123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199 |
- import os
- import numpy as np
- import pytest
- from pandas.compat import zip
- from pandas import (
- Categorical, DatetimeIndex, Interval, IntervalIndex, NaT, Series,
- TimedeltaIndex, Timestamp, cut, date_range, isna, qcut, timedelta_range)
- from pandas.api.types import CategoricalDtype as CDT
- from pandas.core.algorithms import quantile
- import pandas.util.testing as tm
- from pandas.tseries.offsets import Day, Nano
- def test_qcut():
- arr = np.random.randn(1000)
- # We store the bins as Index that have been
- # rounded to comparisons are a bit tricky.
- labels, bins = qcut(arr, 4, retbins=True)
- ex_bins = quantile(arr, [0, .25, .5, .75, 1.])
- result = labels.categories.left.values
- assert np.allclose(result, ex_bins[:-1], atol=1e-2)
- result = labels.categories.right.values
- assert np.allclose(result, ex_bins[1:], atol=1e-2)
- ex_levels = cut(arr, ex_bins, include_lowest=True)
- tm.assert_categorical_equal(labels, ex_levels)
- def test_qcut_bounds():
- arr = np.random.randn(1000)
- factor = qcut(arr, 10, labels=False)
- assert len(np.unique(factor)) == 10
- def test_qcut_specify_quantiles():
- arr = np.random.randn(100)
- factor = qcut(arr, [0, .25, .5, .75, 1.])
- expected = qcut(arr, 4)
- tm.assert_categorical_equal(factor, expected)
- def test_qcut_all_bins_same():
- with pytest.raises(ValueError, match="edges.*unique"):
- qcut([0, 0, 0, 0, 0, 0, 0, 0, 0, 0], 3)
- def test_qcut_include_lowest():
- values = np.arange(10)
- ii = qcut(values, 4)
- ex_levels = IntervalIndex([Interval(-0.001, 2.25), Interval(2.25, 4.5),
- Interval(4.5, 6.75), Interval(6.75, 9)])
- tm.assert_index_equal(ii.categories, ex_levels)
- def test_qcut_nas():
- arr = np.random.randn(100)
- arr[:20] = np.nan
- result = qcut(arr, 4)
- assert isna(result[:20]).all()
- def test_qcut_index():
- result = qcut([0, 2], 2)
- intervals = [Interval(-0.001, 1), Interval(1, 2)]
- expected = Categorical(intervals, ordered=True)
- tm.assert_categorical_equal(result, expected)
- def test_qcut_binning_issues(datapath):
- # see gh-1978, gh-1979
- cut_file = datapath(os.path.join("reshape", "data", "cut_data.csv"))
- arr = np.loadtxt(cut_file)
- result = qcut(arr, 20)
- starts = []
- ends = []
- for lev in np.unique(result):
- s = lev.left
- e = lev.right
- assert s != e
- starts.append(float(s))
- ends.append(float(e))
- for (sp, sn), (ep, en) in zip(zip(starts[:-1], starts[1:]),
- zip(ends[:-1], ends[1:])):
- assert sp < sn
- assert ep < en
- assert ep <= sn
- def test_qcut_return_intervals():
- ser = Series([0, 1, 2, 3, 4, 5, 6, 7, 8])
- res = qcut(ser, [0, 0.333, 0.666, 1])
- exp_levels = np.array([Interval(-0.001, 2.664),
- Interval(2.664, 5.328), Interval(5.328, 8)])
- exp = Series(exp_levels.take([0, 0, 0, 1, 1, 1, 2, 2, 2])).astype(
- CDT(ordered=True))
- tm.assert_series_equal(res, exp)
- @pytest.mark.parametrize("kwargs,msg", [
- (dict(duplicates="drop"), None),
- (dict(), "Bin edges must be unique"),
- (dict(duplicates="raise"), "Bin edges must be unique"),
- (dict(duplicates="foo"), "invalid value for 'duplicates' parameter")
- ])
- def test_qcut_duplicates_bin(kwargs, msg):
- # see gh-7751
- values = [0, 0, 0, 0, 1, 2, 3]
- if msg is not None:
- with pytest.raises(ValueError, match=msg):
- qcut(values, 3, **kwargs)
- else:
- result = qcut(values, 3, **kwargs)
- expected = IntervalIndex([Interval(-0.001, 1), Interval(1, 3)])
- tm.assert_index_equal(result.categories, expected)
- @pytest.mark.parametrize("data,start,end", [
- (9.0, 8.999, 9.0),
- (0.0, -0.001, 0.0),
- (-9.0, -9.001, -9.0),
- ])
- @pytest.mark.parametrize("length", [1, 2])
- @pytest.mark.parametrize("labels", [None, False])
- def test_single_quantile(data, start, end, length, labels):
- # see gh-15431
- ser = Series([data] * length)
- result = qcut(ser, 1, labels=labels)
- if labels is None:
- intervals = IntervalIndex([Interval(start, end)] *
- length, closed="right")
- expected = Series(intervals).astype(CDT(ordered=True))
- else:
- expected = Series([0] * length)
- tm.assert_series_equal(result, expected)
- @pytest.mark.parametrize("ser", [
- Series(DatetimeIndex(["20180101", NaT, "20180103"])),
- Series(TimedeltaIndex(["0 days", NaT, "2 days"]))],
- ids=lambda x: str(x.dtype))
- def test_qcut_nat(ser):
- # see gh-19768
- intervals = IntervalIndex.from_tuples([
- (ser[0] - Nano(), ser[2] - Day()),
- np.nan, (ser[2] - Day(), ser[2])])
- expected = Series(Categorical(intervals, ordered=True))
- result = qcut(ser, 2)
- tm.assert_series_equal(result, expected)
- @pytest.mark.parametrize("bins", [3, np.linspace(0, 1, 4)])
- def test_datetime_tz_qcut(bins):
- # see gh-19872
- tz = "US/Eastern"
- ser = Series(date_range("20130101", periods=3, tz=tz))
- result = qcut(ser, bins)
- expected = Series(IntervalIndex([
- Interval(Timestamp("2012-12-31 23:59:59.999999999", tz=tz),
- Timestamp("2013-01-01 16:00:00", tz=tz)),
- Interval(Timestamp("2013-01-01 16:00:00", tz=tz),
- Timestamp("2013-01-02 08:00:00", tz=tz)),
- Interval(Timestamp("2013-01-02 08:00:00", tz=tz),
- Timestamp("2013-01-03 00:00:00", tz=tz))])).astype(
- CDT(ordered=True))
- tm.assert_series_equal(result, expected)
- @pytest.mark.parametrize("arg,expected_bins", [
- [timedelta_range("1day", periods=3),
- TimedeltaIndex(["1 days", "2 days", "3 days"])],
- [date_range("20180101", periods=3),
- DatetimeIndex(["2018-01-01", "2018-01-02", "2018-01-03"])]])
- def test_date_like_qcut_bins(arg, expected_bins):
- # see gh-19891
- ser = Series(arg)
- result, result_bins = qcut(ser, 2, retbins=True)
- tm.assert_index_equal(result_bins, expected_bins)
|