123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484 |
- # coding=utf-8
- # pylint: disable-msg=E1101,W0612
- from datetime import datetime, timedelta
- import numpy as np
- import pandas.compat as compat
- from pandas.compat import lrange, range, u
- import pandas as pd
- from pandas import (
- Categorical, DataFrame, Index, Series, date_range, option_context,
- period_range, timedelta_range)
- from pandas.core.base import StringMixin
- from pandas.core.index import MultiIndex
- import pandas.util.testing as tm
- from .common import TestData
- class TestSeriesRepr(TestData):
- def test_multilevel_name_print(self):
- index = MultiIndex(levels=[['foo', 'bar', 'baz', 'qux'], ['one', 'two',
- 'three']],
- codes=[[0, 0, 0, 1, 1, 2, 2, 3, 3, 3],
- [0, 1, 2, 0, 1, 1, 2, 0, 1, 2]],
- names=['first', 'second'])
- s = Series(lrange(0, len(index)), index=index, name='sth')
- expected = ["first second", "foo one 0",
- " two 1", " three 2",
- "bar one 3", " two 4",
- "baz two 5", " three 6",
- "qux one 7", " two 8",
- " three 9", "Name: sth, dtype: int64"]
- expected = "\n".join(expected)
- assert repr(s) == expected
- def test_name_printing(self):
- # Test small Series.
- s = Series([0, 1, 2])
- s.name = "test"
- assert "Name: test" in repr(s)
- s.name = None
- assert "Name:" not in repr(s)
- # Test big Series (diff code path).
- s = Series(lrange(0, 1000))
- s.name = "test"
- assert "Name: test" in repr(s)
- s.name = None
- assert "Name:" not in repr(s)
- s = Series(index=date_range('20010101', '20020101'), name='test')
- assert "Name: test" in repr(s)
- def test_repr(self):
- str(self.ts)
- str(self.series)
- str(self.series.astype(int))
- str(self.objSeries)
- str(Series(tm.randn(1000), index=np.arange(1000)))
- str(Series(tm.randn(1000), index=np.arange(1000, 0, step=-1)))
- # empty
- str(self.empty)
- # with NaNs
- self.series[5:7] = np.NaN
- str(self.series)
- # with Nones
- ots = self.ts.astype('O')
- ots[::2] = None
- repr(ots)
- # various names
- for name in ['', 1, 1.2, 'foo', u('\u03B1\u03B2\u03B3'),
- 'loooooooooooooooooooooooooooooooooooooooooooooooooooong',
- ('foo', 'bar', 'baz'), (1, 2), ('foo', 1, 2.3),
- (u('\u03B1'), u('\u03B2'), u('\u03B3')),
- (u('\u03B1'), 'bar')]:
- self.series.name = name
- repr(self.series)
- biggie = Series(tm.randn(1000), index=np.arange(1000),
- name=('foo', 'bar', 'baz'))
- repr(biggie)
- # 0 as name
- ser = Series(np.random.randn(100), name=0)
- rep_str = repr(ser)
- assert "Name: 0" in rep_str
- # tidy repr
- ser = Series(np.random.randn(1001), name=0)
- rep_str = repr(ser)
- assert "Name: 0" in rep_str
- ser = Series(["a\n\r\tb"], name="a\n\r\td", index=["a\n\r\tf"])
- assert "\t" not in repr(ser)
- assert "\r" not in repr(ser)
- assert "a\n" not in repr(ser)
- # with empty series (#4651)
- s = Series([], dtype=np.int64, name='foo')
- assert repr(s) == 'Series([], Name: foo, dtype: int64)'
- s = Series([], dtype=np.int64, name=None)
- assert repr(s) == 'Series([], dtype: int64)'
- def test_tidy_repr(self):
- a = Series([u("\u05d0")] * 1000)
- a.name = 'title1'
- repr(a) # should not raise exception
- def test_repr_bool_fails(self, capsys):
- s = Series([DataFrame(np.random.randn(2, 2)) for i in range(5)])
- # It works (with no Cython exception barf)!
- repr(s)
- captured = capsys.readouterr()
- assert captured.err == ''
- def test_repr_name_iterable_indexable(self):
- s = Series([1, 2, 3], name=np.int64(3))
- # it works!
- repr(s)
- s.name = (u("\u05d0"), ) * 2
- repr(s)
- def test_repr_should_return_str(self):
- # https://docs.python.org/3/reference/datamodel.html#object.__repr__
- # ...The return value must be a string object.
- # (str on py2.x, str (unicode) on py3)
- data = [8, 5, 3, 5]
- index1 = [u("\u03c3"), u("\u03c4"), u("\u03c5"), u("\u03c6")]
- df = Series(data, index=index1)
- assert type(df.__repr__() == str) # both py2 / 3
- def test_repr_max_rows(self):
- # GH 6863
- with pd.option_context('max_rows', None):
- str(Series(range(1001))) # should not raise exception
- def test_unicode_string_with_unicode(self):
- df = Series([u("\u05d0")], name=u("\u05d1"))
- if compat.PY3:
- str(df)
- else:
- compat.text_type(df)
- def test_bytestring_with_unicode(self):
- df = Series([u("\u05d0")], name=u("\u05d1"))
- if compat.PY3:
- bytes(df)
- else:
- str(df)
- def test_timeseries_repr_object_dtype(self):
- index = Index([datetime(2000, 1, 1) + timedelta(i)
- for i in range(1000)], dtype=object)
- ts = Series(np.random.randn(len(index)), index)
- repr(ts)
- ts = tm.makeTimeSeries(1000)
- assert repr(ts).splitlines()[-1].startswith('Freq:')
- ts2 = ts.iloc[np.random.randint(0, len(ts) - 1, 400)]
- repr(ts2).splitlines()[-1]
- def test_latex_repr(self):
- result = r"""\begin{tabular}{ll}
- \toprule
- {} & 0 \\
- \midrule
- 0 & $\alpha$ \\
- 1 & b \\
- 2 & c \\
- \bottomrule
- \end{tabular}
- """
- with option_context('display.latex.escape', False,
- 'display.latex.repr', True):
- s = Series([r'$\alpha$', 'b', 'c'])
- assert result == s._repr_latex_()
- assert s._repr_latex_() is None
- def test_index_repr_in_frame_with_nan(self):
- # see gh-25061
- i = Index([1, np.nan])
- s = Series([1, 2], index=i)
- exp = """1.0 1\nNaN 2\ndtype: int64"""
- assert repr(s) == exp
- class TestCategoricalRepr(object):
- def test_categorical_repr_unicode(self):
- # GH#21002 if len(index) > 60, sys.getdefaultencoding()=='ascii',
- # and we are working in PY2, then rendering a Categorical could raise
- # UnicodeDecodeError by trying to decode when it shouldn't
- class County(StringMixin):
- name = u'San Sebastián'
- state = u'PR'
- def __unicode__(self):
- return self.name + u', ' + self.state
- cat = pd.Categorical([County() for n in range(61)])
- idx = pd.Index(cat)
- ser = idx.to_series()
- if compat.PY3:
- # no reloading of sys, just check that the default (utf8) works
- # as expected
- repr(ser)
- str(ser)
- else:
- # set sys.defaultencoding to ascii, then change it back after
- # the test
- with tm.set_defaultencoding('ascii'):
- repr(ser)
- str(ser)
- def test_categorical_repr(self):
- a = Series(Categorical([1, 2, 3, 4]))
- exp = u("0 1\n1 2\n2 3\n3 4\n" +
- "dtype: category\nCategories (4, int64): [1, 2, 3, 4]")
- assert exp == a.__unicode__()
- a = Series(Categorical(["a", "b"] * 25))
- exp = u("0 a\n1 b\n" + " ..\n" + "48 a\n49 b\n" +
- "Length: 50, dtype: category\nCategories (2, object): [a, b]")
- with option_context("display.max_rows", 5):
- assert exp == repr(a)
- levs = list("abcdefghijklmnopqrstuvwxyz")
- a = Series(Categorical(["a", "b"], categories=levs, ordered=True))
- exp = u("0 a\n1 b\n" + "dtype: category\n"
- "Categories (26, object): [a < b < c < d ... w < x < y < z]")
- assert exp == a.__unicode__()
- def test_categorical_series_repr(self):
- s = Series(Categorical([1, 2, 3]))
- exp = """0 1
- 1 2
- 2 3
- dtype: category
- Categories (3, int64): [1, 2, 3]"""
- assert repr(s) == exp
- s = Series(Categorical(np.arange(10)))
- exp = """0 0
- 1 1
- 2 2
- 3 3
- 4 4
- 5 5
- 6 6
- 7 7
- 8 8
- 9 9
- dtype: category
- Categories (10, int64): [0, 1, 2, 3, ..., 6, 7, 8, 9]"""
- assert repr(s) == exp
- def test_categorical_series_repr_ordered(self):
- s = Series(Categorical([1, 2, 3], ordered=True))
- exp = """0 1
- 1 2
- 2 3
- dtype: category
- Categories (3, int64): [1 < 2 < 3]"""
- assert repr(s) == exp
- s = Series(Categorical(np.arange(10), ordered=True))
- exp = """0 0
- 1 1
- 2 2
- 3 3
- 4 4
- 5 5
- 6 6
- 7 7
- 8 8
- 9 9
- dtype: category
- Categories (10, int64): [0 < 1 < 2 < 3 ... 6 < 7 < 8 < 9]"""
- assert repr(s) == exp
- def test_categorical_series_repr_datetime(self):
- idx = date_range('2011-01-01 09:00', freq='H', periods=5)
- s = Series(Categorical(idx))
- exp = """0 2011-01-01 09:00:00
- 1 2011-01-01 10:00:00
- 2 2011-01-01 11:00:00
- 3 2011-01-01 12:00:00
- 4 2011-01-01 13:00:00
- dtype: category
- Categories (5, datetime64[ns]): [2011-01-01 09:00:00, 2011-01-01 10:00:00, 2011-01-01 11:00:00,
- 2011-01-01 12:00:00, 2011-01-01 13:00:00]""" # noqa
- assert repr(s) == exp
- idx = date_range('2011-01-01 09:00', freq='H', periods=5,
- tz='US/Eastern')
- s = Series(Categorical(idx))
- exp = """0 2011-01-01 09:00:00-05:00
- 1 2011-01-01 10:00:00-05:00
- 2 2011-01-01 11:00:00-05:00
- 3 2011-01-01 12:00:00-05:00
- 4 2011-01-01 13:00:00-05:00
- dtype: category
- Categories (5, datetime64[ns, US/Eastern]): [2011-01-01 09:00:00-05:00, 2011-01-01 10:00:00-05:00,
- 2011-01-01 11:00:00-05:00, 2011-01-01 12:00:00-05:00,
- 2011-01-01 13:00:00-05:00]""" # noqa
- assert repr(s) == exp
- def test_categorical_series_repr_datetime_ordered(self):
- idx = date_range('2011-01-01 09:00', freq='H', periods=5)
- s = Series(Categorical(idx, ordered=True))
- exp = """0 2011-01-01 09:00:00
- 1 2011-01-01 10:00:00
- 2 2011-01-01 11:00:00
- 3 2011-01-01 12:00:00
- 4 2011-01-01 13:00:00
- dtype: category
- Categories (5, datetime64[ns]): [2011-01-01 09:00:00 < 2011-01-01 10:00:00 < 2011-01-01 11:00:00 <
- 2011-01-01 12:00:00 < 2011-01-01 13:00:00]""" # noqa
- assert repr(s) == exp
- idx = date_range('2011-01-01 09:00', freq='H', periods=5,
- tz='US/Eastern')
- s = Series(Categorical(idx, ordered=True))
- exp = """0 2011-01-01 09:00:00-05:00
- 1 2011-01-01 10:00:00-05:00
- 2 2011-01-01 11:00:00-05:00
- 3 2011-01-01 12:00:00-05:00
- 4 2011-01-01 13:00:00-05:00
- dtype: category
- Categories (5, datetime64[ns, US/Eastern]): [2011-01-01 09:00:00-05:00 < 2011-01-01 10:00:00-05:00 <
- 2011-01-01 11:00:00-05:00 < 2011-01-01 12:00:00-05:00 <
- 2011-01-01 13:00:00-05:00]""" # noqa
- assert repr(s) == exp
- def test_categorical_series_repr_period(self):
- idx = period_range('2011-01-01 09:00', freq='H', periods=5)
- s = Series(Categorical(idx))
- exp = """0 2011-01-01 09:00
- 1 2011-01-01 10:00
- 2 2011-01-01 11:00
- 3 2011-01-01 12:00
- 4 2011-01-01 13:00
- dtype: category
- Categories (5, period[H]): [2011-01-01 09:00, 2011-01-01 10:00, 2011-01-01 11:00, 2011-01-01 12:00,
- 2011-01-01 13:00]""" # noqa
- assert repr(s) == exp
- idx = period_range('2011-01', freq='M', periods=5)
- s = Series(Categorical(idx))
- exp = """0 2011-01
- 1 2011-02
- 2 2011-03
- 3 2011-04
- 4 2011-05
- dtype: category
- Categories (5, period[M]): [2011-01, 2011-02, 2011-03, 2011-04, 2011-05]"""
- assert repr(s) == exp
- def test_categorical_series_repr_period_ordered(self):
- idx = period_range('2011-01-01 09:00', freq='H', periods=5)
- s = Series(Categorical(idx, ordered=True))
- exp = """0 2011-01-01 09:00
- 1 2011-01-01 10:00
- 2 2011-01-01 11:00
- 3 2011-01-01 12:00
- 4 2011-01-01 13:00
- dtype: category
- Categories (5, period[H]): [2011-01-01 09:00 < 2011-01-01 10:00 < 2011-01-01 11:00 < 2011-01-01 12:00 <
- 2011-01-01 13:00]""" # noqa
- assert repr(s) == exp
- idx = period_range('2011-01', freq='M', periods=5)
- s = Series(Categorical(idx, ordered=True))
- exp = """0 2011-01
- 1 2011-02
- 2 2011-03
- 3 2011-04
- 4 2011-05
- dtype: category
- Categories (5, period[M]): [2011-01 < 2011-02 < 2011-03 < 2011-04 < 2011-05]"""
- assert repr(s) == exp
- def test_categorical_series_repr_timedelta(self):
- idx = timedelta_range('1 days', periods=5)
- s = Series(Categorical(idx))
- exp = """0 1 days
- 1 2 days
- 2 3 days
- 3 4 days
- 4 5 days
- dtype: category
- Categories (5, timedelta64[ns]): [1 days, 2 days, 3 days, 4 days, 5 days]"""
- assert repr(s) == exp
- idx = timedelta_range('1 hours', periods=10)
- s = Series(Categorical(idx))
- exp = """0 0 days 01:00:00
- 1 1 days 01:00:00
- 2 2 days 01:00:00
- 3 3 days 01:00:00
- 4 4 days 01:00:00
- 5 5 days 01:00:00
- 6 6 days 01:00:00
- 7 7 days 01:00:00
- 8 8 days 01:00:00
- 9 9 days 01:00:00
- dtype: category
- Categories (10, timedelta64[ns]): [0 days 01:00:00, 1 days 01:00:00, 2 days 01:00:00,
- 3 days 01:00:00, ..., 6 days 01:00:00, 7 days 01:00:00,
- 8 days 01:00:00, 9 days 01:00:00]""" # noqa
- assert repr(s) == exp
- def test_categorical_series_repr_timedelta_ordered(self):
- idx = timedelta_range('1 days', periods=5)
- s = Series(Categorical(idx, ordered=True))
- exp = """0 1 days
- 1 2 days
- 2 3 days
- 3 4 days
- 4 5 days
- dtype: category
- Categories (5, timedelta64[ns]): [1 days < 2 days < 3 days < 4 days < 5 days]""" # noqa
- assert repr(s) == exp
- idx = timedelta_range('1 hours', periods=10)
- s = Series(Categorical(idx, ordered=True))
- exp = """0 0 days 01:00:00
- 1 1 days 01:00:00
- 2 2 days 01:00:00
- 3 3 days 01:00:00
- 4 4 days 01:00:00
- 5 5 days 01:00:00
- 6 6 days 01:00:00
- 7 7 days 01:00:00
- 8 8 days 01:00:00
- 9 9 days 01:00:00
- dtype: category
- Categories (10, timedelta64[ns]): [0 days 01:00:00 < 1 days 01:00:00 < 2 days 01:00:00 <
- 3 days 01:00:00 ... 6 days 01:00:00 < 7 days 01:00:00 <
- 8 days 01:00:00 < 9 days 01:00:00]""" # noqa
- assert repr(s) == exp
|