1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798 |
- # -*- coding: utf-8 -*-
- from collections import OrderedDict
- from datetime import date, datetime, timedelta
- import numpy as np
- import pytest
- from pandas.compat import product, range
- import pandas as pd
- from pandas import (
- Categorical, DataFrame, Grouper, Index, MultiIndex, Series, concat,
- date_range)
- from pandas.api.types import CategoricalDtype as CDT
- from pandas.core.reshape.pivot import crosstab, pivot_table
- import pandas.util.testing as tm
- @pytest.fixture(params=[True, False])
- def dropna(request):
- return request.param
- class TestPivotTable(object):
- def setup_method(self, method):
- self.data = DataFrame({'A': ['foo', 'foo', 'foo', 'foo',
- 'bar', 'bar', 'bar', 'bar',
- 'foo', 'foo', 'foo'],
- 'B': ['one', 'one', 'one', 'two',
- 'one', 'one', 'one', 'two',
- 'two', 'two', 'one'],
- 'C': ['dull', 'dull', 'shiny', 'dull',
- 'dull', 'shiny', 'shiny', 'dull',
- 'shiny', 'shiny', 'shiny'],
- 'D': np.random.randn(11),
- 'E': np.random.randn(11),
- 'F': np.random.randn(11)})
- def test_pivot_table(self):
- index = ['A', 'B']
- columns = 'C'
- table = pivot_table(self.data, values='D',
- index=index, columns=columns)
- table2 = self.data.pivot_table(
- values='D', index=index, columns=columns)
- tm.assert_frame_equal(table, table2)
- # this works
- pivot_table(self.data, values='D', index=index)
- if len(index) > 1:
- assert table.index.names == tuple(index)
- else:
- assert table.index.name == index[0]
- if len(columns) > 1:
- assert table.columns.names == columns
- else:
- assert table.columns.name == columns[0]
- expected = self.data.groupby(
- index + [columns])['D'].agg(np.mean).unstack()
- tm.assert_frame_equal(table, expected)
- def test_pivot_table_nocols(self):
- df = DataFrame({'rows': ['a', 'b', 'c'],
- 'cols': ['x', 'y', 'z'],
- 'values': [1, 2, 3]})
- rs = df.pivot_table(columns='cols', aggfunc=np.sum)
- xp = df.pivot_table(index='cols', aggfunc=np.sum).T
- tm.assert_frame_equal(rs, xp)
- rs = df.pivot_table(columns='cols', aggfunc={'values': 'mean'})
- xp = df.pivot_table(index='cols', aggfunc={'values': 'mean'}).T
- tm.assert_frame_equal(rs, xp)
- def test_pivot_table_dropna(self):
- df = DataFrame({'amount': {0: 60000, 1: 100000, 2: 50000, 3: 30000},
- 'customer': {0: 'A', 1: 'A', 2: 'B', 3: 'C'},
- 'month': {0: 201307, 1: 201309, 2: 201308, 3: 201310},
- 'product': {0: 'a', 1: 'b', 2: 'c', 3: 'd'},
- 'quantity': {0: 2000000, 1: 500000,
- 2: 1000000, 3: 1000000}})
- pv_col = df.pivot_table('quantity', 'month', [
- 'customer', 'product'], dropna=False)
- pv_ind = df.pivot_table(
- 'quantity', ['customer', 'product'], 'month', dropna=False)
- m = MultiIndex.from_tuples([('A', 'a'), ('A', 'b'), ('A', 'c'),
- ('A', 'd'), ('B', 'a'), ('B', 'b'),
- ('B', 'c'), ('B', 'd'), ('C', 'a'),
- ('C', 'b'), ('C', 'c'), ('C', 'd')],
- names=['customer', 'product'])
- tm.assert_index_equal(pv_col.columns, m)
- tm.assert_index_equal(pv_ind.index, m)
- def test_pivot_table_categorical(self):
- cat1 = Categorical(["a", "a", "b", "b"],
- categories=["a", "b", "z"], ordered=True)
- cat2 = Categorical(["c", "d", "c", "d"],
- categories=["c", "d", "y"], ordered=True)
- df = DataFrame({"A": cat1, "B": cat2, "values": [1, 2, 3, 4]})
- result = pd.pivot_table(df, values='values', index=['A', 'B'],
- dropna=True)
- exp_index = pd.MultiIndex.from_arrays(
- [cat1, cat2],
- names=['A', 'B'])
- expected = DataFrame(
- {'values': [1, 2, 3, 4]},
- index=exp_index)
- tm.assert_frame_equal(result, expected)
- def test_pivot_table_dropna_categoricals(self, dropna):
- # GH 15193
- categories = ['a', 'b', 'c', 'd']
- df = DataFrame({'A': ['a', 'a', 'a', 'b', 'b', 'b', 'c', 'c', 'c'],
- 'B': [1, 2, 3, 1, 2, 3, 1, 2, 3],
- 'C': range(0, 9)})
- df['A'] = df['A'].astype(CDT(categories, ordered=False))
- result = df.pivot_table(index='B', columns='A', values='C',
- dropna=dropna)
- expected_columns = Series(['a', 'b', 'c'], name='A')
- expected_columns = expected_columns.astype(
- CDT(categories, ordered=False))
- expected_index = Series([1, 2, 3], name='B')
- expected = DataFrame([[0, 3, 6],
- [1, 4, 7],
- [2, 5, 8]],
- index=expected_index,
- columns=expected_columns,)
- if not dropna:
- # add back the non observed to compare
- expected = expected.reindex(
- columns=Categorical(categories)).astype('float')
- tm.assert_frame_equal(result, expected)
- def test_pivot_with_non_observable_dropna(self, dropna):
- # gh-21133
- df = pd.DataFrame(
- {'A': pd.Categorical([np.nan, 'low', 'high', 'low', 'high'],
- categories=['low', 'high'],
- ordered=True),
- 'B': range(5)})
- result = df.pivot_table(index='A', values='B', dropna=dropna)
- expected = pd.DataFrame(
- {'B': [2, 3]},
- index=pd.Index(
- pd.Categorical.from_codes([0, 1],
- categories=['low', 'high'],
- ordered=True),
- name='A'))
- tm.assert_frame_equal(result, expected)
- # gh-21378
- df = pd.DataFrame(
- {'A': pd.Categorical(['left', 'low', 'high', 'low', 'high'],
- categories=['low', 'high', 'left'],
- ordered=True),
- 'B': range(5)})
- result = df.pivot_table(index='A', values='B', dropna=dropna)
- expected = pd.DataFrame(
- {'B': [2, 3, 0]},
- index=pd.Index(
- pd.Categorical.from_codes([0, 1, 2],
- categories=['low', 'high', 'left'],
- ordered=True),
- name='A'))
- tm.assert_frame_equal(result, expected)
- def test_pass_array(self):
- result = self.data.pivot_table(
- 'D', index=self.data.A, columns=self.data.C)
- expected = self.data.pivot_table('D', index='A', columns='C')
- tm.assert_frame_equal(result, expected)
- def test_pass_function(self):
- result = self.data.pivot_table('D', index=lambda x: x // 5,
- columns=self.data.C)
- expected = self.data.pivot_table('D', index=self.data.index // 5,
- columns='C')
- tm.assert_frame_equal(result, expected)
- def test_pivot_table_multiple(self):
- index = ['A', 'B']
- columns = 'C'
- table = pivot_table(self.data, index=index, columns=columns)
- expected = self.data.groupby(index + [columns]).agg(np.mean).unstack()
- tm.assert_frame_equal(table, expected)
- def test_pivot_dtypes(self):
- # can convert dtypes
- f = DataFrame({'a': ['cat', 'bat', 'cat', 'bat'], 'v': [
- 1, 2, 3, 4], 'i': ['a', 'b', 'a', 'b']})
- assert f.dtypes['v'] == 'int64'
- z = pivot_table(f, values='v', index=['a'], columns=[
- 'i'], fill_value=0, aggfunc=np.sum)
- result = z.get_dtype_counts()
- expected = Series(dict(int64=2))
- tm.assert_series_equal(result, expected)
- # cannot convert dtypes
- f = DataFrame({'a': ['cat', 'bat', 'cat', 'bat'], 'v': [
- 1.5, 2.5, 3.5, 4.5], 'i': ['a', 'b', 'a', 'b']})
- assert f.dtypes['v'] == 'float64'
- z = pivot_table(f, values='v', index=['a'], columns=[
- 'i'], fill_value=0, aggfunc=np.mean)
- result = z.get_dtype_counts()
- expected = Series(dict(float64=2))
- tm.assert_series_equal(result, expected)
- @pytest.mark.parametrize('columns,values',
- [('bool1', ['float1', 'float2']),
- ('bool1', ['float1', 'float2', 'bool1']),
- ('bool2', ['float1', 'float2', 'bool1'])])
- def test_pivot_preserve_dtypes(self, columns, values):
- # GH 7142 regression test
- v = np.arange(5, dtype=np.float64)
- df = DataFrame({'float1': v, 'float2': v + 2.0,
- 'bool1': v <= 2, 'bool2': v <= 3})
- df_res = df.reset_index().pivot_table(
- index='index', columns=columns, values=values)
- result = dict(df_res.dtypes)
- expected = {col: np.dtype('O') if col[0].startswith('b')
- else np.dtype('float64') for col in df_res}
- assert result == expected
- def test_pivot_no_values(self):
- # GH 14380
- idx = pd.DatetimeIndex(['2011-01-01', '2011-02-01', '2011-01-02',
- '2011-01-01', '2011-01-02'])
- df = pd.DataFrame({'A': [1, 2, 3, 4, 5]},
- index=idx)
- res = df.pivot_table(index=df.index.month, columns=df.index.day)
- exp_columns = pd.MultiIndex.from_tuples([('A', 1), ('A', 2)])
- exp = pd.DataFrame([[2.5, 4.0], [2.0, np.nan]],
- index=[1, 2], columns=exp_columns)
- tm.assert_frame_equal(res, exp)
- df = pd.DataFrame({'A': [1, 2, 3, 4, 5],
- 'dt': pd.date_range('2011-01-01', freq='D',
- periods=5)},
- index=idx)
- res = df.pivot_table(index=df.index.month,
- columns=pd.Grouper(key='dt', freq='M'))
- exp_columns = pd.MultiIndex.from_tuples([('A',
- pd.Timestamp('2011-01-31'))])
- exp_columns.names = [None, 'dt']
- exp = pd.DataFrame([3.25, 2.0],
- index=[1, 2], columns=exp_columns)
- tm.assert_frame_equal(res, exp)
- res = df.pivot_table(index=pd.Grouper(freq='A'),
- columns=pd.Grouper(key='dt', freq='M'))
- exp = pd.DataFrame([3],
- index=pd.DatetimeIndex(['2011-12-31']),
- columns=exp_columns)
- tm.assert_frame_equal(res, exp)
- def test_pivot_multi_values(self):
- result = pivot_table(self.data, values=['D', 'E'],
- index='A', columns=['B', 'C'], fill_value=0)
- expected = pivot_table(self.data.drop(['F'], axis=1),
- index='A', columns=['B', 'C'], fill_value=0)
- tm.assert_frame_equal(result, expected)
- def test_pivot_multi_functions(self):
- f = lambda func: pivot_table(self.data, values=['D', 'E'],
- index=['A', 'B'], columns='C',
- aggfunc=func)
- result = f([np.mean, np.std])
- means = f(np.mean)
- stds = f(np.std)
- expected = concat([means, stds], keys=['mean', 'std'], axis=1)
- tm.assert_frame_equal(result, expected)
- # margins not supported??
- f = lambda func: pivot_table(self.data, values=['D', 'E'],
- index=['A', 'B'], columns='C',
- aggfunc=func, margins=True)
- result = f([np.mean, np.std])
- means = f(np.mean)
- stds = f(np.std)
- expected = concat([means, stds], keys=['mean', 'std'], axis=1)
- tm.assert_frame_equal(result, expected)
- @pytest.mark.parametrize('method', [True, False])
- def test_pivot_index_with_nan(self, method):
- # GH 3588
- nan = np.nan
- df = DataFrame({'a': ['R1', 'R2', nan, 'R4'],
- 'b': ['C1', 'C2', 'C3', 'C4'],
- 'c': [10, 15, 17, 20]})
- if method:
- result = df.pivot('a', 'b', 'c')
- else:
- result = pd.pivot(df, 'a', 'b', 'c')
- expected = DataFrame([[nan, nan, 17, nan], [10, nan, nan, nan],
- [nan, 15, nan, nan], [nan, nan, nan, 20]],
- index=Index([nan, 'R1', 'R2', 'R4'], name='a'),
- columns=Index(['C1', 'C2', 'C3', 'C4'], name='b'))
- tm.assert_frame_equal(result, expected)
- tm.assert_frame_equal(df.pivot('b', 'a', 'c'), expected.T)
- # GH9491
- df = DataFrame({'a': pd.date_range('2014-02-01', periods=6, freq='D'),
- 'c': 100 + np.arange(6)})
- df['b'] = df['a'] - pd.Timestamp('2014-02-02')
- df.loc[1, 'a'] = df.loc[3, 'a'] = nan
- df.loc[1, 'b'] = df.loc[4, 'b'] = nan
- if method:
- pv = df.pivot('a', 'b', 'c')
- else:
- pv = pd.pivot(df, 'a', 'b', 'c')
- assert pv.notna().values.sum() == len(df)
- for _, row in df.iterrows():
- assert pv.loc[row['a'], row['b']] == row['c']
- if method:
- result = df.pivot('b', 'a', 'c')
- else:
- result = pd.pivot(df, 'b', 'a', 'c')
- tm.assert_frame_equal(result, pv.T)
- @pytest.mark.parametrize('method', [True, False])
- def test_pivot_with_tz(self, method):
- # GH 5878
- df = DataFrame({'dt1': [datetime(2013, 1, 1, 9, 0),
- datetime(2013, 1, 2, 9, 0),
- datetime(2013, 1, 1, 9, 0),
- datetime(2013, 1, 2, 9, 0)],
- 'dt2': [datetime(2014, 1, 1, 9, 0),
- datetime(2014, 1, 1, 9, 0),
- datetime(2014, 1, 2, 9, 0),
- datetime(2014, 1, 2, 9, 0)],
- 'data1': np.arange(4, dtype='int64'),
- 'data2': np.arange(4, dtype='int64')})
- df['dt1'] = df['dt1'].apply(lambda d: pd.Timestamp(d, tz='US/Pacific'))
- df['dt2'] = df['dt2'].apply(lambda d: pd.Timestamp(d, tz='Asia/Tokyo'))
- exp_col1 = Index(['data1', 'data1', 'data2', 'data2'])
- exp_col2 = pd.DatetimeIndex(['2014/01/01 09:00',
- '2014/01/02 09:00'] * 2,
- name='dt2', tz='Asia/Tokyo')
- exp_col = pd.MultiIndex.from_arrays([exp_col1, exp_col2])
- expected = DataFrame([[0, 2, 0, 2], [1, 3, 1, 3]],
- index=pd.DatetimeIndex(['2013/01/01 09:00',
- '2013/01/02 09:00'],
- name='dt1',
- tz='US/Pacific'),
- columns=exp_col)
- if method:
- pv = df.pivot(index='dt1', columns='dt2')
- else:
- pv = pd.pivot(df, index='dt1', columns='dt2')
- tm.assert_frame_equal(pv, expected)
- expected = DataFrame([[0, 2], [1, 3]],
- index=pd.DatetimeIndex(['2013/01/01 09:00',
- '2013/01/02 09:00'],
- name='dt1',
- tz='US/Pacific'),
- columns=pd.DatetimeIndex(['2014/01/01 09:00',
- '2014/01/02 09:00'],
- name='dt2',
- tz='Asia/Tokyo'))
- if method:
- pv = df.pivot(index='dt1', columns='dt2', values='data1')
- else:
- pv = pd.pivot(df, index='dt1', columns='dt2', values='data1')
- tm.assert_frame_equal(pv, expected)
- @pytest.mark.parametrize('method', [True, False])
- def test_pivot_periods(self, method):
- df = DataFrame({'p1': [pd.Period('2013-01-01', 'D'),
- pd.Period('2013-01-02', 'D'),
- pd.Period('2013-01-01', 'D'),
- pd.Period('2013-01-02', 'D')],
- 'p2': [pd.Period('2013-01', 'M'),
- pd.Period('2013-01', 'M'),
- pd.Period('2013-02', 'M'),
- pd.Period('2013-02', 'M')],
- 'data1': np.arange(4, dtype='int64'),
- 'data2': np.arange(4, dtype='int64')})
- exp_col1 = Index(['data1', 'data1', 'data2', 'data2'])
- exp_col2 = pd.PeriodIndex(['2013-01', '2013-02'] * 2,
- name='p2', freq='M')
- exp_col = pd.MultiIndex.from_arrays([exp_col1, exp_col2])
- expected = DataFrame([[0, 2, 0, 2], [1, 3, 1, 3]],
- index=pd.PeriodIndex(['2013-01-01', '2013-01-02'],
- name='p1', freq='D'),
- columns=exp_col)
- if method:
- pv = df.pivot(index='p1', columns='p2')
- else:
- pv = pd.pivot(df, index='p1', columns='p2')
- tm.assert_frame_equal(pv, expected)
- expected = DataFrame([[0, 2], [1, 3]],
- index=pd.PeriodIndex(['2013-01-01', '2013-01-02'],
- name='p1', freq='D'),
- columns=pd.PeriodIndex(['2013-01', '2013-02'],
- name='p2', freq='M'))
- if method:
- pv = df.pivot(index='p1', columns='p2', values='data1')
- else:
- pv = pd.pivot(df, index='p1', columns='p2', values='data1')
- tm.assert_frame_equal(pv, expected)
- @pytest.mark.parametrize('values', [
- ['baz', 'zoo'], np.array(['baz', 'zoo']),
- pd.Series(['baz', 'zoo']), pd.Index(['baz', 'zoo'])
- ])
- @pytest.mark.parametrize('method', [True, False])
- def test_pivot_with_list_like_values(self, values, method):
- # issue #17160
- df = pd.DataFrame({'foo': ['one', 'one', 'one', 'two', 'two', 'two'],
- 'bar': ['A', 'B', 'C', 'A', 'B', 'C'],
- 'baz': [1, 2, 3, 4, 5, 6],
- 'zoo': ['x', 'y', 'z', 'q', 'w', 't']})
- if method:
- result = df.pivot(index='foo', columns='bar', values=values)
- else:
- result = pd.pivot(df, index='foo', columns='bar', values=values)
- data = [[1, 2, 3, 'x', 'y', 'z'],
- [4, 5, 6, 'q', 'w', 't']]
- index = Index(data=['one', 'two'], name='foo')
- columns = MultiIndex(levels=[['baz', 'zoo'], ['A', 'B', 'C']],
- codes=[[0, 0, 0, 1, 1, 1], [0, 1, 2, 0, 1, 2]],
- names=[None, 'bar'])
- expected = DataFrame(data=data, index=index,
- columns=columns, dtype='object')
- tm.assert_frame_equal(result, expected)
- @pytest.mark.parametrize('values', [
- ['bar', 'baz'], np.array(['bar', 'baz']),
- pd.Series(['bar', 'baz']), pd.Index(['bar', 'baz'])
- ])
- @pytest.mark.parametrize('method', [True, False])
- def test_pivot_with_list_like_values_nans(self, values, method):
- # issue #17160
- df = pd.DataFrame({'foo': ['one', 'one', 'one', 'two', 'two', 'two'],
- 'bar': ['A', 'B', 'C', 'A', 'B', 'C'],
- 'baz': [1, 2, 3, 4, 5, 6],
- 'zoo': ['x', 'y', 'z', 'q', 'w', 't']})
- if method:
- result = df.pivot(index='zoo', columns='foo', values=values)
- else:
- result = pd.pivot(df, index='zoo', columns='foo', values=values)
- data = [[np.nan, 'A', np.nan, 4],
- [np.nan, 'C', np.nan, 6],
- [np.nan, 'B', np.nan, 5],
- ['A', np.nan, 1, np.nan],
- ['B', np.nan, 2, np.nan],
- ['C', np.nan, 3, np.nan]]
- index = Index(data=['q', 't', 'w', 'x', 'y', 'z'], name='zoo')
- columns = MultiIndex(levels=[['bar', 'baz'], ['one', 'two']],
- codes=[[0, 0, 1, 1], [0, 1, 0, 1]],
- names=[None, 'foo'])
- expected = DataFrame(data=data, index=index,
- columns=columns, dtype='object')
- tm.assert_frame_equal(result, expected)
- @pytest.mark.xfail(reason='MultiIndexed unstack with tuple names fails'
- 'with KeyError GH#19966')
- @pytest.mark.parametrize('method', [True, False])
- def test_pivot_with_multiindex(self, method):
- # issue #17160
- index = Index(data=[0, 1, 2, 3, 4, 5])
- data = [['one', 'A', 1, 'x'],
- ['one', 'B', 2, 'y'],
- ['one', 'C', 3, 'z'],
- ['two', 'A', 4, 'q'],
- ['two', 'B', 5, 'w'],
- ['two', 'C', 6, 't']]
- columns = MultiIndex(levels=[['bar', 'baz'], ['first', 'second']],
- codes=[[0, 0, 1, 1], [0, 1, 0, 1]])
- df = DataFrame(data=data, index=index, columns=columns, dtype='object')
- if method:
- result = df.pivot(index=('bar', 'first'),
- columns=('bar', 'second'),
- values=('baz', 'first'))
- else:
- result = pd.pivot(df,
- index=('bar', 'first'),
- columns=('bar', 'second'),
- values=('baz', 'first'))
- data = {'A': Series([1, 4], index=['one', 'two']),
- 'B': Series([2, 5], index=['one', 'two']),
- 'C': Series([3, 6], index=['one', 'two'])}
- expected = DataFrame(data)
- tm.assert_frame_equal(result, expected)
- @pytest.mark.parametrize('method', [True, False])
- def test_pivot_with_tuple_of_values(self, method):
- # issue #17160
- df = pd.DataFrame({'foo': ['one', 'one', 'one', 'two', 'two', 'two'],
- 'bar': ['A', 'B', 'C', 'A', 'B', 'C'],
- 'baz': [1, 2, 3, 4, 5, 6],
- 'zoo': ['x', 'y', 'z', 'q', 'w', 't']})
- with pytest.raises(KeyError, match=r"^\('bar', 'baz'\)$"):
- # tuple is seen as a single column name
- if method:
- df.pivot(index='zoo', columns='foo', values=('bar', 'baz'))
- else:
- pd.pivot(df, index='zoo', columns='foo', values=('bar', 'baz'))
- def test_margins(self):
- def _check_output(result, values_col, index=['A', 'B'],
- columns=['C'],
- margins_col='All'):
- col_margins = result.loc[result.index[:-1], margins_col]
- expected_col_margins = self.data.groupby(index)[values_col].mean()
- tm.assert_series_equal(col_margins, expected_col_margins,
- check_names=False)
- assert col_margins.name == margins_col
- result = result.sort_index()
- index_margins = result.loc[(margins_col, '')].iloc[:-1]
- expected_ix_margins = self.data.groupby(columns)[values_col].mean()
- tm.assert_series_equal(index_margins, expected_ix_margins,
- check_names=False)
- assert index_margins.name == (margins_col, '')
- grand_total_margins = result.loc[(margins_col, ''), margins_col]
- expected_total_margins = self.data[values_col].mean()
- assert grand_total_margins == expected_total_margins
- # column specified
- result = self.data.pivot_table(values='D', index=['A', 'B'],
- columns='C',
- margins=True, aggfunc=np.mean)
- _check_output(result, 'D')
- # Set a different margins_name (not 'All')
- result = self.data.pivot_table(values='D', index=['A', 'B'],
- columns='C',
- margins=True, aggfunc=np.mean,
- margins_name='Totals')
- _check_output(result, 'D', margins_col='Totals')
- # no column specified
- table = self.data.pivot_table(index=['A', 'B'], columns='C',
- margins=True, aggfunc=np.mean)
- for value_col in table.columns.levels[0]:
- _check_output(table[value_col], value_col)
- # no col
- # to help with a buglet
- self.data.columns = [k * 2 for k in self.data.columns]
- table = self.data.pivot_table(index=['AA', 'BB'], margins=True,
- aggfunc=np.mean)
- for value_col in table.columns:
- totals = table.loc[('All', ''), value_col]
- assert totals == self.data[value_col].mean()
- # no rows
- rtable = self.data.pivot_table(columns=['AA', 'BB'], margins=True,
- aggfunc=np.mean)
- assert isinstance(rtable, Series)
- table = self.data.pivot_table(index=['AA', 'BB'], margins=True,
- aggfunc='mean')
- for item in ['DD', 'EE', 'FF']:
- totals = table.loc[('All', ''), item]
- assert totals == self.data[item].mean()
- def test_margins_dtype(self):
- # GH 17013
- df = self.data.copy()
- df[['D', 'E', 'F']] = np.arange(len(df) * 3).reshape(len(df), 3)
- mi_val = list(product(['bar', 'foo'], ['one', 'two'])) + [('All', '')]
- mi = MultiIndex.from_tuples(mi_val, names=('A', 'B'))
- expected = DataFrame({'dull': [12, 21, 3, 9, 45],
- 'shiny': [33, 0, 36, 51, 120]},
- index=mi).rename_axis('C', axis=1)
- expected['All'] = expected['dull'] + expected['shiny']
- result = df.pivot_table(values='D', index=['A', 'B'],
- columns='C', margins=True,
- aggfunc=np.sum, fill_value=0)
- tm.assert_frame_equal(expected, result)
- @pytest.mark.xfail(reason='GH#17035 (len of floats is casted back to '
- 'floats)')
- def test_margins_dtype_len(self):
- mi_val = list(product(['bar', 'foo'], ['one', 'two'])) + [('All', '')]
- mi = MultiIndex.from_tuples(mi_val, names=('A', 'B'))
- expected = DataFrame({'dull': [1, 1, 2, 1, 5],
- 'shiny': [2, 0, 2, 2, 6]},
- index=mi).rename_axis('C', axis=1)
- expected['All'] = expected['dull'] + expected['shiny']
- result = self.data.pivot_table(values='D', index=['A', 'B'],
- columns='C', margins=True,
- aggfunc=len, fill_value=0)
- tm.assert_frame_equal(expected, result)
- def test_pivot_integer_columns(self):
- # caused by upstream bug in unstack
- d = date.min
- data = list(product(['foo', 'bar'], ['A', 'B', 'C'], ['x1', 'x2'],
- [d + timedelta(i)
- for i in range(20)], [1.0]))
- df = DataFrame(data)
- table = df.pivot_table(values=4, index=[0, 1, 3], columns=[2])
- df2 = df.rename(columns=str)
- table2 = df2.pivot_table(
- values='4', index=['0', '1', '3'], columns=['2'])
- tm.assert_frame_equal(table, table2, check_names=False)
- def test_pivot_no_level_overlap(self):
- # GH #1181
- data = DataFrame({'a': ['a', 'a', 'a', 'a', 'b', 'b', 'b', 'b'] * 2,
- 'b': [0, 0, 0, 0, 1, 1, 1, 1] * 2,
- 'c': (['foo'] * 4 + ['bar'] * 4) * 2,
- 'value': np.random.randn(16)})
- table = data.pivot_table('value', index='a', columns=['b', 'c'])
- grouped = data.groupby(['a', 'b', 'c'])['value'].mean()
- expected = grouped.unstack('b').unstack('c').dropna(axis=1, how='all')
- tm.assert_frame_equal(table, expected)
- def test_pivot_columns_lexsorted(self):
- n = 10000
- dtype = np.dtype([
- ("Index", object),
- ("Symbol", object),
- ("Year", int),
- ("Month", int),
- ("Day", int),
- ("Quantity", int),
- ("Price", float),
- ])
- products = np.array([
- ('SP500', 'ADBE'),
- ('SP500', 'NVDA'),
- ('SP500', 'ORCL'),
- ('NDQ100', 'AAPL'),
- ('NDQ100', 'MSFT'),
- ('NDQ100', 'GOOG'),
- ('FTSE', 'DGE.L'),
- ('FTSE', 'TSCO.L'),
- ('FTSE', 'GSK.L'),
- ], dtype=[('Index', object), ('Symbol', object)])
- items = np.empty(n, dtype=dtype)
- iproduct = np.random.randint(0, len(products), n)
- items['Index'] = products['Index'][iproduct]
- items['Symbol'] = products['Symbol'][iproduct]
- dr = pd.date_range(date(2000, 1, 1),
- date(2010, 12, 31))
- dates = dr[np.random.randint(0, len(dr), n)]
- items['Year'] = dates.year
- items['Month'] = dates.month
- items['Day'] = dates.day
- items['Price'] = np.random.lognormal(4.0, 2.0, n)
- df = DataFrame(items)
- pivoted = df.pivot_table('Price', index=['Month', 'Day'],
- columns=['Index', 'Symbol', 'Year'],
- aggfunc='mean')
- assert pivoted.columns.is_monotonic
- def test_pivot_complex_aggfunc(self):
- f = OrderedDict([('D', ['std']), ('E', ['sum'])])
- expected = self.data.groupby(['A', 'B']).agg(f).unstack('B')
- result = self.data.pivot_table(index='A', columns='B', aggfunc=f)
- tm.assert_frame_equal(result, expected)
- def test_margins_no_values_no_cols(self):
- # Regression test on pivot table: no values or cols passed.
- result = self.data[['A', 'B']].pivot_table(
- index=['A', 'B'], aggfunc=len, margins=True)
- result_list = result.tolist()
- assert sum(result_list[:-1]) == result_list[-1]
- def test_margins_no_values_two_rows(self):
- # Regression test on pivot table: no values passed but rows are a
- # multi-index
- result = self.data[['A', 'B', 'C']].pivot_table(
- index=['A', 'B'], columns='C', aggfunc=len, margins=True)
- assert result.All.tolist() == [3.0, 1.0, 4.0, 3.0, 11.0]
- def test_margins_no_values_one_row_one_col(self):
- # Regression test on pivot table: no values passed but row and col
- # defined
- result = self.data[['A', 'B']].pivot_table(
- index='A', columns='B', aggfunc=len, margins=True)
- assert result.All.tolist() == [4.0, 7.0, 11.0]
- def test_margins_no_values_two_row_two_cols(self):
- # Regression test on pivot table: no values passed but rows and cols
- # are multi-indexed
- self.data['D'] = ['a', 'b', 'c', 'd',
- 'e', 'f', 'g', 'h', 'i', 'j', 'k']
- result = self.data[['A', 'B', 'C', 'D']].pivot_table(
- index=['A', 'B'], columns=['C', 'D'], aggfunc=len, margins=True)
- assert result.All.tolist() == [3.0, 1.0, 4.0, 3.0, 11.0]
- @pytest.mark.parametrize(
- 'margin_name', ['foo', 'one', 666, None, ['a', 'b']])
- def test_pivot_table_with_margins_set_margin_name(self, margin_name):
- # see gh-3335
- msg = (r'Conflicting name "{}" in margins|'
- "margins_name argument must be a string").format(margin_name)
- with pytest.raises(ValueError, match=msg):
- # multi-index index
- pivot_table(self.data, values='D', index=['A', 'B'],
- columns=['C'], margins=True,
- margins_name=margin_name)
- with pytest.raises(ValueError, match=msg):
- # multi-index column
- pivot_table(self.data, values='D', index=['C'],
- columns=['A', 'B'], margins=True,
- margins_name=margin_name)
- with pytest.raises(ValueError, match=msg):
- # non-multi-index index/column
- pivot_table(self.data, values='D', index=['A'],
- columns=['B'], margins=True,
- margins_name=margin_name)
- def test_pivot_timegrouper(self):
- df = DataFrame({
- 'Branch': 'A A A A A A A B'.split(),
- 'Buyer': 'Carl Mark Carl Carl Joe Joe Joe Carl'.split(),
- 'Quantity': [1, 3, 5, 1, 8, 1, 9, 3],
- 'Date': [datetime(2013, 1, 1),
- datetime(2013, 1, 1),
- datetime(2013, 10, 1),
- datetime(2013, 10, 2),
- datetime(2013, 10, 1),
- datetime(2013, 10, 2),
- datetime(2013, 12, 2),
- datetime(2013, 12, 2), ]}).set_index('Date')
- expected = DataFrame(np.array([10, 18, 3], dtype='int64')
- .reshape(1, 3),
- index=[datetime(2013, 12, 31)],
- columns='Carl Joe Mark'.split())
- expected.index.name = 'Date'
- expected.columns.name = 'Buyer'
- result = pivot_table(df, index=Grouper(freq='A'), columns='Buyer',
- values='Quantity', aggfunc=np.sum)
- tm.assert_frame_equal(result, expected)
- result = pivot_table(df, index='Buyer', columns=Grouper(freq='A'),
- values='Quantity', aggfunc=np.sum)
- tm.assert_frame_equal(result, expected.T)
- expected = DataFrame(np.array([1, np.nan, 3, 9, 18, np.nan])
- .reshape(2, 3),
- index=[datetime(2013, 1, 1),
- datetime(2013, 7, 1)],
- columns='Carl Joe Mark'.split())
- expected.index.name = 'Date'
- expected.columns.name = 'Buyer'
- result = pivot_table(df, index=Grouper(freq='6MS'), columns='Buyer',
- values='Quantity', aggfunc=np.sum)
- tm.assert_frame_equal(result, expected)
- result = pivot_table(df, index='Buyer', columns=Grouper(freq='6MS'),
- values='Quantity', aggfunc=np.sum)
- tm.assert_frame_equal(result, expected.T)
- # passing the name
- df = df.reset_index()
- result = pivot_table(df, index=Grouper(freq='6MS', key='Date'),
- columns='Buyer',
- values='Quantity', aggfunc=np.sum)
- tm.assert_frame_equal(result, expected)
- result = pivot_table(df, index='Buyer',
- columns=Grouper(freq='6MS', key='Date'),
- values='Quantity', aggfunc=np.sum)
- tm.assert_frame_equal(result, expected.T)
- msg = "'The grouper name foo is not found'"
- with pytest.raises(KeyError, match=msg):
- pivot_table(df, index=Grouper(freq='6MS', key='foo'),
- columns='Buyer', values='Quantity', aggfunc=np.sum)
- with pytest.raises(KeyError, match=msg):
- pivot_table(df, index='Buyer',
- columns=Grouper(freq='6MS', key='foo'),
- values='Quantity', aggfunc=np.sum)
- # passing the level
- df = df.set_index('Date')
- result = pivot_table(df, index=Grouper(freq='6MS', level='Date'),
- columns='Buyer', values='Quantity',
- aggfunc=np.sum)
- tm.assert_frame_equal(result, expected)
- result = pivot_table(df, index='Buyer',
- columns=Grouper(freq='6MS', level='Date'),
- values='Quantity', aggfunc=np.sum)
- tm.assert_frame_equal(result, expected.T)
- msg = "The level foo is not valid"
- with pytest.raises(ValueError, match=msg):
- pivot_table(df, index=Grouper(freq='6MS', level='foo'),
- columns='Buyer', values='Quantity', aggfunc=np.sum)
- with pytest.raises(ValueError, match=msg):
- pivot_table(df, index='Buyer',
- columns=Grouper(freq='6MS', level='foo'),
- values='Quantity', aggfunc=np.sum)
- # double grouper
- df = DataFrame({
- 'Branch': 'A A A A A A A B'.split(),
- 'Buyer': 'Carl Mark Carl Carl Joe Joe Joe Carl'.split(),
- 'Quantity': [1, 3, 5, 1, 8, 1, 9, 3],
- 'Date': [datetime(2013, 11, 1, 13, 0), datetime(2013, 9, 1, 13, 5),
- datetime(2013, 10, 1, 20, 0),
- datetime(2013, 10, 2, 10, 0),
- datetime(2013, 11, 1, 20, 0),
- datetime(2013, 10, 2, 10, 0),
- datetime(2013, 10, 2, 12, 0),
- datetime(2013, 12, 5, 14, 0)],
- 'PayDay': [datetime(2013, 10, 4, 0, 0),
- datetime(2013, 10, 15, 13, 5),
- datetime(2013, 9, 5, 20, 0),
- datetime(2013, 11, 2, 10, 0),
- datetime(2013, 10, 7, 20, 0),
- datetime(2013, 9, 5, 10, 0),
- datetime(2013, 12, 30, 12, 0),
- datetime(2013, 11, 20, 14, 0), ]})
- result = pivot_table(df, index=Grouper(freq='M', key='Date'),
- columns=Grouper(freq='M', key='PayDay'),
- values='Quantity', aggfunc=np.sum)
- expected = DataFrame(np.array([np.nan, 3, np.nan, np.nan,
- 6, np.nan, 1, 9,
- np.nan, 9, np.nan, np.nan, np.nan,
- np.nan, 3, np.nan]).reshape(4, 4),
- index=[datetime(2013, 9, 30),
- datetime(2013, 10, 31),
- datetime(2013, 11, 30),
- datetime(2013, 12, 31)],
- columns=[datetime(2013, 9, 30),
- datetime(2013, 10, 31),
- datetime(2013, 11, 30),
- datetime(2013, 12, 31)])
- expected.index.name = 'Date'
- expected.columns.name = 'PayDay'
- tm.assert_frame_equal(result, expected)
- result = pivot_table(df, index=Grouper(freq='M', key='PayDay'),
- columns=Grouper(freq='M', key='Date'),
- values='Quantity', aggfunc=np.sum)
- tm.assert_frame_equal(result, expected.T)
- tuples = [(datetime(2013, 9, 30), datetime(2013, 10, 31)),
- (datetime(2013, 10, 31),
- datetime(2013, 9, 30)),
- (datetime(2013, 10, 31),
- datetime(2013, 11, 30)),
- (datetime(2013, 10, 31),
- datetime(2013, 12, 31)),
- (datetime(2013, 11, 30),
- datetime(2013, 10, 31)),
- (datetime(2013, 12, 31), datetime(2013, 11, 30)), ]
- idx = MultiIndex.from_tuples(tuples, names=['Date', 'PayDay'])
- expected = DataFrame(np.array([3, np.nan, 6, np.nan, 1, np.nan,
- 9, np.nan, 9, np.nan,
- np.nan, 3]).reshape(6, 2),
- index=idx, columns=['A', 'B'])
- expected.columns.name = 'Branch'
- result = pivot_table(
- df, index=[Grouper(freq='M', key='Date'),
- Grouper(freq='M', key='PayDay')], columns=['Branch'],
- values='Quantity', aggfunc=np.sum)
- tm.assert_frame_equal(result, expected)
- result = pivot_table(df, index=['Branch'],
- columns=[Grouper(freq='M', key='Date'),
- Grouper(freq='M', key='PayDay')],
- values='Quantity', aggfunc=np.sum)
- tm.assert_frame_equal(result, expected.T)
- def test_pivot_datetime_tz(self):
- dates1 = ['2011-07-19 07:00:00', '2011-07-19 08:00:00',
- '2011-07-19 09:00:00',
- '2011-07-19 07:00:00', '2011-07-19 08:00:00',
- '2011-07-19 09:00:00']
- dates2 = ['2013-01-01 15:00:00', '2013-01-01 15:00:00',
- '2013-01-01 15:00:00',
- '2013-02-01 15:00:00', '2013-02-01 15:00:00',
- '2013-02-01 15:00:00']
- df = DataFrame({'label': ['a', 'a', 'a', 'b', 'b', 'b'],
- 'dt1': dates1, 'dt2': dates2,
- 'value1': np.arange(6, dtype='int64'),
- 'value2': [1, 2] * 3})
- df['dt1'] = df['dt1'].apply(lambda d: pd.Timestamp(d, tz='US/Pacific'))
- df['dt2'] = df['dt2'].apply(lambda d: pd.Timestamp(d, tz='Asia/Tokyo'))
- exp_idx = pd.DatetimeIndex(['2011-07-19 07:00:00',
- '2011-07-19 08:00:00',
- '2011-07-19 09:00:00'],
- tz='US/Pacific', name='dt1')
- exp_col1 = Index(['value1', 'value1'])
- exp_col2 = Index(['a', 'b'], name='label')
- exp_col = MultiIndex.from_arrays([exp_col1, exp_col2])
- expected = DataFrame([[0, 3], [1, 4], [2, 5]],
- index=exp_idx, columns=exp_col)
- result = pivot_table(df, index=['dt1'], columns=[
- 'label'], values=['value1'])
- tm.assert_frame_equal(result, expected)
- exp_col1 = Index(['sum', 'sum', 'sum', 'sum',
- 'mean', 'mean', 'mean', 'mean'])
- exp_col2 = Index(['value1', 'value1', 'value2', 'value2'] * 2)
- exp_col3 = pd.DatetimeIndex(['2013-01-01 15:00:00',
- '2013-02-01 15:00:00'] * 4,
- tz='Asia/Tokyo', name='dt2')
- exp_col = MultiIndex.from_arrays([exp_col1, exp_col2, exp_col3])
- expected = DataFrame(np.array([[0, 3, 1, 2, 0, 3, 1, 2],
- [1, 4, 2, 1, 1, 4, 2, 1],
- [2, 5, 1, 2, 2, 5, 1, 2]],
- dtype='int64'),
- index=exp_idx,
- columns=exp_col)
- result = pivot_table(df, index=['dt1'], columns=['dt2'],
- values=['value1', 'value2'],
- aggfunc=[np.sum, np.mean])
- tm.assert_frame_equal(result, expected)
- def test_pivot_dtaccessor(self):
- # GH 8103
- dates1 = ['2011-07-19 07:00:00', '2011-07-19 08:00:00',
- '2011-07-19 09:00:00',
- '2011-07-19 07:00:00', '2011-07-19 08:00:00',
- '2011-07-19 09:00:00']
- dates2 = ['2013-01-01 15:00:00', '2013-01-01 15:00:00',
- '2013-01-01 15:00:00',
- '2013-02-01 15:00:00', '2013-02-01 15:00:00',
- '2013-02-01 15:00:00']
- df = DataFrame({'label': ['a', 'a', 'a', 'b', 'b', 'b'],
- 'dt1': dates1, 'dt2': dates2,
- 'value1': np.arange(6, dtype='int64'),
- 'value2': [1, 2] * 3})
- df['dt1'] = df['dt1'].apply(lambda d: pd.Timestamp(d))
- df['dt2'] = df['dt2'].apply(lambda d: pd.Timestamp(d))
- result = pivot_table(df, index='label', columns=df['dt1'].dt.hour,
- values='value1')
- exp_idx = Index(['a', 'b'], name='label')
- expected = DataFrame({7: [0, 3], 8: [1, 4], 9: [2, 5]},
- index=exp_idx,
- columns=Index([7, 8, 9], name='dt1'))
- tm.assert_frame_equal(result, expected)
- result = pivot_table(df, index=df['dt2'].dt.month,
- columns=df['dt1'].dt.hour,
- values='value1')
- expected = DataFrame({7: [0, 3], 8: [1, 4], 9: [2, 5]},
- index=Index([1, 2], name='dt2'),
- columns=Index([7, 8, 9], name='dt1'))
- tm.assert_frame_equal(result, expected)
- result = pivot_table(df, index=df['dt2'].dt.year.values,
- columns=[df['dt1'].dt.hour, df['dt2'].dt.month],
- values='value1')
- exp_col = MultiIndex.from_arrays(
- [[7, 7, 8, 8, 9, 9], [1, 2] * 3], names=['dt1', 'dt2'])
- expected = DataFrame(np.array([[0, 3, 1, 4, 2, 5]], dtype='int64'),
- index=[2013], columns=exp_col)
- tm.assert_frame_equal(result, expected)
- result = pivot_table(df, index=np.array(['X', 'X', 'X',
- 'X', 'Y', 'Y']),
- columns=[df['dt1'].dt.hour, df['dt2'].dt.month],
- values='value1')
- expected = DataFrame(np.array([[0, 3, 1, np.nan, 2, np.nan],
- [np.nan, np.nan, np.nan,
- 4, np.nan, 5]]),
- index=['X', 'Y'], columns=exp_col)
- tm.assert_frame_equal(result, expected)
- def test_daily(self):
- rng = date_range('1/1/2000', '12/31/2004', freq='D')
- ts = Series(np.random.randn(len(rng)), index=rng)
- annual = pivot_table(DataFrame(ts), index=ts.index.year,
- columns=ts.index.dayofyear)
- annual.columns = annual.columns.droplevel(0)
- doy = np.asarray(ts.index.dayofyear)
- for i in range(1, 367):
- subset = ts[doy == i]
- subset.index = subset.index.year
- result = annual[i].dropna()
- tm.assert_series_equal(result, subset, check_names=False)
- assert result.name == i
- def test_monthly(self):
- rng = date_range('1/1/2000', '12/31/2004', freq='M')
- ts = Series(np.random.randn(len(rng)), index=rng)
- annual = pivot_table(pd.DataFrame(ts), index=ts.index.year,
- columns=ts.index.month)
- annual.columns = annual.columns.droplevel(0)
- month = ts.index.month
- for i in range(1, 13):
- subset = ts[month == i]
- subset.index = subset.index.year
- result = annual[i].dropna()
- tm.assert_series_equal(result, subset, check_names=False)
- assert result.name == i
- def test_pivot_table_with_iterator_values(self):
- # GH 12017
- aggs = {'D': 'sum', 'E': 'mean'}
- pivot_values_list = pd.pivot_table(
- self.data, index=['A'], values=list(aggs.keys()), aggfunc=aggs,
- )
- pivot_values_keys = pd.pivot_table(
- self.data, index=['A'], values=aggs.keys(), aggfunc=aggs,
- )
- tm.assert_frame_equal(pivot_values_keys, pivot_values_list)
- agg_values_gen = (value for value in aggs.keys())
- pivot_values_gen = pd.pivot_table(
- self.data, index=['A'], values=agg_values_gen, aggfunc=aggs,
- )
- tm.assert_frame_equal(pivot_values_gen, pivot_values_list)
- def test_pivot_table_margins_name_with_aggfunc_list(self):
- # GH 13354
- margins_name = 'Weekly'
- costs = pd.DataFrame(
- {'item': ['bacon', 'cheese', 'bacon', 'cheese'],
- 'cost': [2.5, 4.5, 3.2, 3.3],
- 'day': ['M', 'M', 'T', 'T']}
- )
- table = costs.pivot_table(
- index="item", columns="day", margins=True,
- margins_name=margins_name, aggfunc=[np.mean, max]
- )
- ix = pd.Index(
- ['bacon', 'cheese', margins_name], dtype='object', name='item'
- )
- tups = [('mean', 'cost', 'M'), ('mean', 'cost', 'T'),
- ('mean', 'cost', margins_name), ('max', 'cost', 'M'),
- ('max', 'cost', 'T'), ('max', 'cost', margins_name)]
- cols = pd.MultiIndex.from_tuples(tups, names=[None, None, 'day'])
- expected = pd.DataFrame(table.values, index=ix, columns=cols)
- tm.assert_frame_equal(table, expected)
- @pytest.mark.xfail(reason='GH#17035 (np.mean of ints is casted back to '
- 'ints)')
- def test_categorical_margins(self, observed):
- # GH 10989
- df = pd.DataFrame({'x': np.arange(8),
- 'y': np.arange(8) // 4,
- 'z': np.arange(8) % 2})
- expected = pd.DataFrame([[1.0, 2.0, 1.5], [5, 6, 5.5], [3, 4, 3.5]])
- expected.index = Index([0, 1, 'All'], name='y')
- expected.columns = Index([0, 1, 'All'], name='z')
- table = df.pivot_table('x', 'y', 'z', dropna=observed, margins=True)
- tm.assert_frame_equal(table, expected)
- @pytest.mark.xfail(reason='GH#17035 (np.mean of ints is casted back to '
- 'ints)')
- def test_categorical_margins_category(self, observed):
- df = pd.DataFrame({'x': np.arange(8),
- 'y': np.arange(8) // 4,
- 'z': np.arange(8) % 2})
- expected = pd.DataFrame([[1.0, 2.0, 1.5], [5, 6, 5.5], [3, 4, 3.5]])
- expected.index = Index([0, 1, 'All'], name='y')
- expected.columns = Index([0, 1, 'All'], name='z')
- df.y = df.y.astype('category')
- df.z = df.z.astype('category')
- table = df.pivot_table('x', 'y', 'z', dropna=observed, margins=True)
- tm.assert_frame_equal(table, expected)
- def test_categorical_aggfunc(self, observed):
- # GH 9534
- df = pd.DataFrame({"C1": ["A", "B", "C", "C"],
- "C2": ["a", "a", "b", "b"],
- "V": [1, 2, 3, 4]})
- df["C1"] = df["C1"].astype("category")
- result = df.pivot_table("V", index="C1", columns="C2",
- dropna=observed, aggfunc="count")
- expected_index = pd.CategoricalIndex(['A', 'B', 'C'],
- categories=['A', 'B', 'C'],
- ordered=False,
- name='C1')
- expected_columns = pd.Index(['a', 'b'], name='C2')
- expected_data = np.array([[1., np.nan],
- [1., np.nan],
- [np.nan, 2.]])
- expected = pd.DataFrame(expected_data,
- index=expected_index,
- columns=expected_columns)
- tm.assert_frame_equal(result, expected)
- def test_categorical_pivot_index_ordering(self, observed):
- # GH 8731
- df = pd.DataFrame({'Sales': [100, 120, 220],
- 'Month': ['January', 'January', 'January'],
- 'Year': [2013, 2014, 2013]})
- months = ['January', 'February', 'March', 'April', 'May', 'June',
- 'July', 'August', 'September', 'October', 'November',
- 'December']
- df['Month'] = df['Month'].astype('category').cat.set_categories(months)
- result = df.pivot_table(values='Sales',
- index='Month',
- columns='Year',
- dropna=observed,
- aggfunc='sum')
- expected_columns = pd.Int64Index([2013, 2014], name='Year')
- expected_index = pd.CategoricalIndex(['January'],
- categories=months,
- ordered=False,
- name='Month')
- expected = pd.DataFrame([[320, 120]],
- index=expected_index,
- columns=expected_columns)
- if not observed:
- result = result.dropna().astype(np.int64)
- tm.assert_frame_equal(result, expected)
- def test_pivot_table_not_series(self):
- # GH 4386
- # pivot_table always returns a DataFrame
- # when values is not list like and columns is None
- # and aggfunc is not instance of list
- df = DataFrame({'col1': [3, 4, 5],
- 'col2': ['C', 'D', 'E'],
- 'col3': [1, 3, 9]})
- result = df.pivot_table('col1', index=['col3', 'col2'], aggfunc=np.sum)
- m = MultiIndex.from_arrays([[1, 3, 9],
- ['C', 'D', 'E']],
- names=['col3', 'col2'])
- expected = DataFrame([3, 4, 5],
- index=m, columns=['col1'])
- tm.assert_frame_equal(result, expected)
- result = df.pivot_table(
- 'col1', index='col3', columns='col2', aggfunc=np.sum
- )
- expected = DataFrame([[3, np.NaN, np.NaN],
- [np.NaN, 4, np.NaN],
- [np.NaN, np.NaN, 5]],
- index=Index([1, 3, 9], name='col3'),
- columns=Index(['C', 'D', 'E'], name='col2'))
- tm.assert_frame_equal(result, expected)
- result = df.pivot_table('col1', index='col3', aggfunc=[np.sum])
- m = MultiIndex.from_arrays([['sum'],
- ['col1']])
- expected = DataFrame([3, 4, 5],
- index=Index([1, 3, 9], name='col3'),
- columns=m)
- tm.assert_frame_equal(result, expected)
- def test_pivot_margins_name_unicode(self):
- # issue #13292
- greek = u'\u0394\u03bf\u03ba\u03b9\u03bc\u03ae'
- frame = pd.DataFrame({'foo': [1, 2, 3]})
- table = pd.pivot_table(frame, index=['foo'], aggfunc=len, margins=True,
- margins_name=greek)
- index = pd.Index([1, 2, 3, greek], dtype='object', name='foo')
- expected = pd.DataFrame(index=index)
- tm.assert_frame_equal(table, expected)
- def test_pivot_string_as_func(self):
- # GH #18713
- # for correctness purposes
- data = DataFrame({'A': ['foo', 'foo', 'foo', 'foo', 'bar', 'bar',
- 'bar', 'bar', 'foo', 'foo', 'foo'],
- 'B': ['one', 'one', 'one', 'two', 'one', 'one',
- 'one', 'two', 'two', 'two', 'one'],
- 'C': range(11)})
- result = pivot_table(data, index='A', columns='B', aggfunc='sum')
- mi = MultiIndex(levels=[['C'], ['one', 'two']],
- codes=[[0, 0], [0, 1]], names=[None, 'B'])
- expected = DataFrame({('C', 'one'): {'bar': 15, 'foo': 13},
- ('C', 'two'): {'bar': 7, 'foo': 20}},
- columns=mi).rename_axis('A')
- tm.assert_frame_equal(result, expected)
- result = pivot_table(data, index='A', columns='B',
- aggfunc=['sum', 'mean'])
- mi = MultiIndex(levels=[['sum', 'mean'], ['C'], ['one', 'two']],
- codes=[[0, 0, 1, 1], [0, 0, 0, 0], [0, 1, 0, 1]],
- names=[None, None, 'B'])
- expected = DataFrame({('mean', 'C', 'one'): {'bar': 5.0, 'foo': 3.25},
- ('mean', 'C', 'two'): {'bar': 7.0,
- 'foo': 6.666666666666667},
- ('sum', 'C', 'one'): {'bar': 15, 'foo': 13},
- ('sum', 'C', 'two'): {'bar': 7, 'foo': 20}},
- columns=mi).rename_axis('A')
- tm.assert_frame_equal(result, expected)
- @pytest.mark.parametrize('f, f_numpy',
- [('sum', np.sum),
- ('mean', np.mean),
- ('std', np.std),
- (['sum', 'mean'], [np.sum, np.mean]),
- (['sum', 'std'], [np.sum, np.std]),
- (['std', 'mean'], [np.std, np.mean])])
- def test_pivot_string_func_vs_func(self, f, f_numpy):
- # GH #18713
- # for consistency purposes
- result = pivot_table(self.data, index='A', columns='B', aggfunc=f)
- expected = pivot_table(self.data, index='A', columns='B',
- aggfunc=f_numpy)
- tm.assert_frame_equal(result, expected)
- @pytest.mark.slow
- def test_pivot_number_of_levels_larger_than_int32(self):
- # GH 20601
- df = DataFrame({'ind1': np.arange(2 ** 16),
- 'ind2': np.arange(2 ** 16),
- 'count': 0})
- msg = "Unstacked DataFrame is too big, causing int32 overflow"
- with pytest.raises(ValueError, match=msg):
- df.pivot_table(index='ind1', columns='ind2',
- values='count', aggfunc='count')
- class TestCrosstab(object):
- def setup_method(self, method):
- df = DataFrame({'A': ['foo', 'foo', 'foo', 'foo',
- 'bar', 'bar', 'bar', 'bar',
- 'foo', 'foo', 'foo'],
- 'B': ['one', 'one', 'one', 'two',
- 'one', 'one', 'one', 'two',
- 'two', 'two', 'one'],
- 'C': ['dull', 'dull', 'shiny', 'dull',
- 'dull', 'shiny', 'shiny', 'dull',
- 'shiny', 'shiny', 'shiny'],
- 'D': np.random.randn(11),
- 'E': np.random.randn(11),
- 'F': np.random.randn(11)})
- self.df = df.append(df, ignore_index=True)
- def test_crosstab_single(self):
- df = self.df
- result = crosstab(df['A'], df['C'])
- expected = df.groupby(['A', 'C']).size().unstack()
- tm.assert_frame_equal(result, expected.fillna(0).astype(np.int64))
- def test_crosstab_multiple(self):
- df = self.df
- result = crosstab(df['A'], [df['B'], df['C']])
- expected = df.groupby(['A', 'B', 'C']).size()
- expected = expected.unstack(
- 'B').unstack('C').fillna(0).astype(np.int64)
- tm.assert_frame_equal(result, expected)
- result = crosstab([df['B'], df['C']], df['A'])
- expected = df.groupby(['B', 'C', 'A']).size()
- expected = expected.unstack('A').fillna(0).astype(np.int64)
- tm.assert_frame_equal(result, expected)
- def test_crosstab_ndarray(self):
- a = np.random.randint(0, 5, size=100)
- b = np.random.randint(0, 3, size=100)
- c = np.random.randint(0, 10, size=100)
- df = DataFrame({'a': a, 'b': b, 'c': c})
- result = crosstab(a, [b, c], rownames=['a'], colnames=('b', 'c'))
- expected = crosstab(df['a'], [df['b'], df['c']])
- tm.assert_frame_equal(result, expected)
- result = crosstab([b, c], a, colnames=['a'], rownames=('b', 'c'))
- expected = crosstab([df['b'], df['c']], df['a'])
- tm.assert_frame_equal(result, expected)
- # assign arbitrary names
- result = crosstab(self.df['A'].values, self.df['C'].values)
- assert result.index.name == 'row_0'
- assert result.columns.name == 'col_0'
- def test_crosstab_non_aligned(self):
- # GH 17005
- a = pd.Series([0, 1, 1], index=['a', 'b', 'c'])
- b = pd.Series([3, 4, 3, 4, 3], index=['a', 'b', 'c', 'd', 'f'])
- c = np.array([3, 4, 3])
- expected = pd.DataFrame([[1, 0], [1, 1]],
- index=Index([0, 1], name='row_0'),
- columns=Index([3, 4], name='col_0'))
- result = crosstab(a, b)
- tm.assert_frame_equal(result, expected)
- result = crosstab(a, c)
- tm.assert_frame_equal(result, expected)
- def test_crosstab_margins(self):
- a = np.random.randint(0, 7, size=100)
- b = np.random.randint(0, 3, size=100)
- c = np.random.randint(0, 5, size=100)
- df = DataFrame({'a': a, 'b': b, 'c': c})
- result = crosstab(a, [b, c], rownames=['a'], colnames=('b', 'c'),
- margins=True)
- assert result.index.names == ('a',)
- assert result.columns.names == ['b', 'c']
- all_cols = result['All', '']
- exp_cols = df.groupby(['a']).size().astype('i8')
- # to keep index.name
- exp_margin = Series([len(df)], index=Index(['All'], name='a'))
- exp_cols = exp_cols.append(exp_margin)
- exp_cols.name = ('All', '')
- tm.assert_series_equal(all_cols, exp_cols)
- all_rows = result.loc['All']
- exp_rows = df.groupby(['b', 'c']).size().astype('i8')
- exp_rows = exp_rows.append(Series([len(df)], index=[('All', '')]))
- exp_rows.name = 'All'
- exp_rows = exp_rows.reindex(all_rows.index)
- exp_rows = exp_rows.fillna(0).astype(np.int64)
- tm.assert_series_equal(all_rows, exp_rows)
- def test_crosstab_margins_set_margin_name(self):
- # GH 15972
- a = np.random.randint(0, 7, size=100)
- b = np.random.randint(0, 3, size=100)
- c = np.random.randint(0, 5, size=100)
- df = DataFrame({'a': a, 'b': b, 'c': c})
- result = crosstab(a, [b, c], rownames=['a'], colnames=('b', 'c'),
- margins=True, margins_name='TOTAL')
- assert result.index.names == ('a',)
- assert result.columns.names == ['b', 'c']
- all_cols = result['TOTAL', '']
- exp_cols = df.groupby(['a']).size().astype('i8')
- # to keep index.name
- exp_margin = Series([len(df)], index=Index(['TOTAL'], name='a'))
- exp_cols = exp_cols.append(exp_margin)
- exp_cols.name = ('TOTAL', '')
- tm.assert_series_equal(all_cols, exp_cols)
- all_rows = result.loc['TOTAL']
- exp_rows = df.groupby(['b', 'c']).size().astype('i8')
- exp_rows = exp_rows.append(Series([len(df)], index=[('TOTAL', '')]))
- exp_rows.name = 'TOTAL'
- exp_rows = exp_rows.reindex(all_rows.index)
- exp_rows = exp_rows.fillna(0).astype(np.int64)
- tm.assert_series_equal(all_rows, exp_rows)
- msg = "margins_name argument must be a string"
- for margins_name in [666, None, ['a', 'b']]:
- with pytest.raises(ValueError, match=msg):
- crosstab(a, [b, c], rownames=['a'], colnames=('b', 'c'),
- margins=True, margins_name=margins_name)
- def test_crosstab_pass_values(self):
- a = np.random.randint(0, 7, size=100)
- b = np.random.randint(0, 3, size=100)
- c = np.random.randint(0, 5, size=100)
- values = np.random.randn(100)
- table = crosstab([a, b], c, values, aggfunc=np.sum,
- rownames=['foo', 'bar'], colnames=['baz'])
- df = DataFrame({'foo': a, 'bar': b, 'baz': c, 'values': values})
- expected = df.pivot_table('values', index=['foo', 'bar'],
- columns='baz', aggfunc=np.sum)
- tm.assert_frame_equal(table, expected)
- def test_crosstab_dropna(self):
- # GH 3820
- a = np.array(['foo', 'foo', 'foo', 'bar',
- 'bar', 'foo', 'foo'], dtype=object)
- b = np.array(['one', 'one', 'two', 'one',
- 'two', 'two', 'two'], dtype=object)
- c = np.array(['dull', 'dull', 'dull', 'dull',
- 'dull', 'shiny', 'shiny'], dtype=object)
- res = pd.crosstab(a, [b, c], rownames=['a'],
- colnames=['b', 'c'], dropna=False)
- m = MultiIndex.from_tuples([('one', 'dull'), ('one', 'shiny'),
- ('two', 'dull'), ('two', 'shiny')],
- names=['b', 'c'])
- tm.assert_index_equal(res.columns, m)
- def test_crosstab_no_overlap(self):
- # GS 10291
- s1 = pd.Series([1, 2, 3], index=[1, 2, 3])
- s2 = pd.Series([4, 5, 6], index=[4, 5, 6])
- actual = crosstab(s1, s2)
- expected = pd.DataFrame()
- tm.assert_frame_equal(actual, expected)
- def test_margin_dropna(self):
- # GH 12577
- # pivot_table counts null into margin ('All')
- # when margins=true and dropna=true
- df = pd.DataFrame({'a': [1, 2, 2, 2, 2, np.nan],
- 'b': [3, 3, 4, 4, 4, 4]})
- actual = pd.crosstab(df.a, df.b, margins=True, dropna=True)
- expected = pd.DataFrame([[1, 0, 1], [1, 3, 4], [2, 3, 5]])
- expected.index = Index([1.0, 2.0, 'All'], name='a')
- expected.columns = Index([3, 4, 'All'], name='b')
- tm.assert_frame_equal(actual, expected)
- df = DataFrame({'a': [1, np.nan, np.nan, np.nan, 2, np.nan],
- 'b': [3, np.nan, 4, 4, 4, 4]})
- actual = pd.crosstab(df.a, df.b, margins=True, dropna=True)
- expected = pd.DataFrame([[1, 0, 1], [0, 1, 1], [1, 1, 2]])
- expected.index = Index([1.0, 2.0, 'All'], name='a')
- expected.columns = Index([3.0, 4.0, 'All'], name='b')
- tm.assert_frame_equal(actual, expected)
- df = DataFrame({'a': [1, np.nan, np.nan, np.nan, np.nan, 2],
- 'b': [3, 3, 4, 4, 4, 4]})
- actual = pd.crosstab(df.a, df.b, margins=True, dropna=True)
- expected = pd.DataFrame([[1, 0, 1], [0, 1, 1], [1, 1, 2]])
- expected.index = Index([1.0, 2.0, 'All'], name='a')
- expected.columns = Index([3, 4, 'All'], name='b')
- tm.assert_frame_equal(actual, expected)
- # GH 12642
- # _add_margins raises KeyError: Level None not found
- # when margins=True and dropna=False
- df = pd.DataFrame({'a': [1, 2, 2, 2, 2, np.nan],
- 'b': [3, 3, 4, 4, 4, 4]})
- actual = pd.crosstab(df.a, df.b, margins=True, dropna=False)
- expected = pd.DataFrame([[1, 0, 1], [1, 3, 4], [2, 4, 6]])
- expected.index = Index([1.0, 2.0, 'All'], name='a')
- expected.columns = Index([3, 4, 'All'], name='b')
- tm.assert_frame_equal(actual, expected)
- df = DataFrame({'a': [1, np.nan, np.nan, np.nan, 2, np.nan],
- 'b': [3, np.nan, 4, 4, 4, 4]})
- actual = pd.crosstab(df.a, df.b, margins=True, dropna=False)
- expected = pd.DataFrame([[1, 0, 1], [0, 1, 1], [1, 4, 6]])
- expected.index = Index([1.0, 2.0, 'All'], name='a')
- expected.columns = Index([3.0, 4.0, 'All'], name='b')
- tm.assert_frame_equal(actual, expected)
- a = np.array(['foo', 'foo', 'foo', 'bar',
- 'bar', 'foo', 'foo'], dtype=object)
- b = np.array(['one', 'one', 'two', 'one',
- 'two', np.nan, 'two'], dtype=object)
- c = np.array(['dull', 'dull', 'dull', 'dull',
- 'dull', 'shiny', 'shiny'], dtype=object)
- actual = pd.crosstab(a, [b, c], rownames=['a'],
- colnames=['b', 'c'], margins=True, dropna=False)
- m = MultiIndex.from_arrays([['one', 'one', 'two', 'two', 'All'],
- ['dull', 'shiny', 'dull', 'shiny', '']],
- names=['b', 'c'])
- expected = DataFrame([[1, 0, 1, 0, 2], [2, 0, 1, 1, 5],
- [3, 0, 2, 1, 7]], columns=m)
- expected.index = Index(['bar', 'foo', 'All'], name='a')
- tm.assert_frame_equal(actual, expected)
- actual = pd.crosstab([a, b], c, rownames=['a', 'b'],
- colnames=['c'], margins=True, dropna=False)
- m = MultiIndex.from_arrays([['bar', 'bar', 'foo', 'foo', 'All'],
- ['one', 'two', 'one', 'two', '']],
- names=['a', 'b'])
- expected = DataFrame([[1, 0, 1], [1, 0, 1], [2, 0, 2], [1, 1, 2],
- [5, 2, 7]], index=m)
- expected.columns = Index(['dull', 'shiny', 'All'], name='c')
- tm.assert_frame_equal(actual, expected)
- actual = pd.crosstab([a, b], c, rownames=['a', 'b'],
- colnames=['c'], margins=True, dropna=True)
- m = MultiIndex.from_arrays([['bar', 'bar', 'foo', 'foo', 'All'],
- ['one', 'two', 'one', 'two', '']],
- names=['a', 'b'])
- expected = DataFrame([[1, 0, 1], [1, 0, 1], [2, 0, 2], [1, 1, 2],
- [5, 1, 6]], index=m)
- expected.columns = Index(['dull', 'shiny', 'All'], name='c')
- tm.assert_frame_equal(actual, expected)
- def test_crosstab_normalize(self):
- # Issue 12578
- df = pd.DataFrame({'a': [1, 2, 2, 2, 2], 'b': [3, 3, 4, 4, 4],
- 'c': [1, 1, np.nan, 1, 1]})
- rindex = pd.Index([1, 2], name='a')
- cindex = pd.Index([3, 4], name='b')
- full_normal = pd.DataFrame([[0.2, 0], [0.2, 0.6]],
- index=rindex, columns=cindex)
- row_normal = pd.DataFrame([[1.0, 0], [0.25, 0.75]],
- index=rindex, columns=cindex)
- col_normal = pd.DataFrame([[0.5, 0], [0.5, 1.0]],
- index=rindex, columns=cindex)
- # Check all normalize args
- tm.assert_frame_equal(pd.crosstab(df.a, df.b, normalize='all'),
- full_normal)
- tm.assert_frame_equal(pd.crosstab(df.a, df.b, normalize=True),
- full_normal)
- tm.assert_frame_equal(pd.crosstab(df.a, df.b, normalize='index'),
- row_normal)
- tm.assert_frame_equal(pd.crosstab(df.a, df.b, normalize='columns'),
- col_normal)
- tm.assert_frame_equal(pd.crosstab(df.a, df.b, normalize=1),
- pd.crosstab(df.a, df.b, normalize='columns'))
- tm.assert_frame_equal(pd.crosstab(df.a, df.b, normalize=0),
- pd.crosstab(df.a, df.b, normalize='index'))
- row_normal_margins = pd.DataFrame([[1.0, 0],
- [0.25, 0.75],
- [0.4, 0.6]],
- index=pd.Index([1, 2, 'All'],
- name='a',
- dtype='object'),
- columns=pd.Index([3, 4], name='b',
- dtype='object'))
- col_normal_margins = pd.DataFrame([[0.5, 0, 0.2], [0.5, 1.0, 0.8]],
- index=pd.Index([1, 2], name='a',
- dtype='object'),
- columns=pd.Index([3, 4, 'All'],
- name='b',
- dtype='object'))
- all_normal_margins = pd.DataFrame([[0.2, 0, 0.2],
- [0.2, 0.6, 0.8],
- [0.4, 0.6, 1]],
- index=pd.Index([1, 2, 'All'],
- name='a',
- dtype='object'),
- columns=pd.Index([3, 4, 'All'],
- name='b',
- dtype='object'))
- tm.assert_frame_equal(pd.crosstab(df.a, df.b, normalize='index',
- margins=True), row_normal_margins)
- tm.assert_frame_equal(pd.crosstab(df.a, df.b, normalize='columns',
- margins=True),
- col_normal_margins)
- tm.assert_frame_equal(pd.crosstab(df.a, df.b, normalize=True,
- margins=True), all_normal_margins)
- # Test arrays
- pd.crosstab([np.array([1, 1, 2, 2]), np.array([1, 2, 1, 2])],
- np.array([1, 2, 1, 2]))
- # Test with aggfunc
- norm_counts = pd.DataFrame([[0.25, 0, 0.25],
- [0.25, 0.5, 0.75],
- [0.5, 0.5, 1]],
- index=pd.Index([1, 2, 'All'],
- name='a',
- dtype='object'),
- columns=pd.Index([3, 4, 'All'],
- name='b'))
- test_case = pd.crosstab(df.a, df.b, df.c, aggfunc='count',
- normalize='all',
- margins=True)
- tm.assert_frame_equal(test_case, norm_counts)
- df = pd.DataFrame({'a': [1, 2, 2, 2, 2], 'b': [3, 3, 4, 4, 4],
- 'c': [0, 4, np.nan, 3, 3]})
- norm_sum = pd.DataFrame([[0, 0, 0.],
- [0.4, 0.6, 1],
- [0.4, 0.6, 1]],
- index=pd.Index([1, 2, 'All'],
- name='a',
- dtype='object'),
- columns=pd.Index([3, 4, 'All'],
- name='b',
- dtype='object'))
- test_case = pd.crosstab(df.a, df.b, df.c, aggfunc=np.sum,
- normalize='all',
- margins=True)
- tm.assert_frame_equal(test_case, norm_sum)
- def test_crosstab_with_empties(self):
- # Check handling of empties
- df = pd.DataFrame({'a': [1, 2, 2, 2, 2], 'b': [3, 3, 4, 4, 4],
- 'c': [np.nan, np.nan, np.nan, np.nan, np.nan]})
- empty = pd.DataFrame([[0.0, 0.0], [0.0, 0.0]],
- index=pd.Index([1, 2],
- name='a',
- dtype='int64'),
- columns=pd.Index([3, 4], name='b'))
- for i in [True, 'index', 'columns']:
- calculated = pd.crosstab(df.a, df.b, values=df.c, aggfunc='count',
- normalize=i)
- tm.assert_frame_equal(empty, calculated)
- nans = pd.DataFrame([[0.0, np.nan], [0.0, 0.0]],
- index=pd.Index([1, 2],
- name='a',
- dtype='int64'),
- columns=pd.Index([3, 4], name='b'))
- calculated = pd.crosstab(df.a, df.b, values=df.c, aggfunc='count',
- normalize=False)
- tm.assert_frame_equal(nans, calculated)
- def test_crosstab_errors(self):
- # Issue 12578
- df = pd.DataFrame({'a': [1, 2, 2, 2, 2], 'b': [3, 3, 4, 4, 4],
- 'c': [1, 1, np.nan, 1, 1]})
- error = 'values cannot be used without an aggfunc.'
- with pytest.raises(ValueError, match=error):
- pd.crosstab(df.a, df.b, values=df.c)
- error = 'aggfunc cannot be used without values'
- with pytest.raises(ValueError, match=error):
- pd.crosstab(df.a, df.b, aggfunc=np.mean)
- error = 'Not a valid normalize argument'
- with pytest.raises(ValueError, match=error):
- pd.crosstab(df.a, df.b, normalize='42')
- with pytest.raises(ValueError, match=error):
- pd.crosstab(df.a, df.b, normalize=42)
- error = 'Not a valid margins argument'
- with pytest.raises(ValueError, match=error):
- pd.crosstab(df.a, df.b, normalize='all', margins=42)
- def test_crosstab_with_categorial_columns(self):
- # GH 8860
- df = pd.DataFrame({'MAKE': ['Honda', 'Acura', 'Tesla',
- 'Honda', 'Honda', 'Acura'],
- 'MODEL': ['Sedan', 'Sedan', 'Electric',
- 'Pickup', 'Sedan', 'Sedan']})
- categories = ['Sedan', 'Electric', 'Pickup']
- df['MODEL'] = (df['MODEL'].astype('category')
- .cat.set_categories(categories))
- result = pd.crosstab(df['MAKE'], df['MODEL'])
- expected_index = pd.Index(['Acura', 'Honda', 'Tesla'], name='MAKE')
- expected_columns = pd.CategoricalIndex(categories,
- categories=categories,
- ordered=False,
- name='MODEL')
- expected_data = [[2, 0, 0], [2, 0, 1], [0, 1, 0]]
- expected = pd.DataFrame(expected_data,
- index=expected_index,
- columns=expected_columns)
- tm.assert_frame_equal(result, expected)
- def test_crosstab_with_numpy_size(self):
- # GH 4003
- df = pd.DataFrame({'A': ['one', 'one', 'two', 'three'] * 6,
- 'B': ['A', 'B', 'C'] * 8,
- 'C': ['foo', 'foo', 'foo', 'bar', 'bar', 'bar'] * 4,
- 'D': np.random.randn(24),
- 'E': np.random.randn(24)})
- result = pd.crosstab(index=[df['A'], df['B']],
- columns=[df['C']],
- margins=True,
- aggfunc=np.size,
- values=df['D'])
- expected_index = pd.MultiIndex(levels=[['All', 'one', 'three', 'two'],
- ['', 'A', 'B', 'C']],
- codes=[[1, 1, 1, 2, 2, 2, 3, 3, 3, 0],
- [1, 2, 3, 1, 2, 3, 1, 2, 3, 0]],
- names=['A', 'B'])
- expected_column = pd.Index(['bar', 'foo', 'All'],
- dtype='object',
- name='C')
- expected_data = np.array([[2., 2., 4.],
- [2., 2., 4.],
- [2., 2., 4.],
- [2., np.nan, 2.],
- [np.nan, 2., 2.],
- [2., np.nan, 2.],
- [np.nan, 2., 2.],
- [2., np.nan, 2.],
- [np.nan, 2., 2.],
- [12., 12., 24.]])
- expected = pd.DataFrame(expected_data,
- index=expected_index,
- columns=expected_column)
- tm.assert_frame_equal(result, expected)
- def test_crosstab_dup_index_names(self):
- # GH 13279
- s = pd.Series(range(3), name='foo')
- result = pd.crosstab(s, s)
- expected_index = pd.Index(range(3), name='foo')
- expected = pd.DataFrame(np.eye(3, dtype=np.int64),
- index=expected_index,
- columns=expected_index)
- tm.assert_frame_equal(result, expected)
- @pytest.mark.parametrize("names", [['a', ('b', 'c')],
- [('a', 'b'), 'c']])
- def test_crosstab_tuple_name(self, names):
- s1 = pd.Series(range(3), name=names[0])
- s2 = pd.Series(range(1, 4), name=names[1])
- mi = pd.MultiIndex.from_arrays([range(3), range(1, 4)], names=names)
- expected = pd.Series(1, index=mi).unstack(1, fill_value=0)
- result = pd.crosstab(s1, s2)
- tm.assert_frame_equal(result, expected)
- def test_crosstab_unsorted_order(self):
- df = pd.DataFrame({"b": [3, 1, 2], 'a': [5, 4, 6]},
- index=['C', 'A', 'B'])
- result = pd.crosstab(df.index, [df.b, df.a])
- e_idx = pd.Index(['A', 'B', 'C'], name='row_0')
- e_columns = pd.MultiIndex.from_tuples([(1, 4), (2, 6), (3, 5)],
- names=['b', 'a'])
- expected = pd.DataFrame([[1, 0, 0], [0, 1, 0], [0, 0, 1]],
- index=e_idx,
- columns=e_columns)
- tm.assert_frame_equal(result, expected)
|