123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146 |
- import os
- import numpy as np
- import pytest
- import pandas as pd
- import pandas.util.testing as tm
- from pandas.io.sas.sasreader import read_sas
- # CSV versions of test xpt files were obtained using the R foreign library
- # Numbers in a SAS xport file are always float64, so need to convert
- # before making comparisons.
- def numeric_as_float(data):
- for v in data.columns:
- if data[v].dtype is np.dtype('int64'):
- data[v] = data[v].astype(np.float64)
- class TestXport(object):
- @pytest.fixture(autouse=True)
- def setup_method(self, datapath):
- self.dirpath = datapath("io", "sas", "data")
- self.file01 = os.path.join(self.dirpath, "DEMO_G.xpt")
- self.file02 = os.path.join(self.dirpath, "SSHSV1_A.xpt")
- self.file03 = os.path.join(self.dirpath, "DRXFCD_G.xpt")
- self.file04 = os.path.join(self.dirpath, "paxraw_d_short.xpt")
- def test1_basic(self):
- # Tests with DEMO_G.xpt (all numeric file)
- # Compare to this
- data_csv = pd.read_csv(self.file01.replace(".xpt", ".csv"))
- numeric_as_float(data_csv)
- # Read full file
- data = read_sas(self.file01, format="xport")
- tm.assert_frame_equal(data, data_csv)
- num_rows = data.shape[0]
- # Test reading beyond end of file
- reader = read_sas(self.file01, format="xport", iterator=True)
- data = reader.read(num_rows + 100)
- assert data.shape[0] == num_rows
- reader.close()
- # Test incremental read with `read` method.
- reader = read_sas(self.file01, format="xport", iterator=True)
- data = reader.read(10)
- reader.close()
- tm.assert_frame_equal(data, data_csv.iloc[0:10, :])
- # Test incremental read with `get_chunk` method.
- reader = read_sas(self.file01, format="xport", chunksize=10)
- data = reader.get_chunk()
- reader.close()
- tm.assert_frame_equal(data, data_csv.iloc[0:10, :])
- # Test read in loop
- m = 0
- reader = read_sas(self.file01, format="xport", chunksize=100)
- for x in reader:
- m += x.shape[0]
- reader.close()
- assert m == num_rows
- # Read full file with `read_sas` method
- data = read_sas(self.file01)
- tm.assert_frame_equal(data, data_csv)
- def test1_index(self):
- # Tests with DEMO_G.xpt using index (all numeric file)
- # Compare to this
- data_csv = pd.read_csv(self.file01.replace(".xpt", ".csv"))
- data_csv = data_csv.set_index("SEQN")
- numeric_as_float(data_csv)
- # Read full file
- data = read_sas(self.file01, index="SEQN", format="xport")
- tm.assert_frame_equal(data, data_csv, check_index_type=False)
- # Test incremental read with `read` method.
- reader = read_sas(self.file01, index="SEQN", format="xport",
- iterator=True)
- data = reader.read(10)
- reader.close()
- tm.assert_frame_equal(data, data_csv.iloc[0:10, :],
- check_index_type=False)
- # Test incremental read with `get_chunk` method.
- reader = read_sas(self.file01, index="SEQN", format="xport",
- chunksize=10)
- data = reader.get_chunk()
- reader.close()
- tm.assert_frame_equal(data, data_csv.iloc[0:10, :],
- check_index_type=False)
- def test1_incremental(self):
- # Test with DEMO_G.xpt, reading full file incrementally
- data_csv = pd.read_csv(self.file01.replace(".xpt", ".csv"))
- data_csv = data_csv.set_index("SEQN")
- numeric_as_float(data_csv)
- reader = read_sas(self.file01, index="SEQN", chunksize=1000)
- all_data = [x for x in reader]
- data = pd.concat(all_data, axis=0)
- tm.assert_frame_equal(data, data_csv, check_index_type=False)
- def test2(self):
- # Test with SSHSV1_A.xpt
- # Compare to this
- data_csv = pd.read_csv(self.file02.replace(".xpt", ".csv"))
- numeric_as_float(data_csv)
- data = read_sas(self.file02)
- tm.assert_frame_equal(data, data_csv)
- def test_multiple_types(self):
- # Test with DRXFCD_G.xpt (contains text and numeric variables)
- # Compare to this
- data_csv = pd.read_csv(self.file03.replace(".xpt", ".csv"))
- data = read_sas(self.file03, encoding="utf-8")
- tm.assert_frame_equal(data, data_csv)
- def test_truncated_float_support(self):
- # Test with paxraw_d_short.xpt, a shortened version of:
- # http://wwwn.cdc.gov/Nchs/Nhanes/2005-2006/PAXRAW_D.ZIP
- # This file has truncated floats (5 bytes in this case).
- # GH 11713
- data_csv = pd.read_csv(self.file04.replace(".xpt", ".csv"))
- data = read_sas(self.file04, format="xport")
- tm.assert_frame_equal(data.astype('int64'), data_csv)
|