123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385 |
- # coding: utf-8
- import itertools
- import string
- import numpy as np
- from numpy import random
- import pytest
- from pandas.compat import lzip, range
- import pandas.util._test_decorators as td
- from pandas import DataFrame, MultiIndex, Series
- from pandas.tests.plotting.common import TestPlotBase, _check_plot_works
- import pandas.util.testing as tm
- import pandas.plotting as plotting
- """ Test cases for .boxplot method """
- @td.skip_if_no_mpl
- class TestDataFramePlots(TestPlotBase):
- @pytest.mark.slow
- def test_boxplot_legacy1(self):
- df = DataFrame(np.random.randn(6, 4),
- index=list(string.ascii_letters[:6]),
- columns=['one', 'two', 'three', 'four'])
- df['indic'] = ['foo', 'bar'] * 3
- df['indic2'] = ['foo', 'bar', 'foo'] * 2
- _check_plot_works(df.boxplot, return_type='dict')
- _check_plot_works(df.boxplot, column=[
- 'one', 'two'], return_type='dict')
- # _check_plot_works adds an ax so catch warning. see GH #13188
- with tm.assert_produces_warning(UserWarning):
- _check_plot_works(df.boxplot, column=['one', 'two'],
- by='indic')
- _check_plot_works(df.boxplot, column='one', by=['indic', 'indic2'])
- with tm.assert_produces_warning(UserWarning):
- _check_plot_works(df.boxplot, by='indic')
- with tm.assert_produces_warning(UserWarning):
- _check_plot_works(df.boxplot, by=['indic', 'indic2'])
- _check_plot_works(plotting._core.boxplot, data=df['one'],
- return_type='dict')
- _check_plot_works(df.boxplot, notch=1, return_type='dict')
- with tm.assert_produces_warning(UserWarning):
- _check_plot_works(df.boxplot, by='indic', notch=1)
- @pytest.mark.slow
- def test_boxplot_legacy2(self):
- df = DataFrame(np.random.rand(10, 2), columns=['Col1', 'Col2'])
- df['X'] = Series(['A', 'A', 'A', 'A', 'A', 'B', 'B', 'B', 'B', 'B'])
- df['Y'] = Series(['A'] * 10)
- with tm.assert_produces_warning(UserWarning):
- _check_plot_works(df.boxplot, by='X')
- # When ax is supplied and required number of axes is 1,
- # passed ax should be used:
- fig, ax = self.plt.subplots()
- axes = df.boxplot('Col1', by='X', ax=ax)
- ax_axes = ax.axes
- assert ax_axes is axes
- fig, ax = self.plt.subplots()
- axes = df.groupby('Y').boxplot(ax=ax, return_type='axes')
- ax_axes = ax.axes
- assert ax_axes is axes['A']
- # Multiple columns with an ax argument should use same figure
- fig, ax = self.plt.subplots()
- with tm.assert_produces_warning(UserWarning):
- axes = df.boxplot(column=['Col1', 'Col2'],
- by='X', ax=ax, return_type='axes')
- assert axes['Col1'].get_figure() is fig
- # When by is None, check that all relevant lines are present in the
- # dict
- fig, ax = self.plt.subplots()
- d = df.boxplot(ax=ax, return_type='dict')
- lines = list(itertools.chain.from_iterable(d.values()))
- assert len(ax.get_lines()) == len(lines)
- @pytest.mark.slow
- def test_boxplot_return_type_none(self):
- # GH 12216; return_type=None & by=None -> axes
- result = self.hist_df.boxplot()
- assert isinstance(result, self.plt.Axes)
- @pytest.mark.slow
- def test_boxplot_return_type_legacy(self):
- # API change in https://github.com/pandas-dev/pandas/pull/7096
- import matplotlib as mpl # noqa
- df = DataFrame(np.random.randn(6, 4),
- index=list(string.ascii_letters[:6]),
- columns=['one', 'two', 'three', 'four'])
- with pytest.raises(ValueError):
- df.boxplot(return_type='NOTATYPE')
- result = df.boxplot()
- self._check_box_return_type(result, 'axes')
- with tm.assert_produces_warning(False):
- result = df.boxplot(return_type='dict')
- self._check_box_return_type(result, 'dict')
- with tm.assert_produces_warning(False):
- result = df.boxplot(return_type='axes')
- self._check_box_return_type(result, 'axes')
- with tm.assert_produces_warning(False):
- result = df.boxplot(return_type='both')
- self._check_box_return_type(result, 'both')
- @pytest.mark.slow
- def test_boxplot_axis_limits(self):
- def _check_ax_limits(col, ax):
- y_min, y_max = ax.get_ylim()
- assert y_min <= col.min()
- assert y_max >= col.max()
- df = self.hist_df.copy()
- df['age'] = np.random.randint(1, 20, df.shape[0])
- # One full row
- height_ax, weight_ax = df.boxplot(['height', 'weight'], by='category')
- _check_ax_limits(df['height'], height_ax)
- _check_ax_limits(df['weight'], weight_ax)
- assert weight_ax._sharey == height_ax
- # Two rows, one partial
- p = df.boxplot(['height', 'weight', 'age'], by='category')
- height_ax, weight_ax, age_ax = p[0, 0], p[0, 1], p[1, 0]
- dummy_ax = p[1, 1]
- _check_ax_limits(df['height'], height_ax)
- _check_ax_limits(df['weight'], weight_ax)
- _check_ax_limits(df['age'], age_ax)
- assert weight_ax._sharey == height_ax
- assert age_ax._sharey == height_ax
- assert dummy_ax._sharey is None
- @pytest.mark.slow
- def test_boxplot_empty_column(self):
- df = DataFrame(np.random.randn(20, 4))
- df.loc[:, 0] = np.nan
- _check_plot_works(df.boxplot, return_type='axes')
- @pytest.mark.slow
- def test_figsize(self):
- df = DataFrame(np.random.rand(10, 5),
- columns=['A', 'B', 'C', 'D', 'E'])
- result = df.boxplot(return_type='axes', figsize=(12, 8))
- assert result.figure.bbox_inches.width == 12
- assert result.figure.bbox_inches.height == 8
- def test_fontsize(self):
- df = DataFrame({"a": [1, 2, 3, 4, 5, 6]})
- self._check_ticks_props(df.boxplot("a", fontsize=16),
- xlabelsize=16, ylabelsize=16)
- @td.skip_if_no_mpl
- class TestDataFrameGroupByPlots(TestPlotBase):
- @pytest.mark.slow
- def test_boxplot_legacy1(self):
- grouped = self.hist_df.groupby(by='gender')
- with tm.assert_produces_warning(UserWarning):
- axes = _check_plot_works(grouped.boxplot, return_type='axes')
- self._check_axes_shape(list(axes.values), axes_num=2, layout=(1, 2))
- axes = _check_plot_works(grouped.boxplot, subplots=False,
- return_type='axes')
- self._check_axes_shape(axes, axes_num=1, layout=(1, 1))
- @pytest.mark.slow
- def test_boxplot_legacy2(self):
- tuples = lzip(string.ascii_letters[:10], range(10))
- df = DataFrame(np.random.rand(10, 3),
- index=MultiIndex.from_tuples(tuples))
- grouped = df.groupby(level=1)
- with tm.assert_produces_warning(UserWarning):
- axes = _check_plot_works(grouped.boxplot, return_type='axes')
- self._check_axes_shape(list(axes.values), axes_num=10, layout=(4, 3))
- axes = _check_plot_works(grouped.boxplot, subplots=False,
- return_type='axes')
- self._check_axes_shape(axes, axes_num=1, layout=(1, 1))
- @pytest.mark.slow
- def test_boxplot_legacy3(self):
- tuples = lzip(string.ascii_letters[:10], range(10))
- df = DataFrame(np.random.rand(10, 3),
- index=MultiIndex.from_tuples(tuples))
- grouped = df.unstack(level=1).groupby(level=0, axis=1)
- with tm.assert_produces_warning(UserWarning):
- axes = _check_plot_works(grouped.boxplot, return_type='axes')
- self._check_axes_shape(list(axes.values), axes_num=3, layout=(2, 2))
- axes = _check_plot_works(grouped.boxplot, subplots=False,
- return_type='axes')
- self._check_axes_shape(axes, axes_num=1, layout=(1, 1))
- @pytest.mark.slow
- def test_grouped_plot_fignums(self):
- n = 10
- weight = Series(np.random.normal(166, 20, size=n))
- height = Series(np.random.normal(60, 10, size=n))
- with tm.RNGContext(42):
- gender = np.random.choice(['male', 'female'], size=n)
- df = DataFrame({'height': height, 'weight': weight, 'gender': gender})
- gb = df.groupby('gender')
- res = gb.plot()
- assert len(self.plt.get_fignums()) == 2
- assert len(res) == 2
- tm.close()
- res = gb.boxplot(return_type='axes')
- assert len(self.plt.get_fignums()) == 1
- assert len(res) == 2
- tm.close()
- # now works with GH 5610 as gender is excluded
- res = df.groupby('gender').hist()
- tm.close()
- @pytest.mark.slow
- def test_grouped_box_return_type(self):
- df = self.hist_df
- # old style: return_type=None
- result = df.boxplot(by='gender')
- assert isinstance(result, np.ndarray)
- self._check_box_return_type(
- result, None,
- expected_keys=['height', 'weight', 'category'])
- # now for groupby
- result = df.groupby('gender').boxplot(return_type='dict')
- self._check_box_return_type(
- result, 'dict', expected_keys=['Male', 'Female'])
- columns2 = 'X B C D A G Y N Q O'.split()
- df2 = DataFrame(random.randn(50, 10), columns=columns2)
- categories2 = 'A B C D E F G H I J'.split()
- df2['category'] = categories2 * 5
- for t in ['dict', 'axes', 'both']:
- returned = df.groupby('classroom').boxplot(return_type=t)
- self._check_box_return_type(
- returned, t, expected_keys=['A', 'B', 'C'])
- returned = df.boxplot(by='classroom', return_type=t)
- self._check_box_return_type(
- returned, t,
- expected_keys=['height', 'weight', 'category'])
- returned = df2.groupby('category').boxplot(return_type=t)
- self._check_box_return_type(returned, t, expected_keys=categories2)
- returned = df2.boxplot(by='category', return_type=t)
- self._check_box_return_type(returned, t, expected_keys=columns2)
- @pytest.mark.slow
- def test_grouped_box_layout(self):
- df = self.hist_df
- pytest.raises(ValueError, df.boxplot, column=['weight', 'height'],
- by=df.gender, layout=(1, 1))
- pytest.raises(ValueError, df.boxplot,
- column=['height', 'weight', 'category'],
- layout=(2, 1), return_type='dict')
- pytest.raises(ValueError, df.boxplot, column=['weight', 'height'],
- by=df.gender, layout=(-1, -1))
- # _check_plot_works adds an ax so catch warning. see GH #13188
- with tm.assert_produces_warning(UserWarning):
- box = _check_plot_works(df.groupby('gender').boxplot,
- column='height', return_type='dict')
- self._check_axes_shape(self.plt.gcf().axes, axes_num=2, layout=(1, 2))
- with tm.assert_produces_warning(UserWarning):
- box = _check_plot_works(df.groupby('category').boxplot,
- column='height',
- return_type='dict')
- self._check_axes_shape(self.plt.gcf().axes, axes_num=4, layout=(2, 2))
- # GH 6769
- with tm.assert_produces_warning(UserWarning):
- box = _check_plot_works(df.groupby('classroom').boxplot,
- column='height', return_type='dict')
- self._check_axes_shape(self.plt.gcf().axes, axes_num=3, layout=(2, 2))
- # GH 5897
- axes = df.boxplot(column=['height', 'weight', 'category'], by='gender',
- return_type='axes')
- self._check_axes_shape(self.plt.gcf().axes, axes_num=3, layout=(2, 2))
- for ax in [axes['height']]:
- self._check_visible(ax.get_xticklabels(), visible=False)
- self._check_visible([ax.xaxis.get_label()], visible=False)
- for ax in [axes['weight'], axes['category']]:
- self._check_visible(ax.get_xticklabels())
- self._check_visible([ax.xaxis.get_label()])
- box = df.groupby('classroom').boxplot(
- column=['height', 'weight', 'category'], return_type='dict')
- self._check_axes_shape(self.plt.gcf().axes, axes_num=3, layout=(2, 2))
- with tm.assert_produces_warning(UserWarning):
- box = _check_plot_works(df.groupby('category').boxplot,
- column='height',
- layout=(3, 2), return_type='dict')
- self._check_axes_shape(self.plt.gcf().axes, axes_num=4, layout=(3, 2))
- with tm.assert_produces_warning(UserWarning):
- box = _check_plot_works(df.groupby('category').boxplot,
- column='height',
- layout=(3, -1), return_type='dict')
- self._check_axes_shape(self.plt.gcf().axes, axes_num=4, layout=(3, 2))
- box = df.boxplot(column=['height', 'weight', 'category'], by='gender',
- layout=(4, 1))
- self._check_axes_shape(self.plt.gcf().axes, axes_num=3, layout=(4, 1))
- box = df.boxplot(column=['height', 'weight', 'category'], by='gender',
- layout=(-1, 1))
- self._check_axes_shape(self.plt.gcf().axes, axes_num=3, layout=(3, 1))
- box = df.groupby('classroom').boxplot(
- column=['height', 'weight', 'category'], layout=(1, 4),
- return_type='dict')
- self._check_axes_shape(self.plt.gcf().axes, axes_num=3, layout=(1, 4))
- box = df.groupby('classroom').boxplot( # noqa
- column=['height', 'weight', 'category'], layout=(1, -1),
- return_type='dict')
- self._check_axes_shape(self.plt.gcf().axes, axes_num=3, layout=(1, 3))
- @pytest.mark.slow
- def test_grouped_box_multiple_axes(self):
- # GH 6970, GH 7069
- df = self.hist_df
- # check warning to ignore sharex / sharey
- # this check should be done in the first function which
- # passes multiple axes to plot, hist or boxplot
- # location should be changed if other test is added
- # which has earlier alphabetical order
- with tm.assert_produces_warning(UserWarning):
- fig, axes = self.plt.subplots(2, 2)
- df.groupby('category').boxplot(
- column='height', return_type='axes', ax=axes)
- self._check_axes_shape(self.plt.gcf().axes,
- axes_num=4, layout=(2, 2))
- fig, axes = self.plt.subplots(2, 3)
- with tm.assert_produces_warning(UserWarning):
- returned = df.boxplot(column=['height', 'weight', 'category'],
- by='gender', return_type='axes', ax=axes[0])
- returned = np.array(list(returned.values))
- self._check_axes_shape(returned, axes_num=3, layout=(1, 3))
- tm.assert_numpy_array_equal(returned, axes[0])
- assert returned[0].figure is fig
- # draw on second row
- with tm.assert_produces_warning(UserWarning):
- returned = df.groupby('classroom').boxplot(
- column=['height', 'weight', 'category'],
- return_type='axes', ax=axes[1])
- returned = np.array(list(returned.values))
- self._check_axes_shape(returned, axes_num=3, layout=(1, 3))
- tm.assert_numpy_array_equal(returned, axes[1])
- assert returned[0].figure is fig
- with pytest.raises(ValueError):
- fig, axes = self.plt.subplots(2, 3)
- # pass different number of axes from required
- with tm.assert_produces_warning(UserWarning):
- axes = df.groupby('classroom').boxplot(ax=axes)
- def test_fontsize(self):
- df = DataFrame({"a": [1, 2, 3, 4, 5, 6], "b": [0, 0, 0, 1, 1, 1]})
- self._check_ticks_props(df.boxplot("a", by="b", fontsize=16),
- xlabelsize=16, ylabelsize=16)
|