123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135 |
- # -*- coding: utf-8 -*-
- from __future__ import print_function
- import numpy as np
- from pandas.compat import is_platform_32bit, is_platform_windows
- import pandas as pd
- from pandas.core.config import option_context
- import pandas.util.testing as tm
- use_32bit_repr = is_platform_windows() or is_platform_32bit()
- class TestSparseSeriesFormatting(object):
- @property
- def dtype_format_for_platform(self):
- return '' if use_32bit_repr else ', dtype=int32'
- def test_sparse_max_row(self):
- s = pd.Series([1, np.nan, np.nan, 3, np.nan]).to_sparse()
- result = repr(s)
- dfm = self.dtype_format_for_platform
- exp = ("0 1.0\n1 NaN\n2 NaN\n3 3.0\n"
- "4 NaN\ndtype: Sparse[float64, nan]\nBlockIndex\n"
- "Block locations: array([0, 3]{0})\n"
- "Block lengths: array([1, 1]{0})".format(dfm))
- assert result == exp
- def test_sparsea_max_row_truncated(self):
- s = pd.Series([1, np.nan, np.nan, 3, np.nan]).to_sparse()
- dfm = self.dtype_format_for_platform
- with option_context("display.max_rows", 3):
- # GH 10560
- result = repr(s)
- exp = ("0 1.0\n ... \n4 NaN\n"
- "Length: 5, dtype: Sparse[float64, nan]\nBlockIndex\n"
- "Block locations: array([0, 3]{0})\n"
- "Block lengths: array([1, 1]{0})".format(dfm))
- assert result == exp
- def test_sparse_mi_max_row(self):
- idx = pd.MultiIndex.from_tuples([('A', 0), ('A', 1), ('B', 0),
- ('C', 0), ('C', 1), ('C', 2)])
- s = pd.Series([1, np.nan, np.nan, 3, np.nan, np.nan],
- index=idx).to_sparse()
- result = repr(s)
- dfm = self.dtype_format_for_platform
- exp = ("A 0 1.0\n 1 NaN\nB 0 NaN\n"
- "C 0 3.0\n 1 NaN\n 2 NaN\n"
- "dtype: Sparse[float64, nan]\nBlockIndex\n"
- "Block locations: array([0, 3]{0})\n"
- "Block lengths: array([1, 1]{0})".format(dfm))
- assert result == exp
- with option_context("display.max_rows", 3,
- "display.show_dimensions", False):
- # GH 13144
- result = repr(s)
- exp = ("A 0 1.0\n ... \nC 2 NaN\n"
- "dtype: Sparse[float64, nan]\nBlockIndex\n"
- "Block locations: array([0, 3]{0})\n"
- "Block lengths: array([1, 1]{0})".format(dfm))
- assert result == exp
- def test_sparse_bool(self):
- # GH 13110
- s = pd.SparseSeries([True, False, False, True, False, False],
- fill_value=False)
- result = repr(s)
- dtype = '' if use_32bit_repr else ', dtype=int32'
- exp = ("0 True\n1 False\n2 False\n"
- "3 True\n4 False\n5 False\n"
- "dtype: Sparse[bool, False]\nBlockIndex\n"
- "Block locations: array([0, 3]{0})\n"
- "Block lengths: array([1, 1]{0})".format(dtype))
- assert result == exp
- with option_context("display.max_rows", 3):
- result = repr(s)
- exp = ("0 True\n ... \n5 False\n"
- "Length: 6, dtype: Sparse[bool, False]\nBlockIndex\n"
- "Block locations: array([0, 3]{0})\n"
- "Block lengths: array([1, 1]{0})".format(dtype))
- assert result == exp
- def test_sparse_int(self):
- # GH 13110
- s = pd.SparseSeries([0, 1, 0, 0, 1, 0], fill_value=False)
- result = repr(s)
- dtype = '' if use_32bit_repr else ', dtype=int32'
- exp = ("0 0\n1 1\n2 0\n3 0\n4 1\n"
- "5 0\ndtype: Sparse[int64, False]\nBlockIndex\n"
- "Block locations: array([1, 4]{0})\n"
- "Block lengths: array([1, 1]{0})".format(dtype))
- assert result == exp
- with option_context("display.max_rows", 3,
- "display.show_dimensions", False):
- result = repr(s)
- exp = ("0 0\n ..\n5 0\n"
- "dtype: Sparse[int64, False]\nBlockIndex\n"
- "Block locations: array([1, 4]{0})\n"
- "Block lengths: array([1, 1]{0})".format(dtype))
- assert result == exp
- class TestSparseDataFrameFormatting(object):
- def test_sparse_frame(self):
- # GH 13110
- df = pd.DataFrame({'A': [True, False, True, False, True],
- 'B': [True, False, True, False, True],
- 'C': [0, 0, 3, 0, 5],
- 'D': [np.nan, np.nan, np.nan, 1, 2]})
- sparse = df.to_sparse()
- assert repr(sparse) == repr(df)
- with option_context("display.max_rows", 3):
- assert repr(sparse) == repr(df)
- def test_sparse_repr_after_set(self):
- # GH 15488
- sdf = pd.SparseDataFrame([[np.nan, 1], [2, np.nan]])
- res = sdf.copy()
- # Ignore the warning
- with pd.option_context('mode.chained_assignment', None):
- sdf[0][1] = 2 # This line triggers the bug
- repr(sdf)
- tm.assert_sp_frame_equal(sdf, res)
|