12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073 |
- from collections import OrderedDict
- from datetime import datetime, timedelta
- from itertools import product
- import warnings
- from warnings import catch_warnings
- import numpy as np
- from numpy.random import randn
- import pytest
- from pandas.compat import range, zip
- from pandas.errors import UnsupportedFunctionCall
- import pandas.util._test_decorators as td
- import pandas as pd
- from pandas import (
- DataFrame, Index, Series, Timestamp, bdate_range, concat, isna, notna)
- from pandas.core.base import SpecificationError
- from pandas.core.sorting import safe_sort
- import pandas.core.window as rwindow
- import pandas.util.testing as tm
- import pandas.tseries.offsets as offsets
- N, K = 100, 10
- def assert_equal(left, right):
- if isinstance(left, Series):
- tm.assert_series_equal(left, right)
- else:
- tm.assert_frame_equal(left, right)
- @pytest.fixture(params=[True, False])
- def raw(request):
- return request.param
- @pytest.fixture(params=['triang', 'blackman', 'hamming', 'bartlett', 'bohman',
- 'blackmanharris', 'nuttall', 'barthann'])
- def win_types(request):
- return request.param
- @pytest.fixture(params=['kaiser', 'gaussian', 'general_gaussian'])
- def win_types_special(request):
- return request.param
- class Base(object):
- _nan_locs = np.arange(20, 40)
- _inf_locs = np.array([])
- def _create_data(self):
- arr = randn(N)
- arr[self._nan_locs] = np.NaN
- self.arr = arr
- self.rng = bdate_range(datetime(2009, 1, 1), periods=N)
- self.series = Series(arr.copy(), index=self.rng)
- self.frame = DataFrame(randn(N, K), index=self.rng,
- columns=np.arange(K))
- class TestApi(Base):
- def setup_method(self, method):
- self._create_data()
- def test_getitem(self):
- r = self.frame.rolling(window=5)
- tm.assert_index_equal(r._selected_obj.columns, self.frame.columns)
- r = self.frame.rolling(window=5)[1]
- assert r._selected_obj.name == self.frame.columns[1]
- # technically this is allowed
- r = self.frame.rolling(window=5)[1, 3]
- tm.assert_index_equal(r._selected_obj.columns,
- self.frame.columns[[1, 3]])
- r = self.frame.rolling(window=5)[[1, 3]]
- tm.assert_index_equal(r._selected_obj.columns,
- self.frame.columns[[1, 3]])
- def test_select_bad_cols(self):
- df = DataFrame([[1, 2]], columns=['A', 'B'])
- g = df.rolling(window=5)
- pytest.raises(KeyError, g.__getitem__, ['C']) # g[['C']]
- pytest.raises(KeyError, g.__getitem__, ['A', 'C']) # g[['A', 'C']]
- with pytest.raises(KeyError, match='^[^A]+$'):
- # A should not be referenced as a bad column...
- # will have to rethink regex if you change message!
- g[['A', 'C']]
- def test_attribute_access(self):
- df = DataFrame([[1, 2]], columns=['A', 'B'])
- r = df.rolling(window=5)
- tm.assert_series_equal(r.A.sum(), r['A'].sum())
- pytest.raises(AttributeError, lambda: r.F)
- def tests_skip_nuisance(self):
- df = DataFrame({'A': range(5), 'B': range(5, 10), 'C': 'foo'})
- r = df.rolling(window=3)
- result = r[['A', 'B']].sum()
- expected = DataFrame({'A': [np.nan, np.nan, 3, 6, 9],
- 'B': [np.nan, np.nan, 18, 21, 24]},
- columns=list('AB'))
- tm.assert_frame_equal(result, expected)
- def test_skip_sum_object_raises(self):
- df = DataFrame({'A': range(5), 'B': range(5, 10), 'C': 'foo'})
- r = df.rolling(window=3)
- with pytest.raises(TypeError, match='cannot handle this type'):
- r.sum()
- def test_agg(self):
- df = DataFrame({'A': range(5), 'B': range(0, 10, 2)})
- r = df.rolling(window=3)
- a_mean = r['A'].mean()
- a_std = r['A'].std()
- a_sum = r['A'].sum()
- b_mean = r['B'].mean()
- b_std = r['B'].std()
- b_sum = r['B'].sum()
- result = r.aggregate([np.mean, np.std])
- expected = concat([a_mean, a_std, b_mean, b_std], axis=1)
- expected.columns = pd.MultiIndex.from_product([['A', 'B'], ['mean',
- 'std']])
- tm.assert_frame_equal(result, expected)
- result = r.aggregate({'A': np.mean, 'B': np.std})
- expected = concat([a_mean, b_std], axis=1)
- tm.assert_frame_equal(result, expected, check_like=True)
- result = r.aggregate({'A': ['mean', 'std']})
- expected = concat([a_mean, a_std], axis=1)
- expected.columns = pd.MultiIndex.from_tuples([('A', 'mean'), ('A',
- 'std')])
- tm.assert_frame_equal(result, expected)
- result = r['A'].aggregate(['mean', 'sum'])
- expected = concat([a_mean, a_sum], axis=1)
- expected.columns = ['mean', 'sum']
- tm.assert_frame_equal(result, expected)
- with catch_warnings(record=True):
- # using a dict with renaming
- warnings.simplefilter("ignore", FutureWarning)
- result = r.aggregate({'A': {'mean': 'mean', 'sum': 'sum'}})
- expected = concat([a_mean, a_sum], axis=1)
- expected.columns = pd.MultiIndex.from_tuples([('A', 'mean'),
- ('A', 'sum')])
- tm.assert_frame_equal(result, expected, check_like=True)
- with catch_warnings(record=True):
- warnings.simplefilter("ignore", FutureWarning)
- result = r.aggregate({'A': {'mean': 'mean',
- 'sum': 'sum'},
- 'B': {'mean2': 'mean',
- 'sum2': 'sum'}})
- expected = concat([a_mean, a_sum, b_mean, b_sum], axis=1)
- exp_cols = [('A', 'mean'), ('A', 'sum'), ('B', 'mean2'), ('B', 'sum2')]
- expected.columns = pd.MultiIndex.from_tuples(exp_cols)
- tm.assert_frame_equal(result, expected, check_like=True)
- result = r.aggregate({'A': ['mean', 'std'], 'B': ['mean', 'std']})
- expected = concat([a_mean, a_std, b_mean, b_std], axis=1)
- exp_cols = [('A', 'mean'), ('A', 'std'), ('B', 'mean'), ('B', 'std')]
- expected.columns = pd.MultiIndex.from_tuples(exp_cols)
- tm.assert_frame_equal(result, expected, check_like=True)
- def test_agg_apply(self, raw):
- # passed lambda
- df = DataFrame({'A': range(5), 'B': range(0, 10, 2)})
- r = df.rolling(window=3)
- a_sum = r['A'].sum()
- result = r.agg({'A': np.sum, 'B': lambda x: np.std(x, ddof=1)})
- rcustom = r['B'].apply(lambda x: np.std(x, ddof=1), raw=raw)
- expected = concat([a_sum, rcustom], axis=1)
- tm.assert_frame_equal(result, expected, check_like=True)
- def test_agg_consistency(self):
- df = DataFrame({'A': range(5), 'B': range(0, 10, 2)})
- r = df.rolling(window=3)
- result = r.agg([np.sum, np.mean]).columns
- expected = pd.MultiIndex.from_product([list('AB'), ['sum', 'mean']])
- tm.assert_index_equal(result, expected)
- result = r['A'].agg([np.sum, np.mean]).columns
- expected = Index(['sum', 'mean'])
- tm.assert_index_equal(result, expected)
- result = r.agg({'A': [np.sum, np.mean]}).columns
- expected = pd.MultiIndex.from_tuples([('A', 'sum'), ('A', 'mean')])
- tm.assert_index_equal(result, expected)
- def test_agg_nested_dicts(self):
- # API change for disallowing these types of nested dicts
- df = DataFrame({'A': range(5), 'B': range(0, 10, 2)})
- r = df.rolling(window=3)
- def f():
- r.aggregate({'r1': {'A': ['mean', 'sum']},
- 'r2': {'B': ['mean', 'sum']}})
- pytest.raises(SpecificationError, f)
- expected = concat([r['A'].mean(), r['A'].std(),
- r['B'].mean(), r['B'].std()], axis=1)
- expected.columns = pd.MultiIndex.from_tuples([('ra', 'mean'), (
- 'ra', 'std'), ('rb', 'mean'), ('rb', 'std')])
- with catch_warnings(record=True):
- warnings.simplefilter("ignore", FutureWarning)
- result = r[['A', 'B']].agg({'A': {'ra': ['mean', 'std']},
- 'B': {'rb': ['mean', 'std']}})
- tm.assert_frame_equal(result, expected, check_like=True)
- with catch_warnings(record=True):
- warnings.simplefilter("ignore", FutureWarning)
- result = r.agg({'A': {'ra': ['mean', 'std']},
- 'B': {'rb': ['mean', 'std']}})
- expected.columns = pd.MultiIndex.from_tuples([('A', 'ra', 'mean'), (
- 'A', 'ra', 'std'), ('B', 'rb', 'mean'), ('B', 'rb', 'std')])
- tm.assert_frame_equal(result, expected, check_like=True)
- def test_count_nonnumeric_types(self):
- # GH12541
- cols = ['int', 'float', 'string', 'datetime', 'timedelta', 'periods',
- 'fl_inf', 'fl_nan', 'str_nan', 'dt_nat', 'periods_nat']
- df = DataFrame(
- {'int': [1, 2, 3],
- 'float': [4., 5., 6.],
- 'string': list('abc'),
- 'datetime': pd.date_range('20170101', periods=3),
- 'timedelta': pd.timedelta_range('1 s', periods=3, freq='s'),
- 'periods': [pd.Period('2012-01'), pd.Period('2012-02'),
- pd.Period('2012-03')],
- 'fl_inf': [1., 2., np.Inf],
- 'fl_nan': [1., 2., np.NaN],
- 'str_nan': ['aa', 'bb', np.NaN],
- 'dt_nat': [Timestamp('20170101'), Timestamp('20170203'),
- Timestamp(None)],
- 'periods_nat': [pd.Period('2012-01'), pd.Period('2012-02'),
- pd.Period(None)]},
- columns=cols)
- expected = DataFrame(
- {'int': [1., 2., 2.],
- 'float': [1., 2., 2.],
- 'string': [1., 2., 2.],
- 'datetime': [1., 2., 2.],
- 'timedelta': [1., 2., 2.],
- 'periods': [1., 2., 2.],
- 'fl_inf': [1., 2., 2.],
- 'fl_nan': [1., 2., 1.],
- 'str_nan': [1., 2., 1.],
- 'dt_nat': [1., 2., 1.],
- 'periods_nat': [1., 2., 1.]},
- columns=cols)
- result = df.rolling(window=2).count()
- tm.assert_frame_equal(result, expected)
- result = df.rolling(1).count()
- expected = df.notna().astype(float)
- tm.assert_frame_equal(result, expected)
- @td.skip_if_no_scipy
- @pytest.mark.filterwarnings("ignore:can't resolve:ImportWarning")
- def test_window_with_args(self):
- # make sure that we are aggregating window functions correctly with arg
- r = Series(np.random.randn(100)).rolling(window=10, min_periods=1,
- win_type='gaussian')
- expected = concat([r.mean(std=10), r.mean(std=.01)], axis=1)
- expected.columns = ['<lambda>', '<lambda>']
- result = r.aggregate([lambda x: x.mean(std=10),
- lambda x: x.mean(std=.01)])
- tm.assert_frame_equal(result, expected)
- def a(x):
- return x.mean(std=10)
- def b(x):
- return x.mean(std=0.01)
- expected = concat([r.mean(std=10), r.mean(std=.01)], axis=1)
- expected.columns = ['a', 'b']
- result = r.aggregate([a, b])
- tm.assert_frame_equal(result, expected)
- def test_preserve_metadata(self):
- # GH 10565
- s = Series(np.arange(100), name='foo')
- s2 = s.rolling(30).sum()
- s3 = s.rolling(20).sum()
- assert s2.name == 'foo'
- assert s3.name == 'foo'
- @pytest.mark.parametrize("func,window_size,expected_vals", [
- ('rolling', 2, [[np.nan, np.nan, np.nan, np.nan],
- [15., 20., 25., 20.],
- [25., 30., 35., 30.],
- [np.nan, np.nan, np.nan, np.nan],
- [20., 30., 35., 30.],
- [35., 40., 60., 40.],
- [60., 80., 85., 80]]),
- ('expanding', None, [[10., 10., 20., 20.],
- [15., 20., 25., 20.],
- [20., 30., 30., 20.],
- [10., 10., 30., 30.],
- [20., 30., 35., 30.],
- [26.666667, 40., 50., 30.],
- [40., 80., 60., 30.]])])
- def test_multiple_agg_funcs(self, func, window_size, expected_vals):
- # GH 15072
- df = pd.DataFrame([
- ['A', 10, 20],
- ['A', 20, 30],
- ['A', 30, 40],
- ['B', 10, 30],
- ['B', 30, 40],
- ['B', 40, 80],
- ['B', 80, 90]], columns=['stock', 'low', 'high'])
- f = getattr(df.groupby('stock'), func)
- if window_size:
- window = f(window_size)
- else:
- window = f()
- index = pd.MultiIndex.from_tuples([
- ('A', 0), ('A', 1), ('A', 2),
- ('B', 3), ('B', 4), ('B', 5), ('B', 6)], names=['stock', None])
- columns = pd.MultiIndex.from_tuples([
- ('low', 'mean'), ('low', 'max'), ('high', 'mean'),
- ('high', 'min')])
- expected = pd.DataFrame(expected_vals, index=index, columns=columns)
- result = window.agg(OrderedDict((
- ('low', ['mean', 'max']),
- ('high', ['mean', 'min']),
- )))
- tm.assert_frame_equal(result, expected)
- @pytest.mark.filterwarnings("ignore:can't resolve package:ImportWarning")
- class TestWindow(Base):
- def setup_method(self, method):
- self._create_data()
- @td.skip_if_no_scipy
- @pytest.mark.parametrize(
- 'which', ['series', 'frame'])
- def test_constructor(self, which):
- # GH 12669
- o = getattr(self, which)
- c = o.rolling
- # valid
- c(win_type='boxcar', window=2, min_periods=1)
- c(win_type='boxcar', window=2, min_periods=1, center=True)
- c(win_type='boxcar', window=2, min_periods=1, center=False)
- # not valid
- for w in [2., 'foo', np.array([2])]:
- with pytest.raises(ValueError):
- c(win_type='boxcar', window=2, min_periods=w)
- with pytest.raises(ValueError):
- c(win_type='boxcar', window=2, min_periods=1, center=w)
- for wt in ['foobar', 1]:
- with pytest.raises(ValueError):
- c(win_type=wt, window=2)
- @td.skip_if_no_scipy
- @pytest.mark.parametrize(
- 'which', ['series', 'frame'])
- def test_constructor_with_win_type(self, which, win_types):
- # GH 12669
- o = getattr(self, which)
- c = o.rolling
- c(win_type=win_types, window=2)
- @pytest.mark.parametrize(
- 'method', ['sum', 'mean'])
- def test_numpy_compat(self, method):
- # see gh-12811
- w = rwindow.Window(Series([2, 4, 6]), window=[0, 2])
- msg = "numpy operations are not valid with window objects"
- with pytest.raises(UnsupportedFunctionCall, match=msg):
- getattr(w, method)(1, 2, 3)
- with pytest.raises(UnsupportedFunctionCall, match=msg):
- getattr(w, method)(dtype=np.float64)
- class TestRolling(Base):
- def setup_method(self, method):
- self._create_data()
- def test_doc_string(self):
- df = DataFrame({'B': [0, 1, 2, np.nan, 4]})
- df
- df.rolling(2).sum()
- df.rolling(2, min_periods=1).sum()
- @pytest.mark.parametrize(
- 'which', ['series', 'frame'])
- def test_constructor(self, which):
- # GH 12669
- o = getattr(self, which)
- c = o.rolling
- # valid
- c(window=2)
- c(window=2, min_periods=1)
- c(window=2, min_periods=1, center=True)
- c(window=2, min_periods=1, center=False)
- # GH 13383
- with pytest.raises(ValueError):
- c(0)
- c(-1)
- # not valid
- for w in [2., 'foo', np.array([2])]:
- with pytest.raises(ValueError):
- c(window=w)
- with pytest.raises(ValueError):
- c(window=2, min_periods=w)
- with pytest.raises(ValueError):
- c(window=2, min_periods=1, center=w)
- @td.skip_if_no_scipy
- @pytest.mark.parametrize(
- 'which', ['series', 'frame'])
- def test_constructor_with_win_type(self, which):
- # GH 13383
- o = getattr(self, which)
- c = o.rolling
- with pytest.raises(ValueError):
- c(-1, win_type='boxcar')
- @pytest.mark.parametrize(
- 'window', [timedelta(days=3), pd.Timedelta(days=3)])
- def test_constructor_with_timedelta_window(self, window):
- # GH 15440
- n = 10
- df = DataFrame({'value': np.arange(n)},
- index=pd.date_range('2015-12-24', periods=n, freq="D"))
- expected_data = np.append([0., 1.], np.arange(3., 27., 3))
- result = df.rolling(window=window).sum()
- expected = DataFrame({'value': expected_data},
- index=pd.date_range('2015-12-24', periods=n,
- freq="D"))
- tm.assert_frame_equal(result, expected)
- expected = df.rolling('3D').sum()
- tm.assert_frame_equal(result, expected)
- @pytest.mark.parametrize(
- 'window', [timedelta(days=3), pd.Timedelta(days=3), '3D'])
- def test_constructor_timedelta_window_and_minperiods(self, window, raw):
- # GH 15305
- n = 10
- df = DataFrame({'value': np.arange(n)},
- index=pd.date_range('2017-08-08', periods=n, freq="D"))
- expected = DataFrame(
- {'value': np.append([np.NaN, 1.], np.arange(3., 27., 3))},
- index=pd.date_range('2017-08-08', periods=n, freq="D"))
- result_roll_sum = df.rolling(window=window, min_periods=2).sum()
- result_roll_generic = df.rolling(window=window,
- min_periods=2).apply(sum, raw=raw)
- tm.assert_frame_equal(result_roll_sum, expected)
- tm.assert_frame_equal(result_roll_generic, expected)
- @pytest.mark.parametrize(
- 'method', ['std', 'mean', 'sum', 'max', 'min', 'var'])
- def test_numpy_compat(self, method):
- # see gh-12811
- r = rwindow.Rolling(Series([2, 4, 6]), window=2)
- msg = "numpy operations are not valid with window objects"
- with pytest.raises(UnsupportedFunctionCall, match=msg):
- getattr(r, method)(1, 2, 3)
- with pytest.raises(UnsupportedFunctionCall, match=msg):
- getattr(r, method)(dtype=np.float64)
- def test_closed(self):
- df = DataFrame({'A': [0, 1, 2, 3, 4]})
- # closed only allowed for datetimelike
- with pytest.raises(ValueError):
- df.rolling(window=3, closed='neither')
- @pytest.mark.parametrize("func", ['min', 'max'])
- def test_closed_one_entry(self, func):
- # GH24718
- ser = pd.Series(data=[2], index=pd.date_range('2000', periods=1))
- result = getattr(ser.rolling('10D', closed='left'), func)()
- tm.assert_series_equal(result, pd.Series([np.nan], index=ser.index))
- @pytest.mark.parametrize("func", ['min', 'max'])
- def test_closed_one_entry_groupby(self, func):
- # GH24718
- ser = pd.DataFrame(data={'A': [1, 1, 2], 'B': [3, 2, 1]},
- index=pd.date_range('2000', periods=3))
- result = getattr(
- ser.groupby('A', sort=False)['B'].rolling('10D', closed='left'),
- func)()
- exp_idx = pd.MultiIndex.from_arrays(arrays=[[1, 1, 2], ser.index],
- names=('A', None))
- expected = pd.Series(data=[np.nan, 3, np.nan], index=exp_idx, name='B')
- tm.assert_series_equal(result, expected)
- @pytest.mark.parametrize("input_dtype", ['int', 'float'])
- @pytest.mark.parametrize("func,closed,expected", [
- ('min', 'right', [0.0, 0, 0, 1, 2, 3, 4, 5, 6, 7]),
- ('min', 'both', [0.0, 0, 0, 0, 1, 2, 3, 4, 5, 6]),
- ('min', 'neither', [np.nan, 0, 0, 1, 2, 3, 4, 5, 6, 7]),
- ('min', 'left', [np.nan, 0, 0, 0, 1, 2, 3, 4, 5, 6]),
- ('max', 'right', [0.0, 1, 2, 3, 4, 5, 6, 7, 8, 9]),
- ('max', 'both', [0.0, 1, 2, 3, 4, 5, 6, 7, 8, 9]),
- ('max', 'neither', [np.nan, 0, 1, 2, 3, 4, 5, 6, 7, 8]),
- ('max', 'left', [np.nan, 0, 1, 2, 3, 4, 5, 6, 7, 8])
- ])
- def test_closed_min_max_datetime(self, input_dtype,
- func, closed,
- expected):
- # see gh-21704
- ser = pd.Series(data=np.arange(10).astype(input_dtype),
- index=pd.date_range('2000', periods=10))
- result = getattr(ser.rolling('3D', closed=closed), func)()
- expected = pd.Series(expected, index=ser.index)
- tm.assert_series_equal(result, expected)
- def test_closed_uneven(self):
- # see gh-21704
- ser = pd.Series(data=np.arange(10),
- index=pd.date_range('2000', periods=10))
- # uneven
- ser = ser.drop(index=ser.index[[1, 5]])
- result = ser.rolling('3D', closed='left').min()
- expected = pd.Series([np.nan, 0, 0, 2, 3, 4, 6, 6],
- index=ser.index)
- tm.assert_series_equal(result, expected)
- @pytest.mark.parametrize("func,closed,expected", [
- ('min', 'right', [np.nan, 0, 0, 1, 2, 3, 4, 5, np.nan, np.nan]),
- ('min', 'both', [np.nan, 0, 0, 0, 1, 2, 3, 4, 5, np.nan]),
- ('min', 'neither', [np.nan, np.nan, 0, 1, 2, 3, 4, 5, np.nan, np.nan]),
- ('min', 'left', [np.nan, np.nan, 0, 0, 1, 2, 3, 4, 5, np.nan]),
- ('max', 'right', [np.nan, 1, 2, 3, 4, 5, 6, 6, np.nan, np.nan]),
- ('max', 'both', [np.nan, 1, 2, 3, 4, 5, 6, 6, 6, np.nan]),
- ('max', 'neither', [np.nan, np.nan, 1, 2, 3, 4, 5, 6, np.nan, np.nan]),
- ('max', 'left', [np.nan, np.nan, 1, 2, 3, 4, 5, 6, 6, np.nan])
- ])
- def test_closed_min_max_minp(self, func, closed, expected):
- # see gh-21704
- ser = pd.Series(data=np.arange(10),
- index=pd.date_range('2000', periods=10))
- ser[ser.index[-3:]] = np.nan
- result = getattr(ser.rolling('3D', min_periods=2, closed=closed),
- func)()
- expected = pd.Series(expected, index=ser.index)
- tm.assert_series_equal(result, expected)
- @pytest.mark.parametrize('roller', ['1s', 1])
- def tests_empty_df_rolling(self, roller):
- # GH 15819 Verifies that datetime and integer rolling windows can be
- # applied to empty DataFrames
- expected = DataFrame()
- result = DataFrame().rolling(roller).sum()
- tm.assert_frame_equal(result, expected)
- # Verifies that datetime and integer rolling windows can be applied to
- # empty DataFrames with datetime index
- expected = DataFrame(index=pd.DatetimeIndex([]))
- result = DataFrame(index=pd.DatetimeIndex([])).rolling(roller).sum()
- tm.assert_frame_equal(result, expected)
- def test_missing_minp_zero(self):
- # https://github.com/pandas-dev/pandas/pull/18921
- # minp=0
- x = pd.Series([np.nan])
- result = x.rolling(1, min_periods=0).sum()
- expected = pd.Series([0.0])
- tm.assert_series_equal(result, expected)
- # minp=1
- result = x.rolling(1, min_periods=1).sum()
- expected = pd.Series([np.nan])
- tm.assert_series_equal(result, expected)
- def test_missing_minp_zero_variable(self):
- # https://github.com/pandas-dev/pandas/pull/18921
- x = pd.Series([np.nan] * 4,
- index=pd.DatetimeIndex(['2017-01-01', '2017-01-04',
- '2017-01-06', '2017-01-07']))
- result = x.rolling(pd.Timedelta("2d"), min_periods=0).sum()
- expected = pd.Series(0.0, index=x.index)
- tm.assert_series_equal(result, expected)
- def test_multi_index_names(self):
- # GH 16789, 16825
- cols = pd.MultiIndex.from_product([['A', 'B'], ['C', 'D', 'E']],
- names=['1', '2'])
- df = DataFrame(np.ones((10, 6)), columns=cols)
- result = df.rolling(3).cov()
- tm.assert_index_equal(result.columns, df.columns)
- assert result.index.names == [None, '1', '2']
- @pytest.mark.parametrize('klass', [pd.Series, pd.DataFrame])
- def test_iter_raises(self, klass):
- # https://github.com/pandas-dev/pandas/issues/11704
- # Iteration over a Window
- obj = klass([1, 2, 3, 4])
- with pytest.raises(NotImplementedError):
- iter(obj.rolling(2))
- def test_rolling_axis(self, axis_frame):
- # see gh-23372.
- df = DataFrame(np.ones((10, 20)))
- axis = df._get_axis_number(axis_frame)
- if axis == 0:
- expected = DataFrame({
- i: [np.nan] * 2 + [3.0] * 8
- for i in range(20)
- })
- else:
- # axis == 1
- expected = DataFrame([
- [np.nan] * 2 + [3.0] * 18
- ] * 10)
- result = df.rolling(3, axis=axis_frame).sum()
- tm.assert_frame_equal(result, expected)
- class TestExpanding(Base):
- def setup_method(self, method):
- self._create_data()
- def test_doc_string(self):
- df = DataFrame({'B': [0, 1, 2, np.nan, 4]})
- df
- df.expanding(2).sum()
- @pytest.mark.parametrize(
- 'which', ['series', 'frame'])
- def test_constructor(self, which):
- # GH 12669
- o = getattr(self, which)
- c = o.expanding
- # valid
- c(min_periods=1)
- c(min_periods=1, center=True)
- c(min_periods=1, center=False)
- # not valid
- for w in [2., 'foo', np.array([2])]:
- with pytest.raises(ValueError):
- c(min_periods=w)
- with pytest.raises(ValueError):
- c(min_periods=1, center=w)
- @pytest.mark.parametrize(
- 'method', ['std', 'mean', 'sum', 'max', 'min', 'var'])
- def test_numpy_compat(self, method):
- # see gh-12811
- e = rwindow.Expanding(Series([2, 4, 6]), window=2)
- msg = "numpy operations are not valid with window objects"
- with pytest.raises(UnsupportedFunctionCall, match=msg):
- getattr(e, method)(1, 2, 3)
- with pytest.raises(UnsupportedFunctionCall, match=msg):
- getattr(e, method)(dtype=np.float64)
- @pytest.mark.parametrize(
- 'expander',
- [1, pytest.param('ls', marks=pytest.mark.xfail(
- reason='GH#16425 expanding with '
- 'offset not supported'))])
- def test_empty_df_expanding(self, expander):
- # GH 15819 Verifies that datetime and integer expanding windows can be
- # applied to empty DataFrames
- expected = DataFrame()
- result = DataFrame().expanding(expander).sum()
- tm.assert_frame_equal(result, expected)
- # Verifies that datetime and integer expanding windows can be applied
- # to empty DataFrames with datetime index
- expected = DataFrame(index=pd.DatetimeIndex([]))
- result = DataFrame(
- index=pd.DatetimeIndex([])).expanding(expander).sum()
- tm.assert_frame_equal(result, expected)
- def test_missing_minp_zero(self):
- # https://github.com/pandas-dev/pandas/pull/18921
- # minp=0
- x = pd.Series([np.nan])
- result = x.expanding(min_periods=0).sum()
- expected = pd.Series([0.0])
- tm.assert_series_equal(result, expected)
- # minp=1
- result = x.expanding(min_periods=1).sum()
- expected = pd.Series([np.nan])
- tm.assert_series_equal(result, expected)
- @pytest.mark.parametrize('klass', [pd.Series, pd.DataFrame])
- def test_iter_raises(self, klass):
- # https://github.com/pandas-dev/pandas/issues/11704
- # Iteration over a Window
- obj = klass([1, 2, 3, 4])
- with pytest.raises(NotImplementedError):
- iter(obj.expanding(2))
- def test_expanding_axis(self, axis_frame):
- # see gh-23372.
- df = DataFrame(np.ones((10, 20)))
- axis = df._get_axis_number(axis_frame)
- if axis == 0:
- expected = DataFrame({
- i: [np.nan] * 2 + [float(j) for j in range(3, 11)]
- for i in range(20)
- })
- else:
- # axis == 1
- expected = DataFrame([
- [np.nan] * 2 + [float(i) for i in range(3, 21)]
- ] * 10)
- result = df.expanding(3, axis=axis_frame).sum()
- tm.assert_frame_equal(result, expected)
- class TestEWM(Base):
- def setup_method(self, method):
- self._create_data()
- def test_doc_string(self):
- df = DataFrame({'B': [0, 1, 2, np.nan, 4]})
- df
- df.ewm(com=0.5).mean()
- @pytest.mark.parametrize(
- 'which', ['series', 'frame'])
- def test_constructor(self, which):
- o = getattr(self, which)
- c = o.ewm
- # valid
- c(com=0.5)
- c(span=1.5)
- c(alpha=0.5)
- c(halflife=0.75)
- c(com=0.5, span=None)
- c(alpha=0.5, com=None)
- c(halflife=0.75, alpha=None)
- # not valid: mutually exclusive
- with pytest.raises(ValueError):
- c(com=0.5, alpha=0.5)
- with pytest.raises(ValueError):
- c(span=1.5, halflife=0.75)
- with pytest.raises(ValueError):
- c(alpha=0.5, span=1.5)
- # not valid: com < 0
- with pytest.raises(ValueError):
- c(com=-0.5)
- # not valid: span < 1
- with pytest.raises(ValueError):
- c(span=0.5)
- # not valid: halflife <= 0
- with pytest.raises(ValueError):
- c(halflife=0)
- # not valid: alpha <= 0 or alpha > 1
- for alpha in (-0.5, 1.5):
- with pytest.raises(ValueError):
- c(alpha=alpha)
- @pytest.mark.parametrize(
- 'method', ['std', 'mean', 'var'])
- def test_numpy_compat(self, method):
- # see gh-12811
- e = rwindow.EWM(Series([2, 4, 6]), alpha=0.5)
- msg = "numpy operations are not valid with window objects"
- with pytest.raises(UnsupportedFunctionCall, match=msg):
- getattr(e, method)(1, 2, 3)
- with pytest.raises(UnsupportedFunctionCall, match=msg):
- getattr(e, method)(dtype=np.float64)
- # gh-12373 : rolling functions error on float32 data
- # make sure rolling functions works for different dtypes
- #
- # NOTE that these are yielded tests and so _create_data
- # is explicitly called.
- #
- # further note that we are only checking rolling for fully dtype
- # compliance (though both expanding and ewm inherit)
- class Dtype(object):
- window = 2
- funcs = {
- 'count': lambda v: v.count(),
- 'max': lambda v: v.max(),
- 'min': lambda v: v.min(),
- 'sum': lambda v: v.sum(),
- 'mean': lambda v: v.mean(),
- 'std': lambda v: v.std(),
- 'var': lambda v: v.var(),
- 'median': lambda v: v.median()
- }
- def get_expects(self):
- expects = {
- 'sr1': {
- 'count': Series([1, 2, 2, 2, 2], dtype='float64'),
- 'max': Series([np.nan, 1, 2, 3, 4], dtype='float64'),
- 'min': Series([np.nan, 0, 1, 2, 3], dtype='float64'),
- 'sum': Series([np.nan, 1, 3, 5, 7], dtype='float64'),
- 'mean': Series([np.nan, .5, 1.5, 2.5, 3.5], dtype='float64'),
- 'std': Series([np.nan] + [np.sqrt(.5)] * 4, dtype='float64'),
- 'var': Series([np.nan, .5, .5, .5, .5], dtype='float64'),
- 'median': Series([np.nan, .5, 1.5, 2.5, 3.5], dtype='float64')
- },
- 'sr2': {
- 'count': Series([1, 2, 2, 2, 2], dtype='float64'),
- 'max': Series([np.nan, 10, 8, 6, 4], dtype='float64'),
- 'min': Series([np.nan, 8, 6, 4, 2], dtype='float64'),
- 'sum': Series([np.nan, 18, 14, 10, 6], dtype='float64'),
- 'mean': Series([np.nan, 9, 7, 5, 3], dtype='float64'),
- 'std': Series([np.nan] + [np.sqrt(2)] * 4, dtype='float64'),
- 'var': Series([np.nan, 2, 2, 2, 2], dtype='float64'),
- 'median': Series([np.nan, 9, 7, 5, 3], dtype='float64')
- },
- 'df': {
- 'count': DataFrame({0: Series([1, 2, 2, 2, 2]),
- 1: Series([1, 2, 2, 2, 2])},
- dtype='float64'),
- 'max': DataFrame({0: Series([np.nan, 2, 4, 6, 8]),
- 1: Series([np.nan, 3, 5, 7, 9])},
- dtype='float64'),
- 'min': DataFrame({0: Series([np.nan, 0, 2, 4, 6]),
- 1: Series([np.nan, 1, 3, 5, 7])},
- dtype='float64'),
- 'sum': DataFrame({0: Series([np.nan, 2, 6, 10, 14]),
- 1: Series([np.nan, 4, 8, 12, 16])},
- dtype='float64'),
- 'mean': DataFrame({0: Series([np.nan, 1, 3, 5, 7]),
- 1: Series([np.nan, 2, 4, 6, 8])},
- dtype='float64'),
- 'std': DataFrame({0: Series([np.nan] + [np.sqrt(2)] * 4),
- 1: Series([np.nan] + [np.sqrt(2)] * 4)},
- dtype='float64'),
- 'var': DataFrame({0: Series([np.nan, 2, 2, 2, 2]),
- 1: Series([np.nan, 2, 2, 2, 2])},
- dtype='float64'),
- 'median': DataFrame({0: Series([np.nan, 1, 3, 5, 7]),
- 1: Series([np.nan, 2, 4, 6, 8])},
- dtype='float64'),
- }
- }
- return expects
- def _create_dtype_data(self, dtype):
- sr1 = Series(np.arange(5), dtype=dtype)
- sr2 = Series(np.arange(10, 0, -2), dtype=dtype)
- df = DataFrame(np.arange(10).reshape((5, 2)), dtype=dtype)
- data = {
- 'sr1': sr1,
- 'sr2': sr2,
- 'df': df
- }
- return data
- def _create_data(self):
- self.data = self._create_dtype_data(self.dtype)
- self.expects = self.get_expects()
- def test_dtypes(self):
- self._create_data()
- for f_name, d_name in product(self.funcs.keys(), self.data.keys()):
- f = self.funcs[f_name]
- d = self.data[d_name]
- exp = self.expects[d_name][f_name]
- self.check_dtypes(f, f_name, d, d_name, exp)
- def check_dtypes(self, f, f_name, d, d_name, exp):
- roll = d.rolling(window=self.window)
- result = f(roll)
- tm.assert_almost_equal(result, exp)
- class TestDtype_object(Dtype):
- dtype = object
- class Dtype_integer(Dtype):
- pass
- class TestDtype_int8(Dtype_integer):
- dtype = np.int8
- class TestDtype_int16(Dtype_integer):
- dtype = np.int16
- class TestDtype_int32(Dtype_integer):
- dtype = np.int32
- class TestDtype_int64(Dtype_integer):
- dtype = np.int64
- class Dtype_uinteger(Dtype):
- pass
- class TestDtype_uint8(Dtype_uinteger):
- dtype = np.uint8
- class TestDtype_uint16(Dtype_uinteger):
- dtype = np.uint16
- class TestDtype_uint32(Dtype_uinteger):
- dtype = np.uint32
- class TestDtype_uint64(Dtype_uinteger):
- dtype = np.uint64
- class Dtype_float(Dtype):
- pass
- class TestDtype_float16(Dtype_float):
- dtype = np.float16
- class TestDtype_float32(Dtype_float):
- dtype = np.float32
- class TestDtype_float64(Dtype_float):
- dtype = np.float64
- class TestDtype_category(Dtype):
- dtype = 'category'
- include_df = False
- def _create_dtype_data(self, dtype):
- sr1 = Series(range(5), dtype=dtype)
- sr2 = Series(range(10, 0, -2), dtype=dtype)
- data = {
- 'sr1': sr1,
- 'sr2': sr2
- }
- return data
- class DatetimeLike(Dtype):
- def check_dtypes(self, f, f_name, d, d_name, exp):
- roll = d.rolling(window=self.window)
- if f_name == 'count':
- result = f(roll)
- tm.assert_almost_equal(result, exp)
- else:
- # other methods not Implemented ATM
- with pytest.raises(NotImplementedError):
- f(roll)
- class TestDtype_timedelta(DatetimeLike):
- dtype = np.dtype('m8[ns]')
- class TestDtype_datetime(DatetimeLike):
- dtype = np.dtype('M8[ns]')
- class TestDtype_datetime64UTC(DatetimeLike):
- dtype = 'datetime64[ns, UTC]'
- def _create_data(self):
- pytest.skip("direct creation of extension dtype "
- "datetime64[ns, UTC] is not supported ATM")
- @pytest.mark.filterwarnings("ignore:can't resolve package:ImportWarning")
- class TestMoments(Base):
- def setup_method(self, method):
- self._create_data()
- def test_centered_axis_validation(self):
- # ok
- Series(np.ones(10)).rolling(window=3, center=True, axis=0).mean()
- # bad axis
- with pytest.raises(ValueError):
- Series(np.ones(10)).rolling(window=3, center=True, axis=1).mean()
- # ok ok
- DataFrame(np.ones((10, 10))).rolling(window=3, center=True,
- axis=0).mean()
- DataFrame(np.ones((10, 10))).rolling(window=3, center=True,
- axis=1).mean()
- # bad axis
- with pytest.raises(ValueError):
- (DataFrame(np.ones((10, 10)))
- .rolling(window=3, center=True, axis=2).mean())
- def test_rolling_sum(self):
- self._check_moment_func(np.nansum, name='sum',
- zero_min_periods_equal=False)
- def test_rolling_count(self):
- counter = lambda x: np.isfinite(x).astype(float).sum()
- self._check_moment_func(counter, name='count', has_min_periods=False,
- fill_value=0)
- def test_rolling_mean(self):
- self._check_moment_func(np.mean, name='mean')
- @td.skip_if_no_scipy
- def test_cmov_mean(self):
- # GH 8238
- vals = np.array([6.95, 15.21, 4.72, 9.12, 13.81, 13.49, 16.68, 9.48,
- 10.63, 14.48])
- result = Series(vals).rolling(5, center=True).mean()
- expected = Series([np.nan, np.nan, 9.962, 11.27, 11.564, 12.516,
- 12.818, 12.952, np.nan, np.nan])
- tm.assert_series_equal(expected, result)
- @td.skip_if_no_scipy
- def test_cmov_window(self):
- # GH 8238
- vals = np.array([6.95, 15.21, 4.72, 9.12, 13.81, 13.49, 16.68, 9.48,
- 10.63, 14.48])
- result = Series(vals).rolling(5, win_type='boxcar', center=True).mean()
- expected = Series([np.nan, np.nan, 9.962, 11.27, 11.564, 12.516,
- 12.818, 12.952, np.nan, np.nan])
- tm.assert_series_equal(expected, result)
- @td.skip_if_no_scipy
- def test_cmov_window_corner(self):
- # GH 8238
- # all nan
- vals = pd.Series([np.nan] * 10)
- result = vals.rolling(5, center=True, win_type='boxcar').mean()
- assert np.isnan(result).all()
- # empty
- vals = pd.Series([])
- result = vals.rolling(5, center=True, win_type='boxcar').mean()
- assert len(result) == 0
- # shorter than window
- vals = pd.Series(np.random.randn(5))
- result = vals.rolling(10, win_type='boxcar').mean()
- assert np.isnan(result).all()
- assert len(result) == 5
- @td.skip_if_no_scipy
- def test_cmov_window_frame(self):
- # Gh 8238
- vals = np.array([[12.18, 3.64], [10.18, 9.16], [13.24, 14.61],
- [4.51, 8.11], [6.15, 11.44], [9.14, 6.21],
- [11.31, 10.67], [2.94, 6.51], [9.42, 8.39], [12.44,
- 7.34]])
- xp = np.array([[np.nan, np.nan], [np.nan, np.nan], [9.252, 9.392],
- [8.644, 9.906], [8.87, 10.208], [6.81, 8.588],
- [7.792, 8.644], [9.05, 7.824], [np.nan, np.nan
- ], [np.nan, np.nan]])
- # DataFrame
- rs = DataFrame(vals).rolling(5, win_type='boxcar', center=True).mean()
- tm.assert_frame_equal(DataFrame(xp), rs)
- # invalid method
- with pytest.raises(AttributeError):
- (DataFrame(vals).rolling(5, win_type='boxcar', center=True)
- .std())
- # sum
- xp = np.array([[np.nan, np.nan], [np.nan, np.nan], [46.26, 46.96],
- [43.22, 49.53], [44.35, 51.04], [34.05, 42.94],
- [38.96, 43.22], [45.25, 39.12], [np.nan, np.nan
- ], [np.nan, np.nan]])
- rs = DataFrame(vals).rolling(5, win_type='boxcar', center=True).sum()
- tm.assert_frame_equal(DataFrame(xp), rs)
- @td.skip_if_no_scipy
- def test_cmov_window_na_min_periods(self):
- # min_periods
- vals = Series(np.random.randn(10))
- vals[4] = np.nan
- vals[8] = np.nan
- xp = vals.rolling(5, min_periods=4, center=True).mean()
- rs = vals.rolling(5, win_type='boxcar', min_periods=4,
- center=True).mean()
- tm.assert_series_equal(xp, rs)
- @td.skip_if_no_scipy
- def test_cmov_window_regular(self, win_types):
- # GH 8238
- vals = np.array([6.95, 15.21, 4.72, 9.12, 13.81, 13.49, 16.68, 9.48,
- 10.63, 14.48])
- xps = {
- 'hamming': [np.nan, np.nan, 8.71384, 9.56348, 12.38009, 14.03687,
- 13.8567, 11.81473, np.nan, np.nan],
- 'triang': [np.nan, np.nan, 9.28667, 10.34667, 12.00556, 13.33889,
- 13.38, 12.33667, np.nan, np.nan],
- 'barthann': [np.nan, np.nan, 8.4425, 9.1925, 12.5575, 14.3675,
- 14.0825, 11.5675, np.nan, np.nan],
- 'bohman': [np.nan, np.nan, 7.61599, 9.1764, 12.83559, 14.17267,
- 14.65923, 11.10401, np.nan, np.nan],
- 'blackmanharris': [np.nan, np.nan, 6.97691, 9.16438, 13.05052,
- 14.02156, 15.10512, 10.74574, np.nan, np.nan],
- 'nuttall': [np.nan, np.nan, 7.04618, 9.16786, 13.02671, 14.03559,
- 15.05657, 10.78514, np.nan, np.nan],
- 'blackman': [np.nan, np.nan, 7.73345, 9.17869, 12.79607, 14.20036,
- 14.57726, 11.16988, np.nan, np.nan],
- 'bartlett': [np.nan, np.nan, 8.4425, 9.1925, 12.5575, 14.3675,
- 14.0825, 11.5675, np.nan, np.nan]
- }
- xp = Series(xps[win_types])
- rs = Series(vals).rolling(5, win_type=win_types, center=True).mean()
- tm.assert_series_equal(xp, rs)
- @td.skip_if_no_scipy
- def test_cmov_window_regular_linear_range(self, win_types):
- # GH 8238
- vals = np.array(range(10), dtype=np.float)
- xp = vals.copy()
- xp[:2] = np.nan
- xp[-2:] = np.nan
- xp = Series(xp)
- rs = Series(vals).rolling(5, win_type=win_types, center=True).mean()
- tm.assert_series_equal(xp, rs)
- @td.skip_if_no_scipy
- def test_cmov_window_regular_missing_data(self, win_types):
- # GH 8238
- vals = np.array([6.95, 15.21, 4.72, 9.12, 13.81, 13.49, 16.68, np.nan,
- 10.63, 14.48])
- xps = {
- 'bartlett': [np.nan, np.nan, 9.70333, 10.5225, 8.4425, 9.1925,
- 12.5575, 14.3675, 15.61667, 13.655],
- 'blackman': [np.nan, np.nan, 9.04582, 11.41536, 7.73345, 9.17869,
- 12.79607, 14.20036, 15.8706, 13.655],
- 'barthann': [np.nan, np.nan, 9.70333, 10.5225, 8.4425, 9.1925,
- 12.5575, 14.3675, 15.61667, 13.655],
- 'bohman': [np.nan, np.nan, 8.9444, 11.56327, 7.61599, 9.1764,
- 12.83559, 14.17267, 15.90976, 13.655],
- 'hamming': [np.nan, np.nan, 9.59321, 10.29694, 8.71384, 9.56348,
- 12.38009, 14.20565, 15.24694, 13.69758],
- 'nuttall': [np.nan, np.nan, 8.47693, 12.2821, 7.04618, 9.16786,
- 13.02671, 14.03673, 16.08759, 13.65553],
- 'triang': [np.nan, np.nan, 9.33167, 9.76125, 9.28667, 10.34667,
- 12.00556, 13.82125, 14.49429, 13.765],
- 'blackmanharris': [np.nan, np.nan, 8.42526, 12.36824, 6.97691,
- 9.16438, 13.05052, 14.02175, 16.1098, 13.65509]
- }
- xp = Series(xps[win_types])
- rs = Series(vals).rolling(5, win_type=win_types, min_periods=3).mean()
- tm.assert_series_equal(xp, rs)
- @td.skip_if_no_scipy
- def test_cmov_window_special(self, win_types_special):
- # GH 8238
- kwds = {
- 'kaiser': {'beta': 1.},
- 'gaussian': {'std': 1.},
- 'general_gaussian': {'power': 2., 'width': 2.}}
- vals = np.array([6.95, 15.21, 4.72, 9.12, 13.81, 13.49, 16.68, 9.48,
- 10.63, 14.48])
- xps = {
- 'gaussian': [np.nan, np.nan, 8.97297, 9.76077, 12.24763, 13.89053,
- 13.65671, 12.01002, np.nan, np.nan],
- 'general_gaussian': [np.nan, np.nan, 9.85011, 10.71589, 11.73161,
- 13.08516, 12.95111, 12.74577, np.nan, np.nan],
- 'kaiser': [np.nan, np.nan, 9.86851, 11.02969, 11.65161, 12.75129,
- 12.90702, 12.83757, np.nan, np.nan]
- }
- xp = Series(xps[win_types_special])
- rs = Series(vals).rolling(
- 5, win_type=win_types_special, center=True).mean(
- **kwds[win_types_special])
- tm.assert_series_equal(xp, rs)
- @td.skip_if_no_scipy
- def test_cmov_window_special_linear_range(self, win_types_special):
- # GH 8238
- kwds = {
- 'kaiser': {'beta': 1.},
- 'gaussian': {'std': 1.},
- 'general_gaussian': {'power': 2., 'width': 2.},
- 'slepian': {'width': 0.5}}
- vals = np.array(range(10), dtype=np.float)
- xp = vals.copy()
- xp[:2] = np.nan
- xp[-2:] = np.nan
- xp = Series(xp)
- rs = Series(vals).rolling(
- 5, win_type=win_types_special, center=True).mean(
- **kwds[win_types_special])
- tm.assert_series_equal(xp, rs)
- def test_rolling_median(self):
- self._check_moment_func(np.median, name='median')
- def test_rolling_min(self):
- self._check_moment_func(np.min, name='min')
- a = pd.Series([1, 2, 3, 4, 5])
- result = a.rolling(window=100, min_periods=1).min()
- expected = pd.Series(np.ones(len(a)))
- tm.assert_series_equal(result, expected)
- with pytest.raises(ValueError):
- pd.Series([1, 2, 3]).rolling(window=3, min_periods=5).min()
- def test_rolling_max(self):
- self._check_moment_func(np.max, name='max')
- a = pd.Series([1, 2, 3, 4, 5], dtype=np.float64)
- b = a.rolling(window=100, min_periods=1).max()
- tm.assert_almost_equal(a, b)
- with pytest.raises(ValueError):
- pd.Series([1, 2, 3]).rolling(window=3, min_periods=5).max()
- @pytest.mark.parametrize('q', [0.0, .1, .5, .9, 1.0])
- def test_rolling_quantile(self, q):
- def scoreatpercentile(a, per):
- values = np.sort(a, axis=0)
- idx = int(per / 1. * (values.shape[0] - 1))
- if idx == values.shape[0] - 1:
- retval = values[-1]
- else:
- qlow = float(idx) / float(values.shape[0] - 1)
- qhig = float(idx + 1) / float(values.shape[0] - 1)
- vlow = values[idx]
- vhig = values[idx + 1]
- retval = vlow + (vhig - vlow) * (per - qlow) / (qhig - qlow)
- return retval
- def quantile_func(x):
- return scoreatpercentile(x, q)
- self._check_moment_func(quantile_func, name='quantile',
- quantile=q)
- def test_rolling_quantile_np_percentile(self):
- # #9413: Tests that rolling window's quantile default behavior
- # is analogus to Numpy's percentile
- row = 10
- col = 5
- idx = pd.date_range('20100101', periods=row, freq='B')
- df = DataFrame(np.random.rand(row * col).reshape((row, -1)), index=idx)
- df_quantile = df.quantile([0.25, 0.5, 0.75], axis=0)
- np_percentile = np.percentile(df, [25, 50, 75], axis=0)
- tm.assert_almost_equal(df_quantile.values, np.array(np_percentile))
- @pytest.mark.parametrize('quantile', [0.0, 0.1, 0.45, 0.5, 1])
- @pytest.mark.parametrize('interpolation', ['linear', 'lower', 'higher',
- 'nearest', 'midpoint'])
- @pytest.mark.parametrize('data', [[1., 2., 3., 4., 5., 6., 7.],
- [8., 1., 3., 4., 5., 2., 6., 7.],
- [0., np.nan, 0.2, np.nan, 0.4],
- [np.nan, np.nan, np.nan, np.nan],
- [np.nan, 0.1, np.nan, 0.3, 0.4, 0.5],
- [0.5], [np.nan, 0.7, 0.6]])
- def test_rolling_quantile_interpolation_options(self, quantile,
- interpolation, data):
- # Tests that rolling window's quantile behavior is analogous to
- # Series' quantile for each interpolation option
- s = Series(data)
- q1 = s.quantile(quantile, interpolation)
- q2 = s.expanding(min_periods=1).quantile(
- quantile, interpolation).iloc[-1]
- if np.isnan(q1):
- assert np.isnan(q2)
- else:
- assert q1 == q2
- def test_invalid_quantile_value(self):
- data = np.arange(5)
- s = Series(data)
- with pytest.raises(ValueError, match="Interpolation 'invalid'"
- " is not supported"):
- s.rolling(len(data), min_periods=1).quantile(
- 0.5, interpolation='invalid')
- def test_rolling_quantile_param(self):
- ser = Series([0.0, .1, .5, .9, 1.0])
- with pytest.raises(ValueError):
- ser.rolling(3).quantile(-0.1)
- with pytest.raises(ValueError):
- ser.rolling(3).quantile(10.0)
- with pytest.raises(TypeError):
- ser.rolling(3).quantile('foo')
- def test_rolling_apply(self, raw):
- # suppress warnings about empty slices, as we are deliberately testing
- # with a 0-length Series
- with warnings.catch_warnings():
- warnings.filterwarnings("ignore",
- message=".*(empty slice|0 for slice).*",
- category=RuntimeWarning)
- def f(x):
- return x[np.isfinite(x)].mean()
- self._check_moment_func(np.mean, name='apply', func=f, raw=raw)
- expected = Series([])
- result = expected.rolling(10).apply(lambda x: x.mean(), raw=raw)
- tm.assert_series_equal(result, expected)
- # gh-8080
- s = Series([None, None, None])
- result = s.rolling(2, min_periods=0).apply(lambda x: len(x), raw=raw)
- expected = Series([1., 2., 2.])
- tm.assert_series_equal(result, expected)
- result = s.rolling(2, min_periods=0).apply(len, raw=raw)
- tm.assert_series_equal(result, expected)
- @pytest.mark.parametrize('klass', [Series, DataFrame])
- @pytest.mark.parametrize(
- 'method', [lambda x: x.rolling(window=2), lambda x: x.expanding()])
- def test_apply_future_warning(self, klass, method):
- # gh-5071
- s = klass(np.arange(3))
- with tm.assert_produces_warning(FutureWarning):
- method(s).apply(lambda x: len(x))
- def test_rolling_apply_out_of_bounds(self, raw):
- # gh-1850
- vals = pd.Series([1, 2, 3, 4])
- result = vals.rolling(10).apply(np.sum, raw=raw)
- assert result.isna().all()
- result = vals.rolling(10, min_periods=1).apply(np.sum, raw=raw)
- expected = pd.Series([1, 3, 6, 10], dtype=float)
- tm.assert_almost_equal(result, expected)
- @pytest.mark.parametrize('window', [2, '2s'])
- def test_rolling_apply_with_pandas_objects(self, window):
- # 5071
- df = pd.DataFrame({'A': np.random.randn(5),
- 'B': np.random.randint(0, 10, size=5)},
- index=pd.date_range('20130101', periods=5, freq='s'))
- # we have an equal spaced timeseries index
- # so simulate removing the first period
- def f(x):
- if x.index[0] == df.index[0]:
- return np.nan
- return x.iloc[-1]
- result = df.rolling(window).apply(f, raw=False)
- expected = df.iloc[2:].reindex_like(df)
- tm.assert_frame_equal(result, expected)
- with pytest.raises(AttributeError):
- df.rolling(window).apply(f, raw=True)
- def test_rolling_std(self):
- self._check_moment_func(lambda x: np.std(x, ddof=1),
- name='std')
- self._check_moment_func(lambda x: np.std(x, ddof=0),
- name='std', ddof=0)
- def test_rolling_std_1obs(self):
- vals = pd.Series([1., 2., 3., 4., 5.])
- result = vals.rolling(1, min_periods=1).std()
- expected = pd.Series([np.nan] * 5)
- tm.assert_series_equal(result, expected)
- result = vals.rolling(1, min_periods=1).std(ddof=0)
- expected = pd.Series([0.] * 5)
- tm.assert_series_equal(result, expected)
- result = (pd.Series([np.nan, np.nan, 3, 4, 5])
- .rolling(3, min_periods=2).std())
- assert np.isnan(result[2])
- def test_rolling_std_neg_sqrt(self):
- # unit test from Bottleneck
- # Test move_nanstd for neg sqrt.
- a = pd.Series([0.0011448196318903589, 0.00028718669878572767,
- 0.00028718669878572767, 0.00028718669878572767,
- 0.00028718669878572767])
- b = a.rolling(window=3).std()
- assert np.isfinite(b[2:]).all()
- b = a.ewm(span=3).std()
- assert np.isfinite(b[2:]).all()
- def test_rolling_var(self):
- self._check_moment_func(lambda x: np.var(x, ddof=1),
- name='var')
- self._check_moment_func(lambda x: np.var(x, ddof=0),
- name='var', ddof=0)
- @td.skip_if_no_scipy
- def test_rolling_skew(self):
- from scipy.stats import skew
- self._check_moment_func(lambda x: skew(x, bias=False), name='skew')
- @td.skip_if_no_scipy
- def test_rolling_kurt(self):
- from scipy.stats import kurtosis
- self._check_moment_func(lambda x: kurtosis(x, bias=False),
- name='kurt')
- def _check_moment_func(self, static_comp, name, has_min_periods=True,
- has_center=True, has_time_rule=True,
- fill_value=None, zero_min_periods_equal=True,
- **kwargs):
- def get_result(obj, window, min_periods=None, center=False):
- r = obj.rolling(window=window, min_periods=min_periods,
- center=center)
- return getattr(r, name)(**kwargs)
- series_result = get_result(self.series, window=50)
- assert isinstance(series_result, Series)
- tm.assert_almost_equal(series_result.iloc[-1],
- static_comp(self.series[-50:]))
- frame_result = get_result(self.frame, window=50)
- assert isinstance(frame_result, DataFrame)
- tm.assert_series_equal(
- frame_result.iloc[-1, :],
- self.frame.iloc[-50:, :].apply(static_comp, axis=0, raw=raw),
- check_names=False)
- # check time_rule works
- if has_time_rule:
- win = 25
- minp = 10
- series = self.series[::2].resample('B').mean()
- frame = self.frame[::2].resample('B').mean()
- if has_min_periods:
- series_result = get_result(series, window=win,
- min_periods=minp)
- frame_result = get_result(frame, window=win,
- min_periods=minp)
- else:
- series_result = get_result(series, window=win)
- frame_result = get_result(frame, window=win)
- last_date = series_result.index[-1]
- prev_date = last_date - 24 * offsets.BDay()
- trunc_series = self.series[::2].truncate(prev_date, last_date)
- trunc_frame = self.frame[::2].truncate(prev_date, last_date)
- tm.assert_almost_equal(series_result[-1],
- static_comp(trunc_series))
- tm.assert_series_equal(frame_result.xs(last_date),
- trunc_frame.apply(static_comp, raw=raw),
- check_names=False)
- # excluding NaNs correctly
- obj = Series(randn(50))
- obj[:10] = np.NaN
- obj[-10:] = np.NaN
- if has_min_periods:
- result = get_result(obj, 50, min_periods=30)
- tm.assert_almost_equal(result.iloc[-1], static_comp(obj[10:-10]))
- # min_periods is working correctly
- result = get_result(obj, 20, min_periods=15)
- assert isna(result.iloc[23])
- assert not isna(result.iloc[24])
- assert not isna(result.iloc[-6])
- assert isna(result.iloc[-5])
- obj2 = Series(randn(20))
- result = get_result(obj2, 10, min_periods=5)
- assert isna(result.iloc[3])
- assert notna(result.iloc[4])
- if zero_min_periods_equal:
- # min_periods=0 may be equivalent to min_periods=1
- result0 = get_result(obj, 20, min_periods=0)
- result1 = get_result(obj, 20, min_periods=1)
- tm.assert_almost_equal(result0, result1)
- else:
- result = get_result(obj, 50)
- tm.assert_almost_equal(result.iloc[-1], static_comp(obj[10:-10]))
- # window larger than series length (#7297)
- if has_min_periods:
- for minp in (0, len(self.series) - 1, len(self.series)):
- result = get_result(self.series, len(self.series) + 1,
- min_periods=minp)
- expected = get_result(self.series, len(self.series),
- min_periods=minp)
- nan_mask = isna(result)
- tm.assert_series_equal(nan_mask, isna(expected))
- nan_mask = ~nan_mask
- tm.assert_almost_equal(result[nan_mask],
- expected[nan_mask])
- else:
- result = get_result(self.series, len(self.series) + 1)
- expected = get_result(self.series, len(self.series))
- nan_mask = isna(result)
- tm.assert_series_equal(nan_mask, isna(expected))
- nan_mask = ~nan_mask
- tm.assert_almost_equal(result[nan_mask], expected[nan_mask])
- # check center=True
- if has_center:
- if has_min_periods:
- result = get_result(obj, 20, min_periods=15, center=True)
- expected = get_result(
- pd.concat([obj, Series([np.NaN] * 9)]), 20,
- min_periods=15)[9:].reset_index(drop=True)
- else:
- result = get_result(obj, 20, center=True)
- expected = get_result(
- pd.concat([obj, Series([np.NaN] * 9)]),
- 20)[9:].reset_index(drop=True)
- tm.assert_series_equal(result, expected)
- # shifter index
- s = ['x%d' % x for x in range(12)]
- if has_min_periods:
- minp = 10
- series_xp = get_result(
- self.series.reindex(list(self.series.index) + s),
- window=25,
- min_periods=minp).shift(-12).reindex(self.series.index)
- frame_xp = get_result(
- self.frame.reindex(list(self.frame.index) + s),
- window=25,
- min_periods=minp).shift(-12).reindex(self.frame.index)
- series_rs = get_result(self.series, window=25,
- min_periods=minp, center=True)
- frame_rs = get_result(self.frame, window=25, min_periods=minp,
- center=True)
- else:
- series_xp = get_result(
- self.series.reindex(list(self.series.index) + s),
- window=25).shift(-12).reindex(self.series.index)
- frame_xp = get_result(
- self.frame.reindex(list(self.frame.index) + s),
- window=25).shift(-12).reindex(self.frame.index)
- series_rs = get_result(self.series, window=25, center=True)
- frame_rs = get_result(self.frame, window=25, center=True)
- if fill_value is not None:
- series_xp = series_xp.fillna(fill_value)
- frame_xp = frame_xp.fillna(fill_value)
- tm.assert_series_equal(series_xp, series_rs)
- tm.assert_frame_equal(frame_xp, frame_rs)
- def test_ewma(self):
- self._check_ew(name='mean')
- vals = pd.Series(np.zeros(1000))
- vals[5] = 1
- result = vals.ewm(span=100, adjust=False).mean().sum()
- assert np.abs(result - 1) < 1e-2
- @pytest.mark.parametrize('adjust', [True, False])
- @pytest.mark.parametrize('ignore_na', [True, False])
- def test_ewma_cases(self, adjust, ignore_na):
- # try adjust/ignore_na args matrix
- s = Series([1.0, 2.0, 4.0, 8.0])
- if adjust:
- expected = Series([1.0, 1.6, 2.736842, 4.923077])
- else:
- expected = Series([1.0, 1.333333, 2.222222, 4.148148])
- result = s.ewm(com=2.0, adjust=adjust, ignore_na=ignore_na).mean()
- tm.assert_series_equal(result, expected)
- def test_ewma_nan_handling(self):
- s = Series([1.] + [np.nan] * 5 + [1.])
- result = s.ewm(com=5).mean()
- tm.assert_series_equal(result, Series([1.] * len(s)))
- s = Series([np.nan] * 2 + [1.] + [np.nan] * 2 + [1.])
- result = s.ewm(com=5).mean()
- tm.assert_series_equal(result, Series([np.nan] * 2 + [1.] * 4))
- # GH 7603
- s0 = Series([np.nan, 1., 101.])
- s1 = Series([1., np.nan, 101.])
- s2 = Series([np.nan, 1., np.nan, np.nan, 101., np.nan])
- s3 = Series([1., np.nan, 101., 50.])
- com = 2.
- alpha = 1. / (1. + com)
- def simple_wma(s, w):
- return (s.multiply(w).cumsum() / w.cumsum()).fillna(method='ffill')
- for (s, adjust, ignore_na, w) in [
- (s0, True, False, [np.nan, (1. - alpha), 1.]),
- (s0, True, True, [np.nan, (1. - alpha), 1.]),
- (s0, False, False, [np.nan, (1. - alpha), alpha]),
- (s0, False, True, [np.nan, (1. - alpha), alpha]),
- (s1, True, False, [(1. - alpha) ** 2, np.nan, 1.]),
- (s1, True, True, [(1. - alpha), np.nan, 1.]),
- (s1, False, False, [(1. - alpha) ** 2, np.nan, alpha]),
- (s1, False, True, [(1. - alpha), np.nan, alpha]),
- (s2, True, False, [np.nan, (1. - alpha) **
- 3, np.nan, np.nan, 1., np.nan]),
- (s2, True, True, [np.nan, (1. - alpha),
- np.nan, np.nan, 1., np.nan]),
- (s2, False, False, [np.nan, (1. - alpha) **
- 3, np.nan, np.nan, alpha, np.nan]),
- (s2, False, True, [np.nan, (1. - alpha),
- np.nan, np.nan, alpha, np.nan]),
- (s3, True, False, [(1. - alpha) **
- 3, np.nan, (1. - alpha), 1.]),
- (s3, True, True, [(1. - alpha) **
- 2, np.nan, (1. - alpha), 1.]),
- (s3, False, False, [(1. - alpha) ** 3, np.nan,
- (1. - alpha) * alpha,
- alpha * ((1. - alpha) ** 2 + alpha)]),
- (s3, False, True, [(1. - alpha) ** 2,
- np.nan, (1. - alpha) * alpha, alpha])]:
- expected = simple_wma(s, Series(w))
- result = s.ewm(com=com, adjust=adjust, ignore_na=ignore_na).mean()
- tm.assert_series_equal(result, expected)
- if ignore_na is False:
- # check that ignore_na defaults to False
- result = s.ewm(com=com, adjust=adjust).mean()
- tm.assert_series_equal(result, expected)
- def test_ewmvar(self):
- self._check_ew(name='var')
- def test_ewmvol(self):
- self._check_ew(name='vol')
- def test_ewma_span_com_args(self):
- A = self.series.ewm(com=9.5).mean()
- B = self.series.ewm(span=20).mean()
- tm.assert_almost_equal(A, B)
- with pytest.raises(ValueError):
- self.series.ewm(com=9.5, span=20)
- with pytest.raises(ValueError):
- self.series.ewm().mean()
- def test_ewma_halflife_arg(self):
- A = self.series.ewm(com=13.932726172912965).mean()
- B = self.series.ewm(halflife=10.0).mean()
- tm.assert_almost_equal(A, B)
- with pytest.raises(ValueError):
- self.series.ewm(span=20, halflife=50)
- with pytest.raises(ValueError):
- self.series.ewm(com=9.5, halflife=50)
- with pytest.raises(ValueError):
- self.series.ewm(com=9.5, span=20, halflife=50)
- with pytest.raises(ValueError):
- self.series.ewm()
- def test_ewm_alpha(self):
- # GH 10789
- s = Series(self.arr)
- a = s.ewm(alpha=0.61722699889169674).mean()
- b = s.ewm(com=0.62014947789973052).mean()
- c = s.ewm(span=2.240298955799461).mean()
- d = s.ewm(halflife=0.721792864318).mean()
- tm.assert_series_equal(a, b)
- tm.assert_series_equal(a, c)
- tm.assert_series_equal(a, d)
- def test_ewm_alpha_arg(self):
- # GH 10789
- s = self.series
- with pytest.raises(ValueError):
- s.ewm()
- with pytest.raises(ValueError):
- s.ewm(com=10.0, alpha=0.5)
- with pytest.raises(ValueError):
- s.ewm(span=10.0, alpha=0.5)
- with pytest.raises(ValueError):
- s.ewm(halflife=10.0, alpha=0.5)
- def test_ewm_domain_checks(self):
- # GH 12492
- s = Series(self.arr)
- # com must satisfy: com >= 0
- pytest.raises(ValueError, s.ewm, com=-0.1)
- s.ewm(com=0.0)
- s.ewm(com=0.1)
- # span must satisfy: span >= 1
- pytest.raises(ValueError, s.ewm, span=-0.1)
- pytest.raises(ValueError, s.ewm, span=0.0)
- pytest.raises(ValueError, s.ewm, span=0.9)
- s.ewm(span=1.0)
- s.ewm(span=1.1)
- # halflife must satisfy: halflife > 0
- pytest.raises(ValueError, s.ewm, halflife=-0.1)
- pytest.raises(ValueError, s.ewm, halflife=0.0)
- s.ewm(halflife=0.1)
- # alpha must satisfy: 0 < alpha <= 1
- pytest.raises(ValueError, s.ewm, alpha=-0.1)
- pytest.raises(ValueError, s.ewm, alpha=0.0)
- s.ewm(alpha=0.1)
- s.ewm(alpha=1.0)
- pytest.raises(ValueError, s.ewm, alpha=1.1)
- @pytest.mark.parametrize('method', ['mean', 'vol', 'var'])
- def test_ew_empty_series(self, method):
- vals = pd.Series([], dtype=np.float64)
- ewm = vals.ewm(3)
- result = getattr(ewm, method)()
- tm.assert_almost_equal(result, vals)
- def _check_ew(self, name=None, preserve_nan=False):
- series_result = getattr(self.series.ewm(com=10), name)()
- assert isinstance(series_result, Series)
- frame_result = getattr(self.frame.ewm(com=10), name)()
- assert type(frame_result) == DataFrame
- result = getattr(self.series.ewm(com=10), name)()
- if preserve_nan:
- assert result[self._nan_locs].isna().all()
- # excluding NaNs correctly
- arr = randn(50)
- arr[:10] = np.NaN
- arr[-10:] = np.NaN
- s = Series(arr)
- # check min_periods
- # GH 7898
- result = getattr(s.ewm(com=50, min_periods=2), name)()
- assert result[:11].isna().all()
- assert not result[11:].isna().any()
- for min_periods in (0, 1):
- result = getattr(s.ewm(com=50, min_periods=min_periods), name)()
- if name == 'mean':
- assert result[:10].isna().all()
- assert not result[10:].isna().any()
- else:
- # ewm.std, ewm.vol, ewm.var (with bias=False) require at least
- # two values
- assert result[:11].isna().all()
- assert not result[11:].isna().any()
- # check series of length 0
- result = getattr(Series().ewm(com=50, min_periods=min_periods),
- name)()
- tm.assert_series_equal(result, Series())
- # check series of length 1
- result = getattr(Series([1.]).ewm(50, min_periods=min_periods),
- name)()
- if name == 'mean':
- tm.assert_series_equal(result, Series([1.]))
- else:
- # ewm.std, ewm.vol, ewm.var with bias=False require at least
- # two values
- tm.assert_series_equal(result, Series([np.NaN]))
- # pass in ints
- result2 = getattr(Series(np.arange(50)).ewm(span=10), name)()
- assert result2.dtype == np.float_
- class TestPairwise(object):
- # GH 7738
- df1s = [DataFrame([[2, 4], [1, 2], [5, 2], [8, 1]], columns=[0, 1]),
- DataFrame([[2, 4], [1, 2], [5, 2], [8, 1]], columns=[1, 0]),
- DataFrame([[2, 4], [1, 2], [5, 2], [8, 1]], columns=[1, 1]),
- DataFrame([[2, 4], [1, 2], [5, 2], [8, 1]],
- columns=['C', 'C']),
- DataFrame([[2, 4], [1, 2], [5, 2], [8, 1]], columns=[1., 0]),
- DataFrame([[2, 4], [1, 2], [5, 2], [8, 1]], columns=[0., 1]),
- DataFrame([[2, 4], [1, 2], [5, 2], [8, 1]], columns=['C', 1]),
- DataFrame([[2., 4.], [1., 2.], [5., 2.], [8., 1.]],
- columns=[1, 0.]),
- DataFrame([[2, 4.], [1, 2.], [5, 2.], [8, 1.]],
- columns=[0, 1.]),
- DataFrame([[2, 4], [1, 2], [5, 2], [8, 1.]],
- columns=[1., 'X']), ]
- df2 = DataFrame([[None, 1, 1], [None, 1, 2],
- [None, 3, 2], [None, 8, 1]], columns=['Y', 'Z', 'X'])
- s = Series([1, 1, 3, 8])
- def compare(self, result, expected):
- # since we have sorted the results
- # we can only compare non-nans
- result = result.dropna().values
- expected = expected.dropna().values
- tm.assert_numpy_array_equal(result, expected, check_dtype=False)
- @pytest.mark.parametrize('f', [lambda x: x.cov(), lambda x: x.corr()])
- def test_no_flex(self, f):
- # DataFrame methods (which do not call _flex_binary_moment())
- results = [f(df) for df in self.df1s]
- for (df, result) in zip(self.df1s, results):
- tm.assert_index_equal(result.index, df.columns)
- tm.assert_index_equal(result.columns, df.columns)
- for i, result in enumerate(results):
- if i > 0:
- self.compare(result, results[0])
- @pytest.mark.parametrize(
- 'f', [lambda x: x.expanding().cov(pairwise=True),
- lambda x: x.expanding().corr(pairwise=True),
- lambda x: x.rolling(window=3).cov(pairwise=True),
- lambda x: x.rolling(window=3).corr(pairwise=True),
- lambda x: x.ewm(com=3).cov(pairwise=True),
- lambda x: x.ewm(com=3).corr(pairwise=True)])
- def test_pairwise_with_self(self, f):
- # DataFrame with itself, pairwise=True
- # note that we may construct the 1st level of the MI
- # in a non-motononic way, so compare accordingly
- results = []
- for i, df in enumerate(self.df1s):
- result = f(df)
- tm.assert_index_equal(result.index.levels[0],
- df.index,
- check_names=False)
- tm.assert_numpy_array_equal(safe_sort(result.index.levels[1]),
- safe_sort(df.columns.unique()))
- tm.assert_index_equal(result.columns, df.columns)
- results.append(df)
- for i, result in enumerate(results):
- if i > 0:
- self.compare(result, results[0])
- @pytest.mark.parametrize(
- 'f', [lambda x: x.expanding().cov(pairwise=False),
- lambda x: x.expanding().corr(pairwise=False),
- lambda x: x.rolling(window=3).cov(pairwise=False),
- lambda x: x.rolling(window=3).corr(pairwise=False),
- lambda x: x.ewm(com=3).cov(pairwise=False),
- lambda x: x.ewm(com=3).corr(pairwise=False), ])
- def test_no_pairwise_with_self(self, f):
- # DataFrame with itself, pairwise=False
- results = [f(df) for df in self.df1s]
- for (df, result) in zip(self.df1s, results):
- tm.assert_index_equal(result.index, df.index)
- tm.assert_index_equal(result.columns, df.columns)
- for i, result in enumerate(results):
- if i > 0:
- self.compare(result, results[0])
- @pytest.mark.parametrize(
- 'f', [lambda x, y: x.expanding().cov(y, pairwise=True),
- lambda x, y: x.expanding().corr(y, pairwise=True),
- lambda x, y: x.rolling(window=3).cov(y, pairwise=True),
- lambda x, y: x.rolling(window=3).corr(y, pairwise=True),
- lambda x, y: x.ewm(com=3).cov(y, pairwise=True),
- lambda x, y: x.ewm(com=3).corr(y, pairwise=True), ])
- def test_pairwise_with_other(self, f):
- # DataFrame with another DataFrame, pairwise=True
- results = [f(df, self.df2) for df in self.df1s]
- for (df, result) in zip(self.df1s, results):
- tm.assert_index_equal(result.index.levels[0],
- df.index,
- check_names=False)
- tm.assert_numpy_array_equal(safe_sort(result.index.levels[1]),
- safe_sort(self.df2.columns.unique()))
- for i, result in enumerate(results):
- if i > 0:
- self.compare(result, results[0])
- @pytest.mark.parametrize(
- 'f', [lambda x, y: x.expanding().cov(y, pairwise=False),
- lambda x, y: x.expanding().corr(y, pairwise=False),
- lambda x, y: x.rolling(window=3).cov(y, pairwise=False),
- lambda x, y: x.rolling(window=3).corr(y, pairwise=False),
- lambda x, y: x.ewm(com=3).cov(y, pairwise=False),
- lambda x, y: x.ewm(com=3).corr(y, pairwise=False), ])
- def test_no_pairwise_with_other(self, f):
- # DataFrame with another DataFrame, pairwise=False
- results = [f(df, self.df2) if df.columns.is_unique else None
- for df in self.df1s]
- for (df, result) in zip(self.df1s, results):
- if result is not None:
- with catch_warnings(record=True):
- warnings.simplefilter("ignore", RuntimeWarning)
- # we can have int and str columns
- expected_index = df.index.union(self.df2.index)
- expected_columns = df.columns.union(self.df2.columns)
- tm.assert_index_equal(result.index, expected_index)
- tm.assert_index_equal(result.columns, expected_columns)
- else:
- with pytest.raises(ValueError,
- match="'arg1' columns are not unique"):
- f(df, self.df2)
- with pytest.raises(ValueError,
- match="'arg2' columns are not unique"):
- f(self.df2, df)
- @pytest.mark.parametrize(
- 'f', [lambda x, y: x.expanding().cov(y),
- lambda x, y: x.expanding().corr(y),
- lambda x, y: x.rolling(window=3).cov(y),
- lambda x, y: x.rolling(window=3).corr(y),
- lambda x, y: x.ewm(com=3).cov(y),
- lambda x, y: x.ewm(com=3).corr(y), ])
- def test_pairwise_with_series(self, f):
- # DataFrame with a Series
- results = ([f(df, self.s) for df in self.df1s] +
- [f(self.s, df) for df in self.df1s])
- for (df, result) in zip(self.df1s, results):
- tm.assert_index_equal(result.index, df.index)
- tm.assert_index_equal(result.columns, df.columns)
- for i, result in enumerate(results):
- if i > 0:
- self.compare(result, results[0])
- # create the data only once as we are not setting it
- def _create_consistency_data():
- def create_series():
- return [Series(),
- Series([np.nan]),
- Series([np.nan, np.nan]),
- Series([3.]),
- Series([np.nan, 3.]),
- Series([3., np.nan]),
- Series([1., 3.]),
- Series([2., 2.]),
- Series([3., 1.]),
- Series([5., 5., 5., 5., np.nan, np.nan, np.nan, 5., 5., np.nan,
- np.nan]),
- Series([np.nan, 5., 5., 5., np.nan, np.nan, np.nan, 5., 5.,
- np.nan, np.nan]),
- Series([np.nan, np.nan, 5., 5., np.nan, np.nan, np.nan, 5., 5.,
- np.nan, np.nan]),
- Series([np.nan, 3., np.nan, 3., 4., 5., 6., np.nan, np.nan, 7.,
- 12., 13., 14., 15.]),
- Series([np.nan, 5., np.nan, 2., 4., 0., 9., np.nan, np.nan, 3.,
- 12., 13., 14., 15.]),
- Series([2., 3., np.nan, 3., 4., 5., 6., np.nan, np.nan, 7.,
- 12., 13., 14., 15.]),
- Series([2., 5., np.nan, 2., 4., 0., 9., np.nan, np.nan, 3.,
- 12., 13., 14., 15.]),
- Series(range(10)),
- Series(range(20, 0, -2)), ]
- def create_dataframes():
- return ([DataFrame(),
- DataFrame(columns=['a']),
- DataFrame(columns=['a', 'a']),
- DataFrame(columns=['a', 'b']),
- DataFrame(np.arange(10).reshape((5, 2))),
- DataFrame(np.arange(25).reshape((5, 5))),
- DataFrame(np.arange(25).reshape((5, 5)),
- columns=['a', 'b', 99, 'd', 'd'])] +
- [DataFrame(s) for s in create_series()])
- def is_constant(x):
- values = x.values.ravel()
- return len(set(values[notna(values)])) == 1
- def no_nans(x):
- return x.notna().all().all()
- # data is a tuple(object, is_contant, no_nans)
- data = create_series() + create_dataframes()
- return [(x, is_constant(x), no_nans(x)) for x in data]
- _consistency_data = _create_consistency_data()
- def _rolling_consistency_cases():
- for window in [1, 2, 3, 10, 20]:
- for min_periods in {0, 1, 2, 3, 4, window}:
- if min_periods and (min_periods > window):
- continue
- for center in [False, True]:
- yield window, min_periods, center
- class TestMomentsConsistency(Base):
- base_functions = [
- (lambda v: Series(v).count(), None, 'count'),
- (lambda v: Series(v).max(), None, 'max'),
- (lambda v: Series(v).min(), None, 'min'),
- (lambda v: Series(v).sum(), None, 'sum'),
- (lambda v: Series(v).mean(), None, 'mean'),
- (lambda v: Series(v).std(), 1, 'std'),
- (lambda v: Series(v).cov(Series(v)), None, 'cov'),
- (lambda v: Series(v).corr(Series(v)), None, 'corr'),
- (lambda v: Series(v).var(), 1, 'var'),
- # restore once GH 8086 is fixed
- # lambda v: Series(v).skew(), 3, 'skew'),
- # (lambda v: Series(v).kurt(), 4, 'kurt'),
- # restore once GH 8084 is fixed
- # lambda v: Series(v).quantile(0.3), None, 'quantile'),
- (lambda v: Series(v).median(), None, 'median'),
- (np.nanmax, 1, 'max'),
- (np.nanmin, 1, 'min'),
- (np.nansum, 1, 'sum'),
- (np.nanmean, 1, 'mean'),
- (lambda v: np.nanstd(v, ddof=1), 1, 'std'),
- (lambda v: np.nanvar(v, ddof=1), 1, 'var'),
- (np.nanmedian, 1, 'median'),
- ]
- no_nan_functions = [
- (np.max, None, 'max'),
- (np.min, None, 'min'),
- (np.sum, None, 'sum'),
- (np.mean, None, 'mean'),
- (lambda v: np.std(v, ddof=1), 1, 'std'),
- (lambda v: np.var(v, ddof=1), 1, 'var'),
- (np.median, None, 'median'),
- ]
- def _create_data(self):
- super(TestMomentsConsistency, self)._create_data()
- self.data = _consistency_data
- def setup_method(self, method):
- self._create_data()
- def _test_moments_consistency(self, min_periods, count, mean, mock_mean,
- corr, var_unbiased=None, std_unbiased=None,
- cov_unbiased=None, var_biased=None,
- std_biased=None, cov_biased=None,
- var_debiasing_factors=None):
- def _non_null_values(x):
- values = x.values.ravel()
- return set(values[notna(values)].tolist())
- for (x, is_constant, no_nans) in self.data:
- count_x = count(x)
- mean_x = mean(x)
- if mock_mean:
- # check that mean equals mock_mean
- expected = mock_mean(x)
- assert_equal(mean_x, expected.astype('float64'))
- # check that correlation of a series with itself is either 1 or NaN
- corr_x_x = corr(x, x)
- # assert _non_null_values(corr_x_x).issubset(set([1.]))
- # restore once rolling_cov(x, x) is identically equal to var(x)
- if is_constant:
- exp = x.max() if isinstance(x, Series) else x.max().max()
- # check mean of constant series
- expected = x * np.nan
- expected[count_x >= max(min_periods, 1)] = exp
- assert_equal(mean_x, expected)
- # check correlation of constant series with itself is NaN
- expected[:] = np.nan
- assert_equal(corr_x_x, expected)
- if var_unbiased and var_biased and var_debiasing_factors:
- # check variance debiasing factors
- var_unbiased_x = var_unbiased(x)
- var_biased_x = var_biased(x)
- var_debiasing_factors_x = var_debiasing_factors(x)
- assert_equal(var_unbiased_x, var_biased_x *
- var_debiasing_factors_x)
- for (std, var, cov) in [(std_biased, var_biased, cov_biased),
- (std_unbiased, var_unbiased, cov_unbiased)
- ]:
- # check that var(x), std(x), and cov(x) are all >= 0
- var_x = var(x)
- std_x = std(x)
- assert not (var_x < 0).any().any()
- assert not (std_x < 0).any().any()
- if cov:
- cov_x_x = cov(x, x)
- assert not (cov_x_x < 0).any().any()
- # check that var(x) == cov(x, x)
- assert_equal(var_x, cov_x_x)
- # check that var(x) == std(x)^2
- assert_equal(var_x, std_x * std_x)
- if var is var_biased:
- # check that biased var(x) == mean(x^2) - mean(x)^2
- mean_x2 = mean(x * x)
- assert_equal(var_x, mean_x2 - (mean_x * mean_x))
- if is_constant:
- # check that variance of constant series is identically 0
- assert not (var_x > 0).any().any()
- expected = x * np.nan
- expected[count_x >= max(min_periods, 1)] = 0.
- if var is var_unbiased:
- expected[count_x < 2] = np.nan
- assert_equal(var_x, expected)
- if isinstance(x, Series):
- for (y, is_constant, no_nans) in self.data:
- if not x.isna().equals(y.isna()):
- # can only easily test two Series with similar
- # structure
- continue
- # check that cor(x, y) is symmetric
- corr_x_y = corr(x, y)
- corr_y_x = corr(y, x)
- assert_equal(corr_x_y, corr_y_x)
- if cov:
- # check that cov(x, y) is symmetric
- cov_x_y = cov(x, y)
- cov_y_x = cov(y, x)
- assert_equal(cov_x_y, cov_y_x)
- # check that cov(x, y) == (var(x+y) - var(x) -
- # var(y)) / 2
- var_x_plus_y = var(x + y)
- var_y = var(y)
- assert_equal(cov_x_y, 0.5 *
- (var_x_plus_y - var_x - var_y))
- # check that corr(x, y) == cov(x, y) / (std(x) *
- # std(y))
- std_y = std(y)
- assert_equal(corr_x_y, cov_x_y / (std_x * std_y))
- if cov is cov_biased:
- # check that biased cov(x, y) == mean(x*y) -
- # mean(x)*mean(y)
- mean_y = mean(y)
- mean_x_times_y = mean(x * y)
- assert_equal(cov_x_y, mean_x_times_y -
- (mean_x * mean_y))
- @pytest.mark.slow
- @pytest.mark.parametrize('min_periods', [0, 1, 2, 3, 4])
- @pytest.mark.parametrize('adjust', [True, False])
- @pytest.mark.parametrize('ignore_na', [True, False])
- def test_ewm_consistency(self, min_periods, adjust, ignore_na):
- def _weights(s, com, adjust, ignore_na):
- if isinstance(s, DataFrame):
- if not len(s.columns):
- return DataFrame(index=s.index, columns=s.columns)
- w = concat([
- _weights(s.iloc[:, i], com=com, adjust=adjust,
- ignore_na=ignore_na)
- for i, _ in enumerate(s.columns)], axis=1)
- w.index = s.index
- w.columns = s.columns
- return w
- w = Series(np.nan, index=s.index)
- alpha = 1. / (1. + com)
- if ignore_na:
- w[s.notna()] = _weights(s[s.notna()], com=com,
- adjust=adjust, ignore_na=False)
- elif adjust:
- for i in range(len(s)):
- if s.iat[i] == s.iat[i]:
- w.iat[i] = pow(1. / (1. - alpha), i)
- else:
- sum_wts = 0.
- prev_i = -1
- for i in range(len(s)):
- if s.iat[i] == s.iat[i]:
- if prev_i == -1:
- w.iat[i] = 1.
- else:
- w.iat[i] = alpha * sum_wts / pow(1. - alpha,
- i - prev_i)
- sum_wts += w.iat[i]
- prev_i = i
- return w
- def _variance_debiasing_factors(s, com, adjust, ignore_na):
- weights = _weights(s, com=com, adjust=adjust, ignore_na=ignore_na)
- cum_sum = weights.cumsum().fillna(method='ffill')
- cum_sum_sq = (weights * weights).cumsum().fillna(method='ffill')
- numerator = cum_sum * cum_sum
- denominator = numerator - cum_sum_sq
- denominator[denominator <= 0.] = np.nan
- return numerator / denominator
- def _ewma(s, com, min_periods, adjust, ignore_na):
- weights = _weights(s, com=com, adjust=adjust, ignore_na=ignore_na)
- result = s.multiply(weights).cumsum().divide(weights.cumsum(
- )).fillna(method='ffill')
- result[s.expanding().count() < (max(min_periods, 1) if min_periods
- else 1)] = np.nan
- return result
- com = 3.
- # test consistency between different ewm* moments
- self._test_moments_consistency(
- min_periods=min_periods,
- count=lambda x: x.expanding().count(),
- mean=lambda x: x.ewm(com=com, min_periods=min_periods,
- adjust=adjust,
- ignore_na=ignore_na).mean(),
- mock_mean=lambda x: _ewma(x, com=com,
- min_periods=min_periods,
- adjust=adjust,
- ignore_na=ignore_na),
- corr=lambda x, y: x.ewm(com=com, min_periods=min_periods,
- adjust=adjust,
- ignore_na=ignore_na).corr(y),
- var_unbiased=lambda x: (
- x.ewm(com=com, min_periods=min_periods,
- adjust=adjust,
- ignore_na=ignore_na).var(bias=False)),
- std_unbiased=lambda x: (
- x.ewm(com=com, min_periods=min_periods,
- adjust=adjust, ignore_na=ignore_na)
- .std(bias=False)),
- cov_unbiased=lambda x, y: (
- x.ewm(com=com, min_periods=min_periods,
- adjust=adjust, ignore_na=ignore_na)
- .cov(y, bias=False)),
- var_biased=lambda x: (
- x.ewm(com=com, min_periods=min_periods,
- adjust=adjust, ignore_na=ignore_na)
- .var(bias=True)),
- std_biased=lambda x: x.ewm(com=com, min_periods=min_periods,
- adjust=adjust,
- ignore_na=ignore_na).std(bias=True),
- cov_biased=lambda x, y: (
- x.ewm(com=com, min_periods=min_periods,
- adjust=adjust, ignore_na=ignore_na)
- .cov(y, bias=True)),
- var_debiasing_factors=lambda x: (
- _variance_debiasing_factors(x, com=com, adjust=adjust,
- ignore_na=ignore_na)))
- @pytest.mark.slow
- @pytest.mark.parametrize(
- 'min_periods', [0, 1, 2, 3, 4])
- def test_expanding_consistency(self, min_periods):
- # suppress warnings about empty slices, as we are deliberately testing
- # with empty/0-length Series/DataFrames
- with warnings.catch_warnings():
- warnings.filterwarnings("ignore",
- message=".*(empty slice|0 for slice).*",
- category=RuntimeWarning)
- # test consistency between different expanding_* moments
- self._test_moments_consistency(
- min_periods=min_periods,
- count=lambda x: x.expanding().count(),
- mean=lambda x: x.expanding(
- min_periods=min_periods).mean(),
- mock_mean=lambda x: x.expanding(
- min_periods=min_periods).sum() / x.expanding().count(),
- corr=lambda x, y: x.expanding(
- min_periods=min_periods).corr(y),
- var_unbiased=lambda x: x.expanding(
- min_periods=min_periods).var(),
- std_unbiased=lambda x: x.expanding(
- min_periods=min_periods).std(),
- cov_unbiased=lambda x, y: x.expanding(
- min_periods=min_periods).cov(y),
- var_biased=lambda x: x.expanding(
- min_periods=min_periods).var(ddof=0),
- std_biased=lambda x: x.expanding(
- min_periods=min_periods).std(ddof=0),
- cov_biased=lambda x, y: x.expanding(
- min_periods=min_periods).cov(y, ddof=0),
- var_debiasing_factors=lambda x: (
- x.expanding().count() /
- (x.expanding().count() - 1.)
- .replace(0., np.nan)))
- # test consistency between expanding_xyz() and either (a)
- # expanding_apply of Series.xyz(), or (b) expanding_apply of
- # np.nanxyz()
- for (x, is_constant, no_nans) in self.data:
- functions = self.base_functions
- # GH 8269
- if no_nans:
- functions = self.base_functions + self.no_nan_functions
- for (f, require_min_periods, name) in functions:
- expanding_f = getattr(
- x.expanding(min_periods=min_periods), name)
- if (require_min_periods and
- (min_periods is not None) and
- (min_periods < require_min_periods)):
- continue
- if name == 'count':
- expanding_f_result = expanding_f()
- expanding_apply_f_result = x.expanding(
- min_periods=0).apply(func=f, raw=True)
- else:
- if name in ['cov', 'corr']:
- expanding_f_result = expanding_f(
- pairwise=False)
- else:
- expanding_f_result = expanding_f()
- expanding_apply_f_result = x.expanding(
- min_periods=min_periods).apply(func=f, raw=True)
- # GH 9422
- if name in ['sum', 'prod']:
- assert_equal(expanding_f_result,
- expanding_apply_f_result)
- @pytest.mark.slow
- @pytest.mark.parametrize(
- 'window,min_periods,center', list(_rolling_consistency_cases()))
- def test_rolling_consistency(self, window, min_periods, center):
- # suppress warnings about empty slices, as we are deliberately testing
- # with empty/0-length Series/DataFrames
- with warnings.catch_warnings():
- warnings.filterwarnings("ignore",
- message=".*(empty slice|0 for slice).*",
- category=RuntimeWarning)
- # test consistency between different rolling_* moments
- self._test_moments_consistency(
- min_periods=min_periods,
- count=lambda x: (
- x.rolling(window=window, center=center)
- .count()),
- mean=lambda x: (
- x.rolling(window=window, min_periods=min_periods,
- center=center).mean()),
- mock_mean=lambda x: (
- x.rolling(window=window,
- min_periods=min_periods,
- center=center).sum()
- .divide(x.rolling(window=window,
- min_periods=min_periods,
- center=center).count())),
- corr=lambda x, y: (
- x.rolling(window=window, min_periods=min_periods,
- center=center).corr(y)),
- var_unbiased=lambda x: (
- x.rolling(window=window, min_periods=min_periods,
- center=center).var()),
- std_unbiased=lambda x: (
- x.rolling(window=window, min_periods=min_periods,
- center=center).std()),
- cov_unbiased=lambda x, y: (
- x.rolling(window=window, min_periods=min_periods,
- center=center).cov(y)),
- var_biased=lambda x: (
- x.rolling(window=window, min_periods=min_periods,
- center=center).var(ddof=0)),
- std_biased=lambda x: (
- x.rolling(window=window, min_periods=min_periods,
- center=center).std(ddof=0)),
- cov_biased=lambda x, y: (
- x.rolling(window=window, min_periods=min_periods,
- center=center).cov(y, ddof=0)),
- var_debiasing_factors=lambda x: (
- x.rolling(window=window, center=center).count()
- .divide((x.rolling(window=window, center=center)
- .count() - 1.)
- .replace(0., np.nan))))
- # test consistency between rolling_xyz() and either (a)
- # rolling_apply of Series.xyz(), or (b) rolling_apply of
- # np.nanxyz()
- for (x, is_constant, no_nans) in self.data:
- functions = self.base_functions
- # GH 8269
- if no_nans:
- functions = self.base_functions + self.no_nan_functions
- for (f, require_min_periods, name) in functions:
- rolling_f = getattr(
- x.rolling(window=window, center=center,
- min_periods=min_periods), name)
- if require_min_periods and (
- min_periods is not None) and (
- min_periods < require_min_periods):
- continue
- if name == 'count':
- rolling_f_result = rolling_f()
- rolling_apply_f_result = x.rolling(
- window=window, min_periods=0,
- center=center).apply(func=f, raw=True)
- else:
- if name in ['cov', 'corr']:
- rolling_f_result = rolling_f(
- pairwise=False)
- else:
- rolling_f_result = rolling_f()
- rolling_apply_f_result = x.rolling(
- window=window, min_periods=min_periods,
- center=center).apply(func=f, raw=True)
- # GH 9422
- if name in ['sum', 'prod']:
- assert_equal(rolling_f_result,
- rolling_apply_f_result)
- # binary moments
- def test_rolling_cov(self):
- A = self.series
- B = A + randn(len(A))
- result = A.rolling(window=50, min_periods=25).cov(B)
- tm.assert_almost_equal(result[-1], np.cov(A[-50:], B[-50:])[0, 1])
- def test_rolling_cov_pairwise(self):
- self._check_pairwise_moment('rolling', 'cov', window=10, min_periods=5)
- def test_rolling_corr(self):
- A = self.series
- B = A + randn(len(A))
- result = A.rolling(window=50, min_periods=25).corr(B)
- tm.assert_almost_equal(result[-1], np.corrcoef(A[-50:], B[-50:])[0, 1])
- # test for correct bias correction
- a = tm.makeTimeSeries()
- b = tm.makeTimeSeries()
- a[:5] = np.nan
- b[:10] = np.nan
- result = a.rolling(window=len(a), min_periods=1).corr(b)
- tm.assert_almost_equal(result[-1], a.corr(b))
- def test_rolling_corr_pairwise(self):
- self._check_pairwise_moment('rolling', 'corr', window=10,
- min_periods=5)
- @pytest.mark.parametrize('window', range(7))
- def test_rolling_corr_with_zero_variance(self, window):
- # GH 18430
- s = pd.Series(np.zeros(20))
- other = pd.Series(np.arange(20))
- assert s.rolling(window=window).corr(other=other).isna().all()
- def _check_pairwise_moment(self, dispatch, name, **kwargs):
- def get_result(obj, obj2=None):
- return getattr(getattr(obj, dispatch)(**kwargs), name)(obj2)
- result = get_result(self.frame)
- result = result.loc[(slice(None), 1), 5]
- result.index = result.index.droplevel(1)
- expected = get_result(self.frame[1], self.frame[5])
- tm.assert_series_equal(result, expected, check_names=False)
- def test_flex_binary_moment(self):
- # GH3155
- # don't blow the stack
- pytest.raises(TypeError, rwindow._flex_binary_moment, 5, 6, None)
- def test_corr_sanity(self):
- # GH 3155
- df = DataFrame(np.array(
- [[0.87024726, 0.18505595], [0.64355431, 0.3091617],
- [0.92372966, 0.50552513], [0.00203756, 0.04520709],
- [0.84780328, 0.33394331], [0.78369152, 0.63919667]]))
- res = df[0].rolling(5, center=True).corr(df[1])
- assert all(np.abs(np.nan_to_num(x)) <= 1 for x in res)
- # and some fuzzing
- for _ in range(10):
- df = DataFrame(np.random.rand(30, 2))
- res = df[0].rolling(5, center=True).corr(df[1])
- try:
- assert all(np.abs(np.nan_to_num(x)) <= 1 for x in res)
- except AssertionError:
- print(res)
- @pytest.mark.parametrize('method', ['corr', 'cov'])
- def test_flex_binary_frame(self, method):
- series = self.frame[1]
- res = getattr(series.rolling(window=10), method)(self.frame)
- res2 = getattr(self.frame.rolling(window=10), method)(series)
- exp = self.frame.apply(lambda x: getattr(
- series.rolling(window=10), method)(x))
- tm.assert_frame_equal(res, exp)
- tm.assert_frame_equal(res2, exp)
- frame2 = self.frame.copy()
- frame2.values[:] = np.random.randn(*frame2.shape)
- res3 = getattr(self.frame.rolling(window=10), method)(frame2)
- exp = DataFrame({k: getattr(self.frame[k].rolling(
- window=10), method)(frame2[k]) for k in self.frame})
- tm.assert_frame_equal(res3, exp)
- def test_ewmcov(self):
- self._check_binary_ew('cov')
- def test_ewmcov_pairwise(self):
- self._check_pairwise_moment('ewm', 'cov', span=10, min_periods=5)
- def test_ewmcorr(self):
- self._check_binary_ew('corr')
- def test_ewmcorr_pairwise(self):
- self._check_pairwise_moment('ewm', 'corr', span=10, min_periods=5)
- def _check_binary_ew(self, name):
- def func(A, B, com, **kwargs):
- return getattr(A.ewm(com, **kwargs), name)(B)
- A = Series(randn(50), index=np.arange(50))
- B = A[2:] + randn(48)
- A[:10] = np.NaN
- B[-10:] = np.NaN
- result = func(A, B, 20, min_periods=5)
- assert np.isnan(result.values[:14]).all()
- assert not np.isnan(result.values[14:]).any()
- # GH 7898
- for min_periods in (0, 1, 2):
- result = func(A, B, 20, min_periods=min_periods)
- # binary functions (ewmcov, ewmcorr) with bias=False require at
- # least two values
- assert np.isnan(result.values[:11]).all()
- assert not np.isnan(result.values[11:]).any()
- # check series of length 0
- result = func(Series([]), Series([]), 50, min_periods=min_periods)
- tm.assert_series_equal(result, Series([]))
- # check series of length 1
- result = func(
- Series([1.]), Series([1.]), 50, min_periods=min_periods)
- tm.assert_series_equal(result, Series([np.NaN]))
- pytest.raises(Exception, func, A, randn(50), 20, min_periods=5)
- def test_expanding_apply_args_kwargs(self, raw):
- def mean_w_arg(x, const):
- return np.mean(x) + const
- df = DataFrame(np.random.rand(20, 3))
- expected = df.expanding().apply(np.mean, raw=raw) + 20.
- result = df.expanding().apply(mean_w_arg,
- raw=raw,
- args=(20, ))
- tm.assert_frame_equal(result, expected)
- result = df.expanding().apply(mean_w_arg,
- raw=raw,
- kwargs={'const': 20})
- tm.assert_frame_equal(result, expected)
- def test_expanding_corr(self):
- A = self.series.dropna()
- B = (A + randn(len(A)))[:-5]
- result = A.expanding().corr(B)
- rolling_result = A.rolling(window=len(A), min_periods=1).corr(B)
- tm.assert_almost_equal(rolling_result, result)
- def test_expanding_count(self):
- result = self.series.expanding().count()
- tm.assert_almost_equal(result, self.series.rolling(
- window=len(self.series)).count())
- def test_expanding_quantile(self):
- result = self.series.expanding().quantile(0.5)
- rolling_result = self.series.rolling(window=len(self.series),
- min_periods=1).quantile(0.5)
- tm.assert_almost_equal(result, rolling_result)
- def test_expanding_cov(self):
- A = self.series
- B = (A + randn(len(A)))[:-5]
- result = A.expanding().cov(B)
- rolling_result = A.rolling(window=len(A), min_periods=1).cov(B)
- tm.assert_almost_equal(rolling_result, result)
- def test_expanding_cov_pairwise(self):
- result = self.frame.expanding().corr()
- rolling_result = self.frame.rolling(window=len(self.frame),
- min_periods=1).corr()
- tm.assert_frame_equal(result, rolling_result)
- def test_expanding_corr_pairwise(self):
- result = self.frame.expanding().corr()
- rolling_result = self.frame.rolling(window=len(self.frame),
- min_periods=1).corr()
- tm.assert_frame_equal(result, rolling_result)
- def test_expanding_cov_diff_index(self):
- # GH 7512
- s1 = Series([1, 2, 3], index=[0, 1, 2])
- s2 = Series([1, 3], index=[0, 2])
- result = s1.expanding().cov(s2)
- expected = Series([None, None, 2.0])
- tm.assert_series_equal(result, expected)
- s2a = Series([1, None, 3], index=[0, 1, 2])
- result = s1.expanding().cov(s2a)
- tm.assert_series_equal(result, expected)
- s1 = Series([7, 8, 10], index=[0, 1, 3])
- s2 = Series([7, 9, 10], index=[0, 2, 3])
- result = s1.expanding().cov(s2)
- expected = Series([None, None, None, 4.5])
- tm.assert_series_equal(result, expected)
- def test_expanding_corr_diff_index(self):
- # GH 7512
- s1 = Series([1, 2, 3], index=[0, 1, 2])
- s2 = Series([1, 3], index=[0, 2])
- result = s1.expanding().corr(s2)
- expected = Series([None, None, 1.0])
- tm.assert_series_equal(result, expected)
- s2a = Series([1, None, 3], index=[0, 1, 2])
- result = s1.expanding().corr(s2a)
- tm.assert_series_equal(result, expected)
- s1 = Series([7, 8, 10], index=[0, 1, 3])
- s2 = Series([7, 9, 10], index=[0, 2, 3])
- result = s1.expanding().corr(s2)
- expected = Series([None, None, None, 1.])
- tm.assert_series_equal(result, expected)
- def test_rolling_cov_diff_length(self):
- # GH 7512
- s1 = Series([1, 2, 3], index=[0, 1, 2])
- s2 = Series([1, 3], index=[0, 2])
- result = s1.rolling(window=3, min_periods=2).cov(s2)
- expected = Series([None, None, 2.0])
- tm.assert_series_equal(result, expected)
- s2a = Series([1, None, 3], index=[0, 1, 2])
- result = s1.rolling(window=3, min_periods=2).cov(s2a)
- tm.assert_series_equal(result, expected)
- def test_rolling_corr_diff_length(self):
- # GH 7512
- s1 = Series([1, 2, 3], index=[0, 1, 2])
- s2 = Series([1, 3], index=[0, 2])
- result = s1.rolling(window=3, min_periods=2).corr(s2)
- expected = Series([None, None, 1.0])
- tm.assert_series_equal(result, expected)
- s2a = Series([1, None, 3], index=[0, 1, 2])
- result = s1.rolling(window=3, min_periods=2).corr(s2a)
- tm.assert_series_equal(result, expected)
- @pytest.mark.parametrize(
- 'f',
- [
- lambda x: (x.rolling(window=10, min_periods=5)
- .cov(x, pairwise=False)),
- lambda x: (x.rolling(window=10, min_periods=5)
- .corr(x, pairwise=False)),
- lambda x: x.rolling(window=10, min_periods=5).max(),
- lambda x: x.rolling(window=10, min_periods=5).min(),
- lambda x: x.rolling(window=10, min_periods=5).sum(),
- lambda x: x.rolling(window=10, min_periods=5).mean(),
- lambda x: x.rolling(window=10, min_periods=5).std(),
- lambda x: x.rolling(window=10, min_periods=5).var(),
- lambda x: x.rolling(window=10, min_periods=5).skew(),
- lambda x: x.rolling(window=10, min_periods=5).kurt(),
- lambda x: x.rolling(
- window=10, min_periods=5).quantile(quantile=0.5),
- lambda x: x.rolling(window=10, min_periods=5).median(),
- lambda x: x.rolling(window=10, min_periods=5).apply(
- sum, raw=False),
- lambda x: x.rolling(window=10, min_periods=5).apply(
- sum, raw=True),
- lambda x: x.rolling(win_type='boxcar',
- window=10, min_periods=5).mean()])
- def test_rolling_functions_window_non_shrinkage(self, f):
- # GH 7764
- s = Series(range(4))
- s_expected = Series(np.nan, index=s.index)
- df = DataFrame([[1, 5], [3, 2], [3, 9], [-1, 0]], columns=['A', 'B'])
- df_expected = DataFrame(np.nan, index=df.index, columns=df.columns)
- try:
- s_result = f(s)
- tm.assert_series_equal(s_result, s_expected)
- df_result = f(df)
- tm.assert_frame_equal(df_result, df_expected)
- except (ImportError):
- # scipy needed for rolling_window
- pytest.skip("scipy not available")
- def test_rolling_functions_window_non_shrinkage_binary(self):
- # corr/cov return a MI DataFrame
- df = DataFrame([[1, 5], [3, 2], [3, 9], [-1, 0]],
- columns=Index(['A', 'B'], name='foo'),
- index=Index(range(4), name='bar'))
- df_expected = DataFrame(
- columns=Index(['A', 'B'], name='foo'),
- index=pd.MultiIndex.from_product([df.index, df.columns],
- names=['bar', 'foo']),
- dtype='float64')
- functions = [lambda x: (x.rolling(window=10, min_periods=5)
- .cov(x, pairwise=True)),
- lambda x: (x.rolling(window=10, min_periods=5)
- .corr(x, pairwise=True))]
- for f in functions:
- df_result = f(df)
- tm.assert_frame_equal(df_result, df_expected)
- def test_moment_functions_zero_length(self):
- # GH 8056
- s = Series()
- s_expected = s
- df1 = DataFrame()
- df1_expected = df1
- df2 = DataFrame(columns=['a'])
- df2['a'] = df2['a'].astype('float64')
- df2_expected = df2
- functions = [lambda x: x.expanding().count(),
- lambda x: x.expanding(min_periods=5).cov(
- x, pairwise=False),
- lambda x: x.expanding(min_periods=5).corr(
- x, pairwise=False),
- lambda x: x.expanding(min_periods=5).max(),
- lambda x: x.expanding(min_periods=5).min(),
- lambda x: x.expanding(min_periods=5).sum(),
- lambda x: x.expanding(min_periods=5).mean(),
- lambda x: x.expanding(min_periods=5).std(),
- lambda x: x.expanding(min_periods=5).var(),
- lambda x: x.expanding(min_periods=5).skew(),
- lambda x: x.expanding(min_periods=5).kurt(),
- lambda x: x.expanding(min_periods=5).quantile(0.5),
- lambda x: x.expanding(min_periods=5).median(),
- lambda x: x.expanding(min_periods=5).apply(
- sum, raw=False),
- lambda x: x.expanding(min_periods=5).apply(
- sum, raw=True),
- lambda x: x.rolling(window=10).count(),
- lambda x: x.rolling(window=10, min_periods=5).cov(
- x, pairwise=False),
- lambda x: x.rolling(window=10, min_periods=5).corr(
- x, pairwise=False),
- lambda x: x.rolling(window=10, min_periods=5).max(),
- lambda x: x.rolling(window=10, min_periods=5).min(),
- lambda x: x.rolling(window=10, min_periods=5).sum(),
- lambda x: x.rolling(window=10, min_periods=5).mean(),
- lambda x: x.rolling(window=10, min_periods=5).std(),
- lambda x: x.rolling(window=10, min_periods=5).var(),
- lambda x: x.rolling(window=10, min_periods=5).skew(),
- lambda x: x.rolling(window=10, min_periods=5).kurt(),
- lambda x: x.rolling(
- window=10, min_periods=5).quantile(0.5),
- lambda x: x.rolling(window=10, min_periods=5).median(),
- lambda x: x.rolling(window=10, min_periods=5).apply(
- sum, raw=False),
- lambda x: x.rolling(window=10, min_periods=5).apply(
- sum, raw=True),
- lambda x: x.rolling(win_type='boxcar',
- window=10, min_periods=5).mean(),
- ]
- for f in functions:
- try:
- s_result = f(s)
- tm.assert_series_equal(s_result, s_expected)
- df1_result = f(df1)
- tm.assert_frame_equal(df1_result, df1_expected)
- df2_result = f(df2)
- tm.assert_frame_equal(df2_result, df2_expected)
- except (ImportError):
- # scipy needed for rolling_window
- continue
- def test_moment_functions_zero_length_pairwise(self):
- df1 = DataFrame()
- df1_expected = df1
- df2 = DataFrame(columns=Index(['a'], name='foo'),
- index=Index([], name='bar'))
- df2['a'] = df2['a'].astype('float64')
- df1_expected = DataFrame(
- index=pd.MultiIndex.from_product([df1.index, df1.columns]),
- columns=Index([]))
- df2_expected = DataFrame(
- index=pd.MultiIndex.from_product([df2.index, df2.columns],
- names=['bar', 'foo']),
- columns=Index(['a'], name='foo'),
- dtype='float64')
- functions = [lambda x: (x.expanding(min_periods=5)
- .cov(x, pairwise=True)),
- lambda x: (x.expanding(min_periods=5)
- .corr(x, pairwise=True)),
- lambda x: (x.rolling(window=10, min_periods=5)
- .cov(x, pairwise=True)),
- lambda x: (x.rolling(window=10, min_periods=5)
- .corr(x, pairwise=True)),
- ]
- for f in functions:
- df1_result = f(df1)
- tm.assert_frame_equal(df1_result, df1_expected)
- df2_result = f(df2)
- tm.assert_frame_equal(df2_result, df2_expected)
- def test_expanding_cov_pairwise_diff_length(self):
- # GH 7512
- df1 = DataFrame([[1, 5], [3, 2], [3, 9]],
- columns=Index(['A', 'B'], name='foo'))
- df1a = DataFrame([[1, 5], [3, 9]],
- index=[0, 2],
- columns=Index(['A', 'B'], name='foo'))
- df2 = DataFrame([[5, 6], [None, None], [2, 1]],
- columns=Index(['X', 'Y'], name='foo'))
- df2a = DataFrame([[5, 6], [2, 1]],
- index=[0, 2],
- columns=Index(['X', 'Y'], name='foo'))
- # TODO: xref gh-15826
- # .loc is not preserving the names
- result1 = df1.expanding().cov(df2a, pairwise=True).loc[2]
- result2 = df1.expanding().cov(df2a, pairwise=True).loc[2]
- result3 = df1a.expanding().cov(df2, pairwise=True).loc[2]
- result4 = df1a.expanding().cov(df2a, pairwise=True).loc[2]
- expected = DataFrame([[-3.0, -6.0], [-5.0, -10.0]],
- columns=Index(['A', 'B'], name='foo'),
- index=Index(['X', 'Y'], name='foo'))
- tm.assert_frame_equal(result1, expected)
- tm.assert_frame_equal(result2, expected)
- tm.assert_frame_equal(result3, expected)
- tm.assert_frame_equal(result4, expected)
- def test_expanding_corr_pairwise_diff_length(self):
- # GH 7512
- df1 = DataFrame([[1, 2], [3, 2], [3, 4]],
- columns=['A', 'B'],
- index=Index(range(3), name='bar'))
- df1a = DataFrame([[1, 2], [3, 4]],
- index=Index([0, 2], name='bar'),
- columns=['A', 'B'])
- df2 = DataFrame([[5, 6], [None, None], [2, 1]],
- columns=['X', 'Y'],
- index=Index(range(3), name='bar'))
- df2a = DataFrame([[5, 6], [2, 1]],
- index=Index([0, 2], name='bar'),
- columns=['X', 'Y'])
- result1 = df1.expanding().corr(df2, pairwise=True).loc[2]
- result2 = df1.expanding().corr(df2a, pairwise=True).loc[2]
- result3 = df1a.expanding().corr(df2, pairwise=True).loc[2]
- result4 = df1a.expanding().corr(df2a, pairwise=True).loc[2]
- expected = DataFrame([[-1.0, -1.0], [-1.0, -1.0]],
- columns=['A', 'B'],
- index=Index(['X', 'Y']))
- tm.assert_frame_equal(result1, expected)
- tm.assert_frame_equal(result2, expected)
- tm.assert_frame_equal(result3, expected)
- tm.assert_frame_equal(result4, expected)
- def test_rolling_skew_edge_cases(self):
- all_nan = Series([np.NaN] * 5)
- # yields all NaN (0 variance)
- d = Series([1] * 5)
- x = d.rolling(window=5).skew()
- tm.assert_series_equal(all_nan, x)
- # yields all NaN (window too small)
- d = Series(np.random.randn(5))
- x = d.rolling(window=2).skew()
- tm.assert_series_equal(all_nan, x)
- # yields [NaN, NaN, NaN, 0.177994, 1.548824]
- d = Series([-1.50837035, -0.1297039, 0.19501095, 1.73508164, 0.41941401
- ])
- expected = Series([np.NaN, np.NaN, np.NaN, 0.177994, 1.548824])
- x = d.rolling(window=4).skew()
- tm.assert_series_equal(expected, x)
- def test_rolling_kurt_edge_cases(self):
- all_nan = Series([np.NaN] * 5)
- # yields all NaN (0 variance)
- d = Series([1] * 5)
- x = d.rolling(window=5).kurt()
- tm.assert_series_equal(all_nan, x)
- # yields all NaN (window too small)
- d = Series(np.random.randn(5))
- x = d.rolling(window=3).kurt()
- tm.assert_series_equal(all_nan, x)
- # yields [NaN, NaN, NaN, 1.224307, 2.671499]
- d = Series([-1.50837035, -0.1297039, 0.19501095, 1.73508164, 0.41941401
- ])
- expected = Series([np.NaN, np.NaN, np.NaN, 1.224307, 2.671499])
- x = d.rolling(window=4).kurt()
- tm.assert_series_equal(expected, x)
- def test_rolling_skew_eq_value_fperr(self):
- # #18804 all rolling skew for all equal values should return Nan
- a = Series([1.1] * 15).rolling(window=10).skew()
- assert np.isnan(a).all()
- def test_rolling_kurt_eq_value_fperr(self):
- # #18804 all rolling kurt for all equal values should return Nan
- a = Series([1.1] * 15).rolling(window=10).kurt()
- assert np.isnan(a).all()
- @pytest.mark.parametrize('func,static_comp', [('sum', np.sum),
- ('mean', np.mean),
- ('max', np.max),
- ('min', np.min)],
- ids=['sum', 'mean', 'max', 'min'])
- def test_expanding_func(self, func, static_comp):
- def expanding_func(x, min_periods=1, center=False, axis=0):
- exp = x.expanding(min_periods=min_periods,
- center=center, axis=axis)
- return getattr(exp, func)()
- self._check_expanding(expanding_func, static_comp, preserve_nan=False)
- def test_expanding_apply(self, raw):
- def expanding_mean(x, min_periods=1):
- exp = x.expanding(min_periods=min_periods)
- result = exp.apply(lambda x: x.mean(), raw=raw)
- return result
- # TODO(jreback), needed to add preserve_nan=False
- # here to make this pass
- self._check_expanding(expanding_mean, np.mean, preserve_nan=False)
- ser = Series([])
- tm.assert_series_equal(ser, ser.expanding().apply(
- lambda x: x.mean(), raw=raw))
- # GH 8080
- s = Series([None, None, None])
- result = s.expanding(min_periods=0).apply(lambda x: len(x), raw=raw)
- expected = Series([1., 2., 3.])
- tm.assert_series_equal(result, expected)
- def _check_expanding(self, func, static_comp, has_min_periods=True,
- has_time_rule=True, preserve_nan=True):
- series_result = func(self.series)
- assert isinstance(series_result, Series)
- frame_result = func(self.frame)
- assert isinstance(frame_result, DataFrame)
- result = func(self.series)
- tm.assert_almost_equal(result[10], static_comp(self.series[:11]))
- if preserve_nan:
- assert result.iloc[self._nan_locs].isna().all()
- ser = Series(randn(50))
- if has_min_periods:
- result = func(ser, min_periods=30)
- assert result[:29].isna().all()
- tm.assert_almost_equal(result.iloc[-1], static_comp(ser[:50]))
- # min_periods is working correctly
- result = func(ser, min_periods=15)
- assert isna(result.iloc[13])
- assert notna(result.iloc[14])
- ser2 = Series(randn(20))
- result = func(ser2, min_periods=5)
- assert isna(result[3])
- assert notna(result[4])
- # min_periods=0
- result0 = func(ser, min_periods=0)
- result1 = func(ser, min_periods=1)
- tm.assert_almost_equal(result0, result1)
- else:
- result = func(ser)
- tm.assert_almost_equal(result.iloc[-1], static_comp(ser[:50]))
- def test_rolling_max_gh6297(self):
- """Replicate result expected in GH #6297"""
- indices = [datetime(1975, 1, i) for i in range(1, 6)]
- # So that we can have 2 datapoints on one of the days
- indices.append(datetime(1975, 1, 3, 6, 0))
- series = Series(range(1, 7), index=indices)
- # Use floats instead of ints as values
- series = series.map(lambda x: float(x))
- # Sort chronologically
- series = series.sort_index()
- expected = Series([1.0, 2.0, 6.0, 4.0, 5.0],
- index=[datetime(1975, 1, i, 0) for i in range(1, 6)])
- x = series.resample('D').max().rolling(window=1).max()
- tm.assert_series_equal(expected, x)
- def test_rolling_max_resample(self):
- indices = [datetime(1975, 1, i) for i in range(1, 6)]
- # So that we can have 3 datapoints on last day (4, 10, and 20)
- indices.append(datetime(1975, 1, 5, 1))
- indices.append(datetime(1975, 1, 5, 2))
- series = Series(list(range(0, 5)) + [10, 20], index=indices)
- # Use floats instead of ints as values
- series = series.map(lambda x: float(x))
- # Sort chronologically
- series = series.sort_index()
- # Default how should be max
- expected = Series([0.0, 1.0, 2.0, 3.0, 20.0],
- index=[datetime(1975, 1, i, 0) for i in range(1, 6)])
- x = series.resample('D').max().rolling(window=1).max()
- tm.assert_series_equal(expected, x)
- # Now specify median (10.0)
- expected = Series([0.0, 1.0, 2.0, 3.0, 10.0],
- index=[datetime(1975, 1, i, 0) for i in range(1, 6)])
- x = series.resample('D').median().rolling(window=1).max()
- tm.assert_series_equal(expected, x)
- # Now specify mean (4+10+20)/3
- v = (4.0 + 10.0 + 20.0) / 3.0
- expected = Series([0.0, 1.0, 2.0, 3.0, v],
- index=[datetime(1975, 1, i, 0) for i in range(1, 6)])
- x = series.resample('D').mean().rolling(window=1).max()
- tm.assert_series_equal(expected, x)
- def test_rolling_min_resample(self):
- indices = [datetime(1975, 1, i) for i in range(1, 6)]
- # So that we can have 3 datapoints on last day (4, 10, and 20)
- indices.append(datetime(1975, 1, 5, 1))
- indices.append(datetime(1975, 1, 5, 2))
- series = Series(list(range(0, 5)) + [10, 20], index=indices)
- # Use floats instead of ints as values
- series = series.map(lambda x: float(x))
- # Sort chronologically
- series = series.sort_index()
- # Default how should be min
- expected = Series([0.0, 1.0, 2.0, 3.0, 4.0],
- index=[datetime(1975, 1, i, 0) for i in range(1, 6)])
- r = series.resample('D').min().rolling(window=1)
- tm.assert_series_equal(expected, r.min())
- def test_rolling_median_resample(self):
- indices = [datetime(1975, 1, i) for i in range(1, 6)]
- # So that we can have 3 datapoints on last day (4, 10, and 20)
- indices.append(datetime(1975, 1, 5, 1))
- indices.append(datetime(1975, 1, 5, 2))
- series = Series(list(range(0, 5)) + [10, 20], index=indices)
- # Use floats instead of ints as values
- series = series.map(lambda x: float(x))
- # Sort chronologically
- series = series.sort_index()
- # Default how should be median
- expected = Series([0.0, 1.0, 2.0, 3.0, 10],
- index=[datetime(1975, 1, i, 0) for i in range(1, 6)])
- x = series.resample('D').median().rolling(window=1).median()
- tm.assert_series_equal(expected, x)
- def test_rolling_median_memory_error(self):
- # GH11722
- n = 20000
- Series(np.random.randn(n)).rolling(window=2, center=False).median()
- Series(np.random.randn(n)).rolling(window=2, center=False).median()
- def test_rolling_min_max_numeric_types(self):
- # GH12373
- types_test = [np.dtype("f{}".format(width)) for width in [4, 8]]
- types_test.extend([np.dtype("{}{}".format(sign, width))
- for width in [1, 2, 4, 8] for sign in "ui"])
- for data_type in types_test:
- # Just testing that these don't throw exceptions and that
- # the return type is float64. Other tests will cover quantitative
- # correctness
- result = (DataFrame(np.arange(20, dtype=data_type))
- .rolling(window=5).max())
- assert result.dtypes[0] == np.dtype("f8")
- result = (DataFrame(np.arange(20, dtype=data_type))
- .rolling(window=5).min())
- assert result.dtypes[0] == np.dtype("f8")
- class TestGrouperGrouping(object):
- def setup_method(self, method):
- self.series = Series(np.arange(10))
- self.frame = DataFrame({'A': [1] * 20 + [2] * 12 + [3] * 8,
- 'B': np.arange(40)})
- def test_mutated(self):
- def f():
- self.frame.groupby('A', foo=1)
- pytest.raises(TypeError, f)
- g = self.frame.groupby('A')
- assert not g.mutated
- g = self.frame.groupby('A', mutated=True)
- assert g.mutated
- def test_getitem(self):
- g = self.frame.groupby('A')
- g_mutated = self.frame.groupby('A', mutated=True)
- expected = g_mutated.B.apply(lambda x: x.rolling(2).mean())
- result = g.rolling(2).mean().B
- tm.assert_series_equal(result, expected)
- result = g.rolling(2).B.mean()
- tm.assert_series_equal(result, expected)
- result = g.B.rolling(2).mean()
- tm.assert_series_equal(result, expected)
- result = self.frame.B.groupby(self.frame.A).rolling(2).mean()
- tm.assert_series_equal(result, expected)
- def test_getitem_multiple(self):
- # GH 13174
- g = self.frame.groupby('A')
- r = g.rolling(2)
- g_mutated = self.frame.groupby('A', mutated=True)
- expected = g_mutated.B.apply(lambda x: x.rolling(2).count())
- result = r.B.count()
- tm.assert_series_equal(result, expected)
- result = r.B.count()
- tm.assert_series_equal(result, expected)
- def test_rolling(self):
- g = self.frame.groupby('A')
- r = g.rolling(window=4)
- for f in ['sum', 'mean', 'min', 'max', 'count', 'kurt', 'skew']:
- result = getattr(r, f)()
- expected = g.apply(lambda x: getattr(x.rolling(4), f)())
- tm.assert_frame_equal(result, expected)
- for f in ['std', 'var']:
- result = getattr(r, f)(ddof=1)
- expected = g.apply(lambda x: getattr(x.rolling(4), f)(ddof=1))
- tm.assert_frame_equal(result, expected)
- result = r.quantile(0.5)
- expected = g.apply(lambda x: x.rolling(4).quantile(0.5))
- tm.assert_frame_equal(result, expected)
- def test_rolling_corr_cov(self):
- g = self.frame.groupby('A')
- r = g.rolling(window=4)
- for f in ['corr', 'cov']:
- result = getattr(r, f)(self.frame)
- def func(x):
- return getattr(x.rolling(4), f)(self.frame)
- expected = g.apply(func)
- tm.assert_frame_equal(result, expected)
- result = getattr(r.B, f)(pairwise=True)
- def func(x):
- return getattr(x.B.rolling(4), f)(pairwise=True)
- expected = g.apply(func)
- tm.assert_series_equal(result, expected)
- def test_rolling_apply(self, raw):
- g = self.frame.groupby('A')
- r = g.rolling(window=4)
- # reduction
- result = r.apply(lambda x: x.sum(), raw=raw)
- expected = g.apply(
- lambda x: x.rolling(4).apply(lambda y: y.sum(), raw=raw))
- tm.assert_frame_equal(result, expected)
- def test_rolling_apply_mutability(self):
- # GH 14013
- df = pd.DataFrame({'A': ['foo'] * 3 + ['bar'] * 3, 'B': [1] * 6})
- g = df.groupby('A')
- mi = pd.MultiIndex.from_tuples([('bar', 3), ('bar', 4), ('bar', 5),
- ('foo', 0), ('foo', 1), ('foo', 2)])
- mi.names = ['A', None]
- # Grouped column should not be a part of the output
- expected = pd.DataFrame([np.nan, 2., 2.] * 2, columns=['B'], index=mi)
- result = g.rolling(window=2).sum()
- tm.assert_frame_equal(result, expected)
- # Call an arbitrary function on the groupby
- g.sum()
- # Make sure nothing has been mutated
- result = g.rolling(window=2).sum()
- tm.assert_frame_equal(result, expected)
- def test_expanding(self):
- g = self.frame.groupby('A')
- r = g.expanding()
- for f in ['sum', 'mean', 'min', 'max', 'count', 'kurt', 'skew']:
- result = getattr(r, f)()
- expected = g.apply(lambda x: getattr(x.expanding(), f)())
- tm.assert_frame_equal(result, expected)
- for f in ['std', 'var']:
- result = getattr(r, f)(ddof=0)
- expected = g.apply(lambda x: getattr(x.expanding(), f)(ddof=0))
- tm.assert_frame_equal(result, expected)
- result = r.quantile(0.5)
- expected = g.apply(lambda x: x.expanding().quantile(0.5))
- tm.assert_frame_equal(result, expected)
- def test_expanding_corr_cov(self):
- g = self.frame.groupby('A')
- r = g.expanding()
- for f in ['corr', 'cov']:
- result = getattr(r, f)(self.frame)
- def func(x):
- return getattr(x.expanding(), f)(self.frame)
- expected = g.apply(func)
- tm.assert_frame_equal(result, expected)
- result = getattr(r.B, f)(pairwise=True)
- def func(x):
- return getattr(x.B.expanding(), f)(pairwise=True)
- expected = g.apply(func)
- tm.assert_series_equal(result, expected)
- def test_expanding_apply(self, raw):
- g = self.frame.groupby('A')
- r = g.expanding()
- # reduction
- result = r.apply(lambda x: x.sum(), raw=raw)
- expected = g.apply(
- lambda x: x.expanding().apply(lambda y: y.sum(), raw=raw))
- tm.assert_frame_equal(result, expected)
- class TestRollingTS(object):
- # rolling time-series friendly
- # xref GH13327
- def setup_method(self, method):
- self.regular = DataFrame({'A': pd.date_range('20130101',
- periods=5,
- freq='s'),
- 'B': range(5)}).set_index('A')
- self.ragged = DataFrame({'B': range(5)})
- self.ragged.index = [Timestamp('20130101 09:00:00'),
- Timestamp('20130101 09:00:02'),
- Timestamp('20130101 09:00:03'),
- Timestamp('20130101 09:00:05'),
- Timestamp('20130101 09:00:06')]
- def test_doc_string(self):
- df = DataFrame({'B': [0, 1, 2, np.nan, 4]},
- index=[Timestamp('20130101 09:00:00'),
- Timestamp('20130101 09:00:02'),
- Timestamp('20130101 09:00:03'),
- Timestamp('20130101 09:00:05'),
- Timestamp('20130101 09:00:06')])
- df
- df.rolling('2s').sum()
- def test_valid(self):
- df = self.regular
- # not a valid freq
- with pytest.raises(ValueError):
- df.rolling(window='foobar')
- # not a datetimelike index
- with pytest.raises(ValueError):
- df.reset_index().rolling(window='foobar')
- # non-fixed freqs
- for freq in ['2MS', pd.offsets.MonthBegin(2)]:
- with pytest.raises(ValueError):
- df.rolling(window=freq)
- for freq in ['1D', pd.offsets.Day(2), '2ms']:
- df.rolling(window=freq)
- # non-integer min_periods
- for minp in [1.0, 'foo', np.array([1, 2, 3])]:
- with pytest.raises(ValueError):
- df.rolling(window='1D', min_periods=minp)
- # center is not implemented
- with pytest.raises(NotImplementedError):
- df.rolling(window='1D', center=True)
- def test_on(self):
- df = self.regular
- # not a valid column
- with pytest.raises(ValueError):
- df.rolling(window='2s', on='foobar')
- # column is valid
- df = df.copy()
- df['C'] = pd.date_range('20130101', periods=len(df))
- df.rolling(window='2d', on='C').sum()
- # invalid columns
- with pytest.raises(ValueError):
- df.rolling(window='2d', on='B')
- # ok even though on non-selected
- df.rolling(window='2d', on='C').B.sum()
- def test_monotonic_on(self):
- # on/index must be monotonic
- df = DataFrame({'A': pd.date_range('20130101',
- periods=5,
- freq='s'),
- 'B': range(5)})
- assert df.A.is_monotonic
- df.rolling('2s', on='A').sum()
- df = df.set_index('A')
- assert df.index.is_monotonic
- df.rolling('2s').sum()
- # non-monotonic
- df.index = reversed(df.index.tolist())
- assert not df.index.is_monotonic
- with pytest.raises(ValueError):
- df.rolling('2s').sum()
- df = df.reset_index()
- with pytest.raises(ValueError):
- df.rolling('2s', on='A').sum()
- def test_frame_on(self):
- df = DataFrame({'B': range(5),
- 'C': pd.date_range('20130101 09:00:00',
- periods=5,
- freq='3s')})
- df['A'] = [Timestamp('20130101 09:00:00'),
- Timestamp('20130101 09:00:02'),
- Timestamp('20130101 09:00:03'),
- Timestamp('20130101 09:00:05'),
- Timestamp('20130101 09:00:06')]
- # we are doing simulating using 'on'
- expected = (df.set_index('A')
- .rolling('2s')
- .B
- .sum()
- .reset_index(drop=True)
- )
- result = (df.rolling('2s', on='A')
- .B
- .sum()
- )
- tm.assert_series_equal(result, expected)
- # test as a frame
- # we should be ignoring the 'on' as an aggregation column
- # note that the expected is setting, computing, and resetting
- # so the columns need to be switched compared
- # to the actual result where they are ordered as in the
- # original
- expected = (df.set_index('A')
- .rolling('2s')[['B']]
- .sum()
- .reset_index()[['B', 'A']]
- )
- result = (df.rolling('2s', on='A')[['B']]
- .sum()
- )
- tm.assert_frame_equal(result, expected)
- def test_frame_on2(self):
- # using multiple aggregation columns
- df = DataFrame({'A': [0, 1, 2, 3, 4],
- 'B': [0, 1, 2, np.nan, 4],
- 'C': Index([Timestamp('20130101 09:00:00'),
- Timestamp('20130101 09:00:02'),
- Timestamp('20130101 09:00:03'),
- Timestamp('20130101 09:00:05'),
- Timestamp('20130101 09:00:06')])},
- columns=['A', 'C', 'B'])
- expected1 = DataFrame({'A': [0., 1, 3, 3, 7],
- 'B': [0, 1, 3, np.nan, 4],
- 'C': df['C']},
- columns=['A', 'C', 'B'])
- result = df.rolling('2s', on='C').sum()
- expected = expected1
- tm.assert_frame_equal(result, expected)
- expected = Series([0, 1, 3, np.nan, 4], name='B')
- result = df.rolling('2s', on='C').B.sum()
- tm.assert_series_equal(result, expected)
- expected = expected1[['A', 'B', 'C']]
- result = df.rolling('2s', on='C')[['A', 'B', 'C']].sum()
- tm.assert_frame_equal(result, expected)
- def test_basic_regular(self):
- df = self.regular.copy()
- df.index = pd.date_range('20130101', periods=5, freq='D')
- expected = df.rolling(window=1, min_periods=1).sum()
- result = df.rolling(window='1D').sum()
- tm.assert_frame_equal(result, expected)
- df.index = pd.date_range('20130101', periods=5, freq='2D')
- expected = df.rolling(window=1, min_periods=1).sum()
- result = df.rolling(window='2D', min_periods=1).sum()
- tm.assert_frame_equal(result, expected)
- expected = df.rolling(window=1, min_periods=1).sum()
- result = df.rolling(window='2D', min_periods=1).sum()
- tm.assert_frame_equal(result, expected)
- expected = df.rolling(window=1).sum()
- result = df.rolling(window='2D').sum()
- tm.assert_frame_equal(result, expected)
- def test_min_periods(self):
- # compare for min_periods
- df = self.regular
- # these slightly different
- expected = df.rolling(2, min_periods=1).sum()
- result = df.rolling('2s').sum()
- tm.assert_frame_equal(result, expected)
- expected = df.rolling(2, min_periods=1).sum()
- result = df.rolling('2s', min_periods=1).sum()
- tm.assert_frame_equal(result, expected)
- def test_closed(self):
- # xref GH13965
- df = DataFrame({'A': [1] * 5},
- index=[Timestamp('20130101 09:00:01'),
- Timestamp('20130101 09:00:02'),
- Timestamp('20130101 09:00:03'),
- Timestamp('20130101 09:00:04'),
- Timestamp('20130101 09:00:06')])
- # closed must be 'right', 'left', 'both', 'neither'
- with pytest.raises(ValueError):
- self.regular.rolling(window='2s', closed="blabla")
- expected = df.copy()
- expected["A"] = [1.0, 2, 2, 2, 1]
- result = df.rolling('2s', closed='right').sum()
- tm.assert_frame_equal(result, expected)
- # default should be 'right'
- result = df.rolling('2s').sum()
- tm.assert_frame_equal(result, expected)
- expected = df.copy()
- expected["A"] = [1.0, 2, 3, 3, 2]
- result = df.rolling('2s', closed='both').sum()
- tm.assert_frame_equal(result, expected)
- expected = df.copy()
- expected["A"] = [np.nan, 1.0, 2, 2, 1]
- result = df.rolling('2s', closed='left').sum()
- tm.assert_frame_equal(result, expected)
- expected = df.copy()
- expected["A"] = [np.nan, 1.0, 1, 1, np.nan]
- result = df.rolling('2s', closed='neither').sum()
- tm.assert_frame_equal(result, expected)
- def test_ragged_sum(self):
- df = self.ragged
- result = df.rolling(window='1s', min_periods=1).sum()
- expected = df.copy()
- expected['B'] = [0.0, 1, 2, 3, 4]
- tm.assert_frame_equal(result, expected)
- result = df.rolling(window='2s', min_periods=1).sum()
- expected = df.copy()
- expected['B'] = [0.0, 1, 3, 3, 7]
- tm.assert_frame_equal(result, expected)
- result = df.rolling(window='2s', min_periods=2).sum()
- expected = df.copy()
- expected['B'] = [np.nan, np.nan, 3, np.nan, 7]
- tm.assert_frame_equal(result, expected)
- result = df.rolling(window='3s', min_periods=1).sum()
- expected = df.copy()
- expected['B'] = [0.0, 1, 3, 5, 7]
- tm.assert_frame_equal(result, expected)
- result = df.rolling(window='3s').sum()
- expected = df.copy()
- expected['B'] = [0.0, 1, 3, 5, 7]
- tm.assert_frame_equal(result, expected)
- result = df.rolling(window='4s', min_periods=1).sum()
- expected = df.copy()
- expected['B'] = [0.0, 1, 3, 6, 9]
- tm.assert_frame_equal(result, expected)
- result = df.rolling(window='4s', min_periods=3).sum()
- expected = df.copy()
- expected['B'] = [np.nan, np.nan, 3, 6, 9]
- tm.assert_frame_equal(result, expected)
- result = df.rolling(window='5s', min_periods=1).sum()
- expected = df.copy()
- expected['B'] = [0.0, 1, 3, 6, 10]
- tm.assert_frame_equal(result, expected)
- def test_ragged_mean(self):
- df = self.ragged
- result = df.rolling(window='1s', min_periods=1).mean()
- expected = df.copy()
- expected['B'] = [0.0, 1, 2, 3, 4]
- tm.assert_frame_equal(result, expected)
- result = df.rolling(window='2s', min_periods=1).mean()
- expected = df.copy()
- expected['B'] = [0.0, 1, 1.5, 3.0, 3.5]
- tm.assert_frame_equal(result, expected)
- def test_ragged_median(self):
- df = self.ragged
- result = df.rolling(window='1s', min_periods=1).median()
- expected = df.copy()
- expected['B'] = [0.0, 1, 2, 3, 4]
- tm.assert_frame_equal(result, expected)
- result = df.rolling(window='2s', min_periods=1).median()
- expected = df.copy()
- expected['B'] = [0.0, 1, 1.5, 3.0, 3.5]
- tm.assert_frame_equal(result, expected)
- def test_ragged_quantile(self):
- df = self.ragged
- result = df.rolling(window='1s', min_periods=1).quantile(0.5)
- expected = df.copy()
- expected['B'] = [0.0, 1, 2, 3, 4]
- tm.assert_frame_equal(result, expected)
- result = df.rolling(window='2s', min_periods=1).quantile(0.5)
- expected = df.copy()
- expected['B'] = [0.0, 1, 1.5, 3.0, 3.5]
- tm.assert_frame_equal(result, expected)
- def test_ragged_std(self):
- df = self.ragged
- result = df.rolling(window='1s', min_periods=1).std(ddof=0)
- expected = df.copy()
- expected['B'] = [0.0] * 5
- tm.assert_frame_equal(result, expected)
- result = df.rolling(window='1s', min_periods=1).std(ddof=1)
- expected = df.copy()
- expected['B'] = [np.nan] * 5
- tm.assert_frame_equal(result, expected)
- result = df.rolling(window='3s', min_periods=1).std(ddof=0)
- expected = df.copy()
- expected['B'] = [0.0] + [0.5] * 4
- tm.assert_frame_equal(result, expected)
- result = df.rolling(window='5s', min_periods=1).std(ddof=1)
- expected = df.copy()
- expected['B'] = [np.nan, 0.707107, 1.0, 1.0, 1.290994]
- tm.assert_frame_equal(result, expected)
- def test_ragged_var(self):
- df = self.ragged
- result = df.rolling(window='1s', min_periods=1).var(ddof=0)
- expected = df.copy()
- expected['B'] = [0.0] * 5
- tm.assert_frame_equal(result, expected)
- result = df.rolling(window='1s', min_periods=1).var(ddof=1)
- expected = df.copy()
- expected['B'] = [np.nan] * 5
- tm.assert_frame_equal(result, expected)
- result = df.rolling(window='3s', min_periods=1).var(ddof=0)
- expected = df.copy()
- expected['B'] = [0.0] + [0.25] * 4
- tm.assert_frame_equal(result, expected)
- result = df.rolling(window='5s', min_periods=1).var(ddof=1)
- expected = df.copy()
- expected['B'] = [np.nan, 0.5, 1.0, 1.0, 1 + 2 / 3.]
- tm.assert_frame_equal(result, expected)
- def test_ragged_skew(self):
- df = self.ragged
- result = df.rolling(window='3s', min_periods=1).skew()
- expected = df.copy()
- expected['B'] = [np.nan] * 5
- tm.assert_frame_equal(result, expected)
- result = df.rolling(window='5s', min_periods=1).skew()
- expected = df.copy()
- expected['B'] = [np.nan] * 2 + [0.0, 0.0, 0.0]
- tm.assert_frame_equal(result, expected)
- def test_ragged_kurt(self):
- df = self.ragged
- result = df.rolling(window='3s', min_periods=1).kurt()
- expected = df.copy()
- expected['B'] = [np.nan] * 5
- tm.assert_frame_equal(result, expected)
- result = df.rolling(window='5s', min_periods=1).kurt()
- expected = df.copy()
- expected['B'] = [np.nan] * 4 + [-1.2]
- tm.assert_frame_equal(result, expected)
- def test_ragged_count(self):
- df = self.ragged
- result = df.rolling(window='1s', min_periods=1).count()
- expected = df.copy()
- expected['B'] = [1.0, 1, 1, 1, 1]
- tm.assert_frame_equal(result, expected)
- df = self.ragged
- result = df.rolling(window='1s').count()
- tm.assert_frame_equal(result, expected)
- result = df.rolling(window='2s', min_periods=1).count()
- expected = df.copy()
- expected['B'] = [1.0, 1, 2, 1, 2]
- tm.assert_frame_equal(result, expected)
- result = df.rolling(window='2s', min_periods=2).count()
- expected = df.copy()
- expected['B'] = [np.nan, np.nan, 2, np.nan, 2]
- tm.assert_frame_equal(result, expected)
- def test_regular_min(self):
- df = DataFrame({'A': pd.date_range('20130101',
- periods=5,
- freq='s'),
- 'B': [0.0, 1, 2, 3, 4]}).set_index('A')
- result = df.rolling('1s').min()
- expected = df.copy()
- expected['B'] = [0.0, 1, 2, 3, 4]
- tm.assert_frame_equal(result, expected)
- df = DataFrame({'A': pd.date_range('20130101',
- periods=5,
- freq='s'),
- 'B': [5, 4, 3, 4, 5]}).set_index('A')
- tm.assert_frame_equal(result, expected)
- result = df.rolling('2s').min()
- expected = df.copy()
- expected['B'] = [5.0, 4, 3, 3, 4]
- tm.assert_frame_equal(result, expected)
- result = df.rolling('5s').min()
- expected = df.copy()
- expected['B'] = [5.0, 4, 3, 3, 3]
- tm.assert_frame_equal(result, expected)
- def test_ragged_min(self):
- df = self.ragged
- result = df.rolling(window='1s', min_periods=1).min()
- expected = df.copy()
- expected['B'] = [0.0, 1, 2, 3, 4]
- tm.assert_frame_equal(result, expected)
- result = df.rolling(window='2s', min_periods=1).min()
- expected = df.copy()
- expected['B'] = [0.0, 1, 1, 3, 3]
- tm.assert_frame_equal(result, expected)
- result = df.rolling(window='5s', min_periods=1).min()
- expected = df.copy()
- expected['B'] = [0.0, 0, 0, 1, 1]
- tm.assert_frame_equal(result, expected)
- def test_perf_min(self):
- N = 10000
- dfp = DataFrame({'B': np.random.randn(N)},
- index=pd.date_range('20130101',
- periods=N,
- freq='s'))
- expected = dfp.rolling(2, min_periods=1).min()
- result = dfp.rolling('2s').min()
- assert ((result - expected) < 0.01).all().bool()
- expected = dfp.rolling(200, min_periods=1).min()
- result = dfp.rolling('200s').min()
- assert ((result - expected) < 0.01).all().bool()
- def test_ragged_max(self):
- df = self.ragged
- result = df.rolling(window='1s', min_periods=1).max()
- expected = df.copy()
- expected['B'] = [0.0, 1, 2, 3, 4]
- tm.assert_frame_equal(result, expected)
- result = df.rolling(window='2s', min_periods=1).max()
- expected = df.copy()
- expected['B'] = [0.0, 1, 2, 3, 4]
- tm.assert_frame_equal(result, expected)
- result = df.rolling(window='5s', min_periods=1).max()
- expected = df.copy()
- expected['B'] = [0.0, 1, 2, 3, 4]
- tm.assert_frame_equal(result, expected)
- def test_ragged_apply(self, raw):
- df = self.ragged
- f = lambda x: 1
- result = df.rolling(window='1s', min_periods=1).apply(f, raw=raw)
- expected = df.copy()
- expected['B'] = 1.
- tm.assert_frame_equal(result, expected)
- result = df.rolling(window='2s', min_periods=1).apply(f, raw=raw)
- expected = df.copy()
- expected['B'] = 1.
- tm.assert_frame_equal(result, expected)
- result = df.rolling(window='5s', min_periods=1).apply(f, raw=raw)
- expected = df.copy()
- expected['B'] = 1.
- tm.assert_frame_equal(result, expected)
- def test_all(self):
- # simple comparison of integer vs time-based windowing
- df = self.regular * 2
- er = df.rolling(window=1)
- r = df.rolling(window='1s')
- for f in ['sum', 'mean', 'count', 'median', 'std',
- 'var', 'kurt', 'skew', 'min', 'max']:
- result = getattr(r, f)()
- expected = getattr(er, f)()
- tm.assert_frame_equal(result, expected)
- result = r.quantile(0.5)
- expected = er.quantile(0.5)
- tm.assert_frame_equal(result, expected)
- def test_all_apply(self, raw):
- df = self.regular * 2
- er = df.rolling(window=1)
- r = df.rolling(window='1s')
- result = r.apply(lambda x: 1, raw=raw)
- expected = er.apply(lambda x: 1, raw=raw)
- tm.assert_frame_equal(result, expected)
- def test_all2(self):
- # more sophisticated comparison of integer vs.
- # time-based windowing
- df = DataFrame({'B': np.arange(50)},
- index=pd.date_range('20130101',
- periods=50, freq='H')
- )
- # in-range data
- dft = df.between_time("09:00", "16:00")
- r = dft.rolling(window='5H')
- for f in ['sum', 'mean', 'count', 'median', 'std',
- 'var', 'kurt', 'skew', 'min', 'max']:
- result = getattr(r, f)()
- # we need to roll the days separately
- # to compare with a time-based roll
- # finally groupby-apply will return a multi-index
- # so we need to drop the day
- def agg_by_day(x):
- x = x.between_time("09:00", "16:00")
- return getattr(x.rolling(5, min_periods=1), f)()
- expected = df.groupby(df.index.day).apply(
- agg_by_day).reset_index(level=0, drop=True)
- tm.assert_frame_equal(result, expected)
- def test_groupby_monotonic(self):
- # GH 15130
- # we don't need to validate monotonicity when grouping
- data = [
- ['David', '1/1/2015', 100], ['David', '1/5/2015', 500],
- ['David', '5/30/2015', 50], ['David', '7/25/2015', 50],
- ['Ryan', '1/4/2014', 100], ['Ryan', '1/19/2015', 500],
- ['Ryan', '3/31/2016', 50], ['Joe', '7/1/2015', 100],
- ['Joe', '9/9/2015', 500], ['Joe', '10/15/2015', 50]]
- df = DataFrame(data=data, columns=['name', 'date', 'amount'])
- df['date'] = pd.to_datetime(df['date'])
- expected = df.set_index('date').groupby('name').apply(
- lambda x: x.rolling('180D')['amount'].sum())
- result = df.groupby('name').rolling('180D', on='date')['amount'].sum()
- tm.assert_series_equal(result, expected)
- def test_non_monotonic(self):
- # GH 13966 (similar to #15130, closed by #15175)
- dates = pd.date_range(start='2016-01-01 09:30:00',
- periods=20, freq='s')
- df = DataFrame({'A': [1] * 20 + [2] * 12 + [3] * 8,
- 'B': np.concatenate((dates, dates)),
- 'C': np.arange(40)})
- result = df.groupby('A').rolling('4s', on='B').C.mean()
- expected = df.set_index('B').groupby('A').apply(
- lambda x: x.rolling('4s')['C'].mean())
- tm.assert_series_equal(result, expected)
- df2 = df.sort_values('B')
- result = df2.groupby('A').rolling('4s', on='B').C.mean()
- tm.assert_series_equal(result, expected)
- def test_rolling_cov_offset(self):
- # GH16058
- idx = pd.date_range('2017-01-01', periods=24, freq='1h')
- ss = Series(np.arange(len(idx)), index=idx)
- result = ss.rolling('2h').cov()
- expected = Series([np.nan] + [0.5] * (len(idx) - 1), index=idx)
- tm.assert_series_equal(result, expected)
- expected2 = ss.rolling(2, min_periods=1).cov()
- tm.assert_series_equal(result, expected2)
- result = ss.rolling('3h').cov()
- expected = Series([np.nan, 0.5] + [1.0] * (len(idx) - 2), index=idx)
- tm.assert_series_equal(result, expected)
- expected2 = ss.rolling(3, min_periods=1).cov()
- tm.assert_series_equal(result, expected2)
|