123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108 |
- # coding=utf-8
- # pylint: disable-msg=E1101,W0612
- import numpy as np
- import pandas as pd
- from pandas import SparseDtype
- import pandas.util.testing as tm
- class TestSeriesSubclassing(object):
- def test_indexing_sliced(self):
- s = tm.SubclassedSeries([1, 2, 3, 4], index=list('abcd'))
- res = s.loc[['a', 'b']]
- exp = tm.SubclassedSeries([1, 2], index=list('ab'))
- tm.assert_series_equal(res, exp)
- res = s.iloc[[2, 3]]
- exp = tm.SubclassedSeries([3, 4], index=list('cd'))
- tm.assert_series_equal(res, exp)
- res = s.loc[['a', 'b']]
- exp = tm.SubclassedSeries([1, 2], index=list('ab'))
- tm.assert_series_equal(res, exp)
- def test_to_frame(self):
- s = tm.SubclassedSeries([1, 2, 3, 4], index=list('abcd'), name='xxx')
- res = s.to_frame()
- exp = tm.SubclassedDataFrame({'xxx': [1, 2, 3, 4]}, index=list('abcd'))
- tm.assert_frame_equal(res, exp)
- def test_subclass_unstack(self):
- # GH 15564
- s = tm.SubclassedSeries(
- [1, 2, 3, 4], index=[list('aabb'), list('xyxy')])
- res = s.unstack()
- exp = tm.SubclassedDataFrame(
- {'x': [1, 3], 'y': [2, 4]}, index=['a', 'b'])
- tm.assert_frame_equal(res, exp)
- class TestSparseSeriesSubclassing(object):
- def test_subclass_sparse_slice(self):
- # int64
- s = tm.SubclassedSparseSeries([1, 2, 3, 4, 5])
- exp = tm.SubclassedSparseSeries([2, 3, 4], index=[1, 2, 3])
- tm.assert_sp_series_equal(s.loc[1:3], exp)
- assert s.loc[1:3].dtype == SparseDtype(np.int64)
- exp = tm.SubclassedSparseSeries([2, 3], index=[1, 2])
- tm.assert_sp_series_equal(s.iloc[1:3], exp)
- assert s.iloc[1:3].dtype == SparseDtype(np.int64)
- exp = tm.SubclassedSparseSeries([2, 3], index=[1, 2])
- tm.assert_sp_series_equal(s[1:3], exp)
- assert s[1:3].dtype == SparseDtype(np.int64)
- # float64
- s = tm.SubclassedSparseSeries([1., 2., 3., 4., 5.])
- exp = tm.SubclassedSparseSeries([2., 3., 4.], index=[1, 2, 3])
- tm.assert_sp_series_equal(s.loc[1:3], exp)
- assert s.loc[1:3].dtype == SparseDtype(np.float64)
- exp = tm.SubclassedSparseSeries([2., 3.], index=[1, 2])
- tm.assert_sp_series_equal(s.iloc[1:3], exp)
- assert s.iloc[1:3].dtype == SparseDtype(np.float64)
- exp = tm.SubclassedSparseSeries([2., 3.], index=[1, 2])
- tm.assert_sp_series_equal(s[1:3], exp)
- assert s[1:3].dtype == SparseDtype(np.float64)
- def test_subclass_sparse_addition(self):
- s1 = tm.SubclassedSparseSeries([1, 3, 5])
- s2 = tm.SubclassedSparseSeries([-2, 5, 12])
- exp = tm.SubclassedSparseSeries([-1, 8, 17])
- tm.assert_sp_series_equal(s1 + s2, exp)
- s1 = tm.SubclassedSparseSeries([4.0, 5.0, 6.0])
- s2 = tm.SubclassedSparseSeries([1.0, 2.0, 3.0])
- exp = tm.SubclassedSparseSeries([5., 7., 9.])
- tm.assert_sp_series_equal(s1 + s2, exp)
- def test_subclass_sparse_to_frame(self):
- s = tm.SubclassedSparseSeries([1, 2], index=list('ab'), name='xxx')
- res = s.to_frame()
- exp_arr = pd.SparseArray([1, 2], dtype=np.int64, kind='block',
- fill_value=0)
- exp = tm.SubclassedSparseDataFrame({'xxx': exp_arr},
- index=list('ab'),
- default_fill_value=0)
- tm.assert_sp_frame_equal(res, exp)
- # create from int dict
- res = tm.SubclassedSparseDataFrame({'xxx': [1, 2]},
- index=list('ab'),
- default_fill_value=0)
- tm.assert_sp_frame_equal(res, exp)
- s = tm.SubclassedSparseSeries([1.1, 2.1], index=list('ab'),
- name='xxx')
- res = s.to_frame()
- exp = tm.SubclassedSparseDataFrame({'xxx': [1.1, 2.1]},
- index=list('ab'))
- tm.assert_sp_frame_equal(res, exp)
|