123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156 |
- # -*- coding: utf-8 -*-
- from datetime import date, datetime
- from dateutil.tz.tz import tzoffset
- import numpy as np
- import pytest
- import pytz
- from pandas._libs import iNaT, tslib
- from pandas.compat.numpy import np_array_datetime64_compat
- import pandas.util.testing as tm
- @pytest.mark.parametrize("data,expected", [
- (["01-01-2013", "01-02-2013"],
- ["2013-01-01T00:00:00.000000000-0000",
- "2013-01-02T00:00:00.000000000-0000"]),
- (["Mon Sep 16 2013", "Tue Sep 17 2013"],
- ["2013-09-16T00:00:00.000000000-0000",
- "2013-09-17T00:00:00.000000000-0000"])
- ])
- def test_parsing_valid_dates(data, expected):
- arr = np.array(data, dtype=object)
- result, _ = tslib.array_to_datetime(arr)
- expected = np_array_datetime64_compat(expected, dtype="M8[ns]")
- tm.assert_numpy_array_equal(result, expected)
- @pytest.mark.parametrize("dt_string, expected_tz", [
- ["01-01-2013 08:00:00+08:00", 480],
- ["2013-01-01T08:00:00.000000000+0800", 480],
- ["2012-12-31T16:00:00.000000000-0800", -480],
- ["12-31-2012 23:00:00-01:00", -60]
- ])
- def test_parsing_timezone_offsets(dt_string, expected_tz):
- # All of these datetime strings with offsets are equivalent
- # to the same datetime after the timezone offset is added.
- arr = np.array(["01-01-2013 00:00:00"], dtype=object)
- expected, _ = tslib.array_to_datetime(arr)
- arr = np.array([dt_string], dtype=object)
- result, result_tz = tslib.array_to_datetime(arr)
- tm.assert_numpy_array_equal(result, expected)
- assert result_tz is pytz.FixedOffset(expected_tz)
- def test_parsing_non_iso_timezone_offset():
- dt_string = "01-01-2013T00:00:00.000000000+0000"
- arr = np.array([dt_string], dtype=object)
- result, result_tz = tslib.array_to_datetime(arr)
- expected = np.array([np.datetime64("2013-01-01 00:00:00.000000000")])
- tm.assert_numpy_array_equal(result, expected)
- assert result_tz is pytz.FixedOffset(0)
- def test_parsing_different_timezone_offsets():
- # see gh-17697
- data = ["2015-11-18 15:30:00+05:30", "2015-11-18 15:30:00+06:30"]
- data = np.array(data, dtype=object)
- result, result_tz = tslib.array_to_datetime(data)
- expected = np.array([datetime(2015, 11, 18, 15, 30,
- tzinfo=tzoffset(None, 19800)),
- datetime(2015, 11, 18, 15, 30,
- tzinfo=tzoffset(None, 23400))],
- dtype=object)
- tm.assert_numpy_array_equal(result, expected)
- assert result_tz is None
- @pytest.mark.parametrize("data", [
- ["-352.737091", "183.575577"],
- ["1", "2", "3", "4", "5"]
- ])
- def test_number_looking_strings_not_into_datetime(data):
- # see gh-4601
- #
- # These strings don't look like datetimes, so
- # they shouldn't be attempted to be converted.
- arr = np.array(data, dtype=object)
- result, _ = tslib.array_to_datetime(arr, errors="ignore")
- tm.assert_numpy_array_equal(result, arr)
- @pytest.mark.parametrize("invalid_date", [
- date(1000, 1, 1),
- datetime(1000, 1, 1),
- "1000-01-01",
- "Jan 1, 1000",
- np.datetime64("1000-01-01")])
- @pytest.mark.parametrize("errors", ["coerce", "raise"])
- def test_coerce_outside_ns_bounds(invalid_date, errors):
- arr = np.array([invalid_date], dtype="object")
- kwargs = dict(values=arr, errors=errors)
- if errors == "raise":
- msg = "Out of bounds nanosecond timestamp"
- with pytest.raises(ValueError, match=msg):
- tslib.array_to_datetime(**kwargs)
- else: # coerce.
- result, _ = tslib.array_to_datetime(**kwargs)
- expected = np.array([iNaT], dtype="M8[ns]")
- tm.assert_numpy_array_equal(result, expected)
- def test_coerce_outside_ns_bounds_one_valid():
- arr = np.array(["1/1/1000", "1/1/2000"], dtype=object)
- result, _ = tslib.array_to_datetime(arr, errors="coerce")
- expected = [iNaT, "2000-01-01T00:00:00.000000000-0000"]
- expected = np_array_datetime64_compat(expected, dtype="M8[ns]")
- tm.assert_numpy_array_equal(result, expected)
- @pytest.mark.parametrize("errors", ["ignore", "coerce"])
- def test_coerce_of_invalid_datetimes(errors):
- arr = np.array(["01-01-2013", "not_a_date", "1"], dtype=object)
- kwargs = dict(values=arr, errors=errors)
- if errors == "ignore":
- # Without coercing, the presence of any invalid
- # dates prevents any values from being converted.
- result, _ = tslib.array_to_datetime(**kwargs)
- tm.assert_numpy_array_equal(result, arr)
- else: # coerce.
- # With coercing, the invalid dates becomes iNaT
- result, _ = tslib.array_to_datetime(arr, errors="coerce")
- expected = ["2013-01-01T00:00:00.000000000-0000",
- iNaT,
- iNaT]
- tm.assert_numpy_array_equal(
- result,
- np_array_datetime64_compat(expected, dtype="M8[ns]"))
- def test_to_datetime_barely_out_of_bounds():
- # see gh-19382, gh-19529
- #
- # Close enough to bounds that dropping nanos
- # would result in an in-bounds datetime.
- arr = np.array(["2262-04-11 23:47:16.854775808"], dtype=object)
- msg = "Out of bounds nanosecond timestamp: 2262-04-11 23:47:16"
- with pytest.raises(tslib.OutOfBoundsDatetime, match=msg):
- tslib.array_to_datetime(arr)
|