True
- parser = all_parsers
- data = "a,b,c\n1,,3\n4,5,6"
- expected = DataFrame({"a": [1, 4], "c": [3, 6]},
- index=Index(index_data, name="b"))
- result = parser.read_csv(StringIO(data), index_col=[1],
- na_filter=na_filter)
- tm.assert_frame_equal(result, expected)
- def test_inf_na_values_with_int_index(all_parsers):
- # see gh-17128
- parser = all_parsers
- data = "idx,col1,col2\n1,3,4\n2,inf,-inf"
- # Don't fail with OverflowError with inf's and integer index column.
- out = parser.read_csv(StringIO(data), index_col=[0],
- na_values=["inf", "-inf"])
- expected = DataFrame({"col1": [3, np.nan], "col2": [4, np.nan]},
- index=Index([1, 2], name="idx"))
- tm.assert_frame_equal(out, expected)
- @pytest.mark.parametrize("na_filter", [True, False])
- def test_na_values_with_dtype_str_and_na_filter(all_parsers, na_filter):
- # see gh-20377
- parser = all_parsers
- data = "a,b,c\n1,,3\n4,5,6"
- # na_filter=True --> missing value becomes NaN.
- # na_filter=False --> missing value remains empty string.
- empty = np.nan if na_filter else ""
- expected = DataFrame({"a": ["1", "4"],
- "b": [empty, "5"],
- "c": ["3", "6"]})
- result = parser.read_csv(StringIO(data), na_filter=na_filter, dtype=str)
- tm.assert_frame_equal(result, expected)
- @pytest.mark.parametrize("data, na_values", [
- ("false,1\n,1\ntrue", None),
- ("false,1\nnull,1\ntrue", None),
- ("false,1\nnan,1\ntrue", None),
- ("false,1\nfoo,1\ntrue", 'foo'),
- ("false,1\nfoo,1\ntrue", ['foo']),
- ("false,1\nfoo,1\ntrue", {'a': 'foo'}),
- ])
- def test_cast_NA_to_bool_raises_error(all_parsers, data, na_values):
- parser = all_parsers
- msg = ("(Bool column has NA values in column [0a])|"
- "(cannot safely convert passed user dtype of "
- "bool for object dtyped data in column 0)")
- with pytest.raises(ValueError, match=msg):
- parser.read_csv(StringIO(data), header=None, names=['a', 'b'],
- dtype={'a': 'bool'}, na_values=na_values)
|