123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320 |
- #!/usr/bin/env python
- """
- Miscellaneous Routines.
- """
- import struct
- from sys import maxint as INF
- ## PNG Predictor
- ##
- def apply_png_predictor(pred, colors, columns, bitspercomponent, data):
- if bitspercomponent != 8:
- # unsupported
- raise ValueError(bitspercomponent)
- nbytes = colors*columns*bitspercomponent//8
- i = 0
- buf = ''
- line0 = '\x00' * columns
- for i in xrange(0, len(data), nbytes+1):
- ft = data[i]
- i += 1
- line1 = data[i:i+nbytes]
- line2 = ''
- if ft == '\x00':
- # PNG none
- line2 += line1
- elif ft == '\x01':
- # PNG sub (UNTESTED)
- c = 0
- for b in line1:
- c = (c+ord(b)) & 255
- line2 += chr(c)
- elif ft == '\x02':
- # PNG up
- for (a, b) in zip(line0, line1):
- c = (ord(a)+ord(b)) & 255
- line2 += chr(c)
- elif ft == '\x03':
- # PNG average (UNTESTED)
- c = 0
- for (a, b) in zip(line0, line1):
- c = ((c+ord(a)+ord(b))//2) & 255
- line2 += chr(c)
- else:
- # unsupported
- raise ValueError(ft)
- buf += line2
- line0 = line2
- return buf
- ## Matrix operations
- ##
- MATRIX_IDENTITY = (1, 0, 0, 1, 0, 0)
- def mult_matrix((a1, b1, c1, d1, e1, f1), (a0, b0, c0, d0, e0, f0)):
- """Returns the multiplication of two matrices."""
- return (a0*a1+c0*b1, b0*a1+d0*b1,
- a0*c1+c0*d1, b0*c1+d0*d1,
- a0*e1+c0*f1+e0, b0*e1+d0*f1+f0)
- def translate_matrix((a, b, c, d, e, f), (x, y)):
- """Translates a matrix by (x, y)."""
- return (a, b, c, d, x*a+y*c+e, x*b+y*d+f)
- def apply_matrix_pt((a, b, c, d, e, f), (x, y)):
- """Applies a matrix to a point."""
- return (a*x+c*y+e, b*x+d*y+f)
- def apply_matrix_norm((a, b, c, d, e, f), (p, q)):
- """Equivalent to apply_matrix_pt(M, (p,q)) - apply_matrix_pt(M, (0,0))"""
- return (a*p+c*q, b*p+d*q)
- ## Utility functions
- ##
- # isnumber
- def isnumber(x):
- return isinstance(x, (int, long, float))
- # uniq
- def uniq(objs):
- """Eliminates duplicated elements."""
- done = set()
- for obj in objs:
- if obj in done:
- continue
- done.add(obj)
- yield obj
- return
- # csort
- def csort(objs, key=lambda x: x):
- """Order-preserving sorting function."""
- idxs = dict((obj, i) for (i, obj) in enumerate(objs))
- return sorted(objs, key=lambda obj: (key(obj), idxs[obj]))
- # fsplit
- def fsplit(pred, objs):
- """Split a list into two classes according to the predicate."""
- t = []
- f = []
- for obj in objs:
- if pred(obj):
- t.append(obj)
- else:
- f.append(obj)
- return (t, f)
- # drange
- def drange(v0, v1, d):
- """Returns a discrete range."""
- assert v0 < v1
- return xrange(int(v0)//d, int(v1+d)//d)
- # get_bound
- def get_bound(pts):
- """Compute a minimal rectangle that covers all the points."""
- (x0, y0, x1, y1) = (INF, INF, -INF, -INF)
- for (x, y) in pts:
- x0 = min(x0, x)
- y0 = min(y0, y)
- x1 = max(x1, x)
- y1 = max(y1, y)
- return (x0, y0, x1, y1)
- # pick
- def pick(seq, func, maxobj=None):
- """Picks the object obj where func(obj) has the highest value."""
- maxscore = None
- for obj in seq:
- score = func(obj)
- if maxscore is None or maxscore < score:
- (maxscore, maxobj) = (score, obj)
- return maxobj
- # choplist
- def choplist(n, seq):
- """Groups every n elements of the list."""
- r = []
- for x in seq:
- r.append(x)
- if len(r) == n:
- yield tuple(r)
- r = []
- return
- # nunpack
- def nunpack(s, default=0):
- """Unpacks 1 to 4 byte integers (big endian)."""
- l = len(s)
- if not l:
- return default
- elif l == 1:
- return ord(s)
- elif l == 2:
- return struct.unpack('>H', s)[0]
- elif l == 3:
- return struct.unpack('>L', '\x00'+s)[0]
- elif l == 4:
- return struct.unpack('>L', s)[0]
- else:
- raise TypeError('invalid length: %d' % l)
- # decode_text
- PDFDocEncoding = ''.join(unichr(x) for x in (
- 0x0000, 0x0001, 0x0002, 0x0003, 0x0004, 0x0005, 0x0006, 0x0007,
- 0x0008, 0x0009, 0x000a, 0x000b, 0x000c, 0x000d, 0x000e, 0x000f,
- 0x0010, 0x0011, 0x0012, 0x0013, 0x0014, 0x0015, 0x0017, 0x0017,
- 0x02d8, 0x02c7, 0x02c6, 0x02d9, 0x02dd, 0x02db, 0x02da, 0x02dc,
- 0x0020, 0x0021, 0x0022, 0x0023, 0x0024, 0x0025, 0x0026, 0x0027,
- 0x0028, 0x0029, 0x002a, 0x002b, 0x002c, 0x002d, 0x002e, 0x002f,
- 0x0030, 0x0031, 0x0032, 0x0033, 0x0034, 0x0035, 0x0036, 0x0037,
- 0x0038, 0x0039, 0x003a, 0x003b, 0x003c, 0x003d, 0x003e, 0x003f,
- 0x0040, 0x0041, 0x0042, 0x0043, 0x0044, 0x0045, 0x0046, 0x0047,
- 0x0048, 0x0049, 0x004a, 0x004b, 0x004c, 0x004d, 0x004e, 0x004f,
- 0x0050, 0x0051, 0x0052, 0x0053, 0x0054, 0x0055, 0x0056, 0x0057,
- 0x0058, 0x0059, 0x005a, 0x005b, 0x005c, 0x005d, 0x005e, 0x005f,
- 0x0060, 0x0061, 0x0062, 0x0063, 0x0064, 0x0065, 0x0066, 0x0067,
- 0x0068, 0x0069, 0x006a, 0x006b, 0x006c, 0x006d, 0x006e, 0x006f,
- 0x0070, 0x0071, 0x0072, 0x0073, 0x0074, 0x0075, 0x0076, 0x0077,
- 0x0078, 0x0079, 0x007a, 0x007b, 0x007c, 0x007d, 0x007e, 0x0000,
- 0x2022, 0x2020, 0x2021, 0x2026, 0x2014, 0x2013, 0x0192, 0x2044,
- 0x2039, 0x203a, 0x2212, 0x2030, 0x201e, 0x201c, 0x201d, 0x2018,
- 0x2019, 0x201a, 0x2122, 0xfb01, 0xfb02, 0x0141, 0x0152, 0x0160,
- 0x0178, 0x017d, 0x0131, 0x0142, 0x0153, 0x0161, 0x017e, 0x0000,
- 0x20ac, 0x00a1, 0x00a2, 0x00a3, 0x00a4, 0x00a5, 0x00a6, 0x00a7,
- 0x00a8, 0x00a9, 0x00aa, 0x00ab, 0x00ac, 0x0000, 0x00ae, 0x00af,
- 0x00b0, 0x00b1, 0x00b2, 0x00b3, 0x00b4, 0x00b5, 0x00b6, 0x00b7,
- 0x00b8, 0x00b9, 0x00ba, 0x00bb, 0x00bc, 0x00bd, 0x00be, 0x00bf,
- 0x00c0, 0x00c1, 0x00c2, 0x00c3, 0x00c4, 0x00c5, 0x00c6, 0x00c7,
- 0x00c8, 0x00c9, 0x00ca, 0x00cb, 0x00cc, 0x00cd, 0x00ce, 0x00cf,
- 0x00d0, 0x00d1, 0x00d2, 0x00d3, 0x00d4, 0x00d5, 0x00d6, 0x00d7,
- 0x00d8, 0x00d9, 0x00da, 0x00db, 0x00dc, 0x00dd, 0x00de, 0x00df,
- 0x00e0, 0x00e1, 0x00e2, 0x00e3, 0x00e4, 0x00e5, 0x00e6, 0x00e7,
- 0x00e8, 0x00e9, 0x00ea, 0x00eb, 0x00ec, 0x00ed, 0x00ee, 0x00ef,
- 0x00f0, 0x00f1, 0x00f2, 0x00f3, 0x00f4, 0x00f5, 0x00f6, 0x00f7,
- 0x00f8, 0x00f9, 0x00fa, 0x00fb, 0x00fc, 0x00fd, 0x00fe, 0x00ff,
- ))
- def decode_text(s):
- """Decodes a PDFDocEncoding string to Unicode."""
- if s.startswith('\xfe\xff'):
- return unicode(s[2:], 'utf-16be', 'ignore')
- else:
- return ''.join(PDFDocEncoding[ord(c)] for c in s)
- # enc
- def enc(x, codec='ascii'):
- """Encodes a string for SGML/XML/HTML"""
- x = x.replace('&', '&').replace('>', '>').replace('<', '<').replace('"', '"')
- return x.encode(codec, 'xmlcharrefreplace')
- def bbox2str((x0, y0, x1, y1)):
- return '%.3f,%.3f,%.3f,%.3f' % (x0, y0, x1, y1)
- def matrix2str((a, b, c, d, e, f)):
- return '[%.2f,%.2f,%.2f,%.2f, (%.2f,%.2f)]' % (a, b, c, d, e, f)
- ## Plane
- ##
- ## A set-like data structure for objects placed on a plane.
- ## Can efficiently find objects in a certain rectangular area.
- ## It maintains two parallel lists of objects, each of
- ## which is sorted by its x or y coordinate.
- ##
- class Plane(object):
- def __init__(self, bbox, gridsize=50):
- self._objs = set()
- self._grid = {}
- self.gridsize = gridsize
- (self.x0, self.y0, self.x1, self.y1) = bbox
- return
- def __repr__(self):
- return ('<Plane objs=%r>' % list(self))
- def __iter__(self):
- return iter(self._objs)
- def __len__(self):
- return len(self._objs)
- def __contains__(self, obj):
- return obj in self._objs
- def _getrange(self, (x0, y0, x1, y1)):
- if (x1 <= self.x0 or self.x1 <= x0 or
- y1 <= self.y0 or self.y1 <= y0): return
- x0 = max(self.x0, x0)
- y0 = max(self.y0, y0)
- x1 = min(self.x1, x1)
- y1 = min(self.y1, y1)
- for y in drange(y0, y1, self.gridsize):
- for x in drange(x0, x1, self.gridsize):
- yield (x, y)
- return
- # extend(objs)
- def extend(self, objs):
- for obj in objs:
- self.add(obj)
- return
- # add(obj): place an object.
- def add(self, obj):
- for k in self._getrange((obj.x0, obj.y0, obj.x1, obj.y1)):
- if k not in self._grid:
- r = []
- self._grid[k] = r
- else:
- r = self._grid[k]
- r.append(obj)
- self._objs.add(obj)
- return
- # remove(obj): displace an object.
- def remove(self, obj):
- for k in self._getrange((obj.x0, obj.y0, obj.x1, obj.y1)):
- try:
- self._grid[k].remove(obj)
- except (KeyError, ValueError):
- pass
- self._objs.remove(obj)
- return
- # find(): finds objects that are in a certain area.
- def find(self, (x0, y0, x1, y1)):
- done = set()
- for k in self._getrange((x0, y0, x1, y1)):
- if k not in self._grid:
- continue
- for obj in self._grid[k]:
- if obj in done:
- continue
- done.add(obj)
- if (obj.x1 <= x0 or x1 <= obj.x0 or
- obj.y1 <= y0 or y1 <= obj.y0):
- continue
- yield obj
- return
|