123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195 |
- # coding=utf-8
- # pylint: disable-msg=E1101,W0612
- import numpy as np
- import pytest
- from pandas.core.dtypes.common import is_integer
- import pandas as pd
- from pandas import Index, Series
- from pandas.core.indexes.datetimes import Timestamp
- import pandas.util.testing as tm
- from .common import TestData
- class TestSeriesQuantile(TestData):
- def test_quantile(self):
- q = self.ts.quantile(0.1)
- assert q == np.percentile(self.ts.dropna(), 10)
- q = self.ts.quantile(0.9)
- assert q == np.percentile(self.ts.dropna(), 90)
- # object dtype
- q = Series(self.ts, dtype=object).quantile(0.9)
- assert q == np.percentile(self.ts.dropna(), 90)
- # datetime64[ns] dtype
- dts = self.ts.index.to_series()
- q = dts.quantile(.2)
- assert q == Timestamp('2000-01-10 19:12:00')
- # timedelta64[ns] dtype
- tds = dts.diff()
- q = tds.quantile(.25)
- assert q == pd.to_timedelta('24:00:00')
- # GH7661
- result = Series([np.timedelta64('NaT')]).sum()
- assert result == pd.Timedelta(0)
- msg = 'percentiles should all be in the interval \\[0, 1\\]'
- for invalid in [-1, 2, [0.5, -1], [0.5, 2]]:
- with pytest.raises(ValueError, match=msg):
- self.ts.quantile(invalid)
- def test_quantile_multi(self):
- qs = [.1, .9]
- result = self.ts.quantile(qs)
- expected = pd.Series([np.percentile(self.ts.dropna(), 10),
- np.percentile(self.ts.dropna(), 90)],
- index=qs, name=self.ts.name)
- tm.assert_series_equal(result, expected)
- dts = self.ts.index.to_series()
- dts.name = 'xxx'
- result = dts.quantile((.2, .2))
- expected = Series([Timestamp('2000-01-10 19:12:00'),
- Timestamp('2000-01-10 19:12:00')],
- index=[.2, .2], name='xxx')
- tm.assert_series_equal(result, expected)
- result = self.ts.quantile([])
- expected = pd.Series([], name=self.ts.name, index=Index(
- [], dtype=float))
- tm.assert_series_equal(result, expected)
- def test_quantile_interpolation(self):
- # see gh-10174
- # interpolation = linear (default case)
- q = self.ts.quantile(0.1, interpolation='linear')
- assert q == np.percentile(self.ts.dropna(), 10)
- q1 = self.ts.quantile(0.1)
- assert q1 == np.percentile(self.ts.dropna(), 10)
- # test with and without interpolation keyword
- assert q == q1
- def test_quantile_interpolation_dtype(self):
- # GH #10174
- # interpolation = linear (default case)
- q = pd.Series([1, 3, 4]).quantile(0.5, interpolation='lower')
- assert q == np.percentile(np.array([1, 3, 4]), 50)
- assert is_integer(q)
- q = pd.Series([1, 3, 4]).quantile(0.5, interpolation='higher')
- assert q == np.percentile(np.array([1, 3, 4]), 50)
- assert is_integer(q)
- def test_quantile_nan(self):
- # GH 13098
- s = pd.Series([1, 2, 3, 4, np.nan])
- result = s.quantile(0.5)
- expected = 2.5
- assert result == expected
- # all nan/empty
- cases = [Series([]), Series([np.nan, np.nan])]
- for s in cases:
- res = s.quantile(0.5)
- assert np.isnan(res)
- res = s.quantile([0.5])
- tm.assert_series_equal(res, pd.Series([np.nan], index=[0.5]))
- res = s.quantile([0.2, 0.3])
- tm.assert_series_equal(res, pd.Series([np.nan, np.nan],
- index=[0.2, 0.3]))
- @pytest.mark.parametrize('case', [
- [pd.Timestamp('2011-01-01'), pd.Timestamp('2011-01-02'),
- pd.Timestamp('2011-01-03')],
- [pd.Timestamp('2011-01-01', tz='US/Eastern'),
- pd.Timestamp('2011-01-02', tz='US/Eastern'),
- pd.Timestamp('2011-01-03', tz='US/Eastern')],
- [pd.Timedelta('1 days'), pd.Timedelta('2 days'),
- pd.Timedelta('3 days')],
- # NaT
- [pd.Timestamp('2011-01-01'), pd.Timestamp('2011-01-02'),
- pd.Timestamp('2011-01-03'), pd.NaT],
- [pd.Timestamp('2011-01-01', tz='US/Eastern'),
- pd.Timestamp('2011-01-02', tz='US/Eastern'),
- pd.Timestamp('2011-01-03', tz='US/Eastern'), pd.NaT],
- [pd.Timedelta('1 days'), pd.Timedelta('2 days'),
- pd.Timedelta('3 days'), pd.NaT]])
- def test_quantile_box(self, case):
- s = pd.Series(case, name='XXX')
- res = s.quantile(0.5)
- assert res == case[1]
- res = s.quantile([0.5])
- exp = pd.Series([case[1]], index=[0.5], name='XXX')
- tm.assert_series_equal(res, exp)
- def test_datetime_timedelta_quantiles(self):
- # covers #9694
- assert pd.isna(Series([], dtype='M8[ns]').quantile(.5))
- assert pd.isna(Series([], dtype='m8[ns]').quantile(.5))
- def test_quantile_nat(self):
- res = Series([pd.NaT, pd.NaT]).quantile(0.5)
- assert res is pd.NaT
- res = Series([pd.NaT, pd.NaT]).quantile([0.5])
- tm.assert_series_equal(res, pd.Series([pd.NaT], index=[0.5]))
- @pytest.mark.parametrize('values, dtype', [
- ([0, 0, 0, 1, 2, 3], 'Sparse[int]'),
- ([0., None, 1., 2.], 'Sparse[float]'),
- ])
- def test_quantile_sparse(self, values, dtype):
- ser = pd.Series(values, dtype=dtype)
- result = ser.quantile([0.5])
- expected = pd.Series(np.asarray(ser)).quantile([0.5])
- tm.assert_series_equal(result, expected)
- def test_quantile_empty(self):
- # floats
- s = Series([], dtype='float64')
- res = s.quantile(0.5)
- assert np.isnan(res)
- res = s.quantile([0.5])
- exp = Series([np.nan], index=[0.5])
- tm.assert_series_equal(res, exp)
- # int
- s = Series([], dtype='int64')
- res = s.quantile(0.5)
- assert np.isnan(res)
- res = s.quantile([0.5])
- exp = Series([np.nan], index=[0.5])
- tm.assert_series_equal(res, exp)
- # datetime
- s = Series([], dtype='datetime64[ns]')
- res = s.quantile(0.5)
- assert res is pd.NaT
- res = s.quantile([0.5])
- exp = Series([pd.NaT], index=[0.5])
- tm.assert_series_equal(res, exp)
|